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Preface

We are delighted to provide the conference proceedings of the 2nd International
Conference onMathematical Modeling, Computational Intelligence Techniques and
Renewable Energy (MMCITRE2021), which took place in Pandit Deendayal Energy
University (formerly known as Pandit Deendayal Petroleum University), Gandhi-
nagar, Gujarat, on February 6–8, 2021. Due to the COVID-19 pandemic, the confer-
ence was streamed live using the Zoom application and the sessions were held in
hybrid mode using Microsoft Teams. The primary goal of the conference is to bring
together academics, researchers, professionals and educators to interact and share
experiences and research results on topics related to science, engineering, computers
and mathematics.

This conference is attended by many researchers, scholars and industry persons
from nearly all over India as well as many other countries including the USA, UK,
Australia, Jordan, Spain, Japan, Chile, Oman, Nepal, etc. Papers in the form of a
parallel oral presentation were delivered. This book comprises research papers on
numerous topics, primarily focused on the mathematical modeling of many fields,
situations based on uncertainty, the modeling of energy systems, statistical analysis,
optimization approaches, etc.

Since this conference was organized in a hybrid mode, many researchers from
Ahmedabad and Gandhinagar only participated in person and visited Pandit Deen-
dayal Energy University (PDEU), which is the Gujarat’s top private university. The
100-acre campus of PDEU is located in Gandhinagar, Gujarat. It provides numerous
courses ranging from engineering, arts andmanagement to its students through varied
national and international exchange programs with the best universities all around
the world. It was set up as a private university byGERMI under the State Act onApril
4, 2007. The university has broadened the scope of its programs since its foundation
in 2007, delivering a wide variety of courses in technology, management, petroleum,
solar and nuclear energy and liberal education through various SOT, SPT, SPM and
SLS schools in a relatively short span of time. It aims to extend students and profes-
sionals’ possibilities to gain key subject knowledge which is appropriately supported
by leadership training activities and helps students to create a worldwide imprint. A
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vi Preface

variety of well-planned courses such as undergraduates, postgraduates and doctorate
programs and intensive research initiatives pursue this aim further.

This was the second international conference on the same topic, “Mathemat-
ical Modeling, Computational Intelligence Techniques and Renewable Energy
(MMCITRE2021)” hosted by the Department of Mathematics, PDEU. The confer-
ence’s keynote and prominent presenters were requested to participate in the confer-
ence as well as in the review process. A significant number of research publications
from all around the world were submitted to this international conference. All of
these papers are rigorously reviewed by experts in the relevant fields in a double-
blind peer review procedure, and only the highest quality research papers are chosen
for oral presentation at the conference. Finally, papers that passed the review process
were chosen, and a total of 42 research papers are included in this proceedings in
the form of chapters based on the quality of work assessed by experts from various
fields. These chapters were considered to be relevant not only for researchers but
also for postgraduate and undergraduate students in the fields of physics, mathe-
matics and engineering as well as for industrial persons working in many sectors,
such as medical, energy and stock market. Both new basic mathematical discov-
eries and mathematical and computational approaches utilized in interdisciplinary
applications are presented in these articles.

We must learn how to deal with new and different challenges at a moment of
instability and change on every societal sphere. The growth of future academicians,
researchers, programmers, educators and industries is strongly dependent on their
capacity to use mathematical tools in diverse applications in real life. In addition,
this conference has been organized to appreciate how young researcher and educa-
tionalist and prominent scientist should disseminate new information and progress
in all aspects of computational and mathematical advancements and their applica-
tions. This knowledge must be turned into transformational leadership that motivates
and assists practitioners in making meaningful changes in their communities. This
conference is a very significant interconnection in the network of change that many
believe will lead to a future, more conscious and capable general population.

Basically, the conference is intended to give a place to promote and exchange
knowledge of current research and achievements in the field of mathematics and
mathematical education to scientific, research and educational staff. It might lead to
fresh insights that allow us to form meaningful connections with others and have
a good impact on society as a whole, however little. We believe that the papers in
this proceedings will aid in broadening scientific understanding and enriching our
mathematical abilities for new standard education and will benefit all the academics,
researchers and industrialists looking for new mathematical tools.

Gandhinagar, India
Broadway, Australia
Gandhinagar, India
Santiago, Chile

Manoj Sahni
José M. Merigó

Ritu Sahni
Rajkumar Verma
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Strongly Prime Radicals and S-Primary
Ideals in Posets

J. Catherine Grace John

Abstract The notion of the strongly prime radical of an ideal in posets is defined
in this study. Also, we studied the concepts of S-primary ideals in posets. Charac-
terizations of S-primary ideals with respect to strongly prime radical are discussed.
Further, the S-primary decomposition of an ideal is obtained.

Keywords Poset · Ideals · Strongly prime ideal · Strongly m-system · Strongly
prime radical · S-primary

1 Introduction

Various radicals play an important role in algebraic structures. All maximal ideals
intersection in a commutative ring with unity is named as Jacobson radical, and all
prime ideals intersection is called prime radical of ring. The primary ideal that was
a development of prime ideal principles was launched using the radical notion [1].

In mathematics, the theory of primary ideals is crucial, particularly in abstract
algebra, since a classic pillar of ideal theory is the deconstruction of an ideal into
primary ideals. It offers the algebraic basis for decomposing an algebraic variety
into its irreducible components. In another sense, primary decomposition is just an
extension of the unique-prime-factorization theorem, which states that in number
theory, each integer higher than 1 is either a prime number or can be represented as
the product of prime integers and that this representation is unique.

Theory of primary ideals played a major position of significance in commutative
ring theory, and then, it was taken to commutative semi-groups [2].

Anjaneyulu [3] developed the theory of primary ideals in the arbitrary semi-
group. Satyanarayana [11] developed commutative primary semi-groups, in which
each ideal in the semi-group is primary. He distinguishes its structure from that of
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4 J. C. G. John

commutative primary rings. In addition, he established the necessary and sufficient
condition for semi-group to primary semi-group.

Badawi [4] established the notionof a 2-absorbingprimary ideal for a commutative
ring R with 1 �= 0 and established certain 2-absorbing primary ideal features. He also
presented a few examples of primary ideals that are 2-absorbing.

Murata [10] applied the idea of a primary ideal into a compactly constructed
multiplicative lattice, made use of the m-system. Further, he developed a primary
decomposition theorem for ideals in lattice. Joshi [8] later expanded the primary
ideal notion to all posets.

Following [8], we have studied the notion of S-primary ideals in posets in this
paper.

2 Preliminaries

Throughout the whole paper, a poset with the smallest element 0 is represented by
(X, ≤). We refer [1, 3] to the terminology for fundamental definitions and notations
for posets. For W ⊆ X, W � = {r ∈ X : r ≤ a ∀a ∈ W }(Wu = {r ∈ X : a ≤ r ∀a ∈
W }) indicate a lower (upper) cone ofW inX. For H,W ⊆ X, it may express (H,W )�

instead (H ∪ W )� and (H,W )u instead of (H ∪ W )u .
If P = {r1, r2, . . . , rn} is a finite set of X, then we are using the notation for the

(r1, r2, . . . , rn)� instead of the ({r1, r2, . . . , rn})� and dually for the notion of upper
cone. This is undeniable that for any subset D ofX, we have D ⊆ Du� and D ⊆ D�u .
If D ⊆ E , then we have E� ⊆ D� and Eu ⊆ Du . Also, D�u� = D� and Du�u = Du .

Following [4], a subset D( �= φ) of X is referred as semi-ideal of X if s ∈ D and
r ≤ s, then r ∈ D. Let D ⊆ X. Then, D is referred as ideal if q, w ∈ D implies
(q, w)u� ⊆ D [9]. I d(X) denotes set of all ideals in X.

Let D be a proper semi-ideal (ideal) of X. Then D is said to be prime when-
ever (s, q)� ⊆ D implies either s ∈ D or q ∈ D for all s, q ∈ X [3]. An ideal D of
X is termed as semi-prime whenever (s, v)� ⊆ D and (s, w)� ⊆ D together imply
(s, (v,w)u)� ⊆ D for all s, v, w ∈ X [9].

Given w ∈ X, a principal ideal of X generated by an element w is (w] = (w)� =
{k ∈ X : k ≤ w}, and a principle filter of X constructed by an element w is [w) =
(w)u = {k ∈ X : k ≥ w}.

Following [6], an ideal D of X is referred as strongly prime if whenever
(I ∗,W ∗)� ⊆ D implies either I ⊆ D or W ⊆ D for all different proper ideals I,W
of X, where I ∗ = I\{0}. An ideal D of X has been said that strongly semi-prime if
(I ∗, J ∗)� ⊆ D and (I ∗, S∗)� ⊆ D together imply (I ∗, (J ∗, S∗)u)� ⊆ D for different
proper ideals I, J and S of X.

Following [5], a subset S( �= φ) ofX is referred asm-system if ∀w1, w2 ∈ S, there
exists r ∈ (w1, w2)

� such that r ∈ S.
Strongly m-system is defined as an extension of m-system as seen below: A

subset S �= φ of X is termed stronglym-system if I ∩ S �= φ , J ∩ S �= φ imply that
(I ∗, J ∗)� ∩ S �= φ for any proper different ideals I, J of X.
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It needs to be noted that for an ideal D of X, D is strongly prime ⇔ X\D is a
strongly m-system in X. Each strongly m-system is also a m-system. However, in
general, reverse part does not need to be true.

3 Main Results

Definition 1 Let D be an ideal of X. We have defined strongly prime radical sr(D)

of D to be the set of all c ∈ X such that every stronglym-system ofXwhich contains
c has a non-empty intersection with D.

Theorem 1 Let D1 and D2 be ideals of a poset X. Then

(i) D1 ⊆ sr(D1).
(ii) sr(sr(D1)) = sr(D1).
(iii) If D2 ⊆ D1, then sr(D2) ⊆ sr(D1).
(iv) sr((D∗

1 , D
∗
2)

�) = sr(D1 ∩ D2) = sr(D1) ∩ sr(D2).
(v) In case, D1 is a strongly prime ideal of X which implies that sr(D1) = D1.
(vi) If D1 is strongly prime ideal and D2 ⊆ D1, then sr(D2) ⊆ D1.

Proof (i) Let c ∈ D1. Then, obviously every strongly m-system containing c has a
non-empty intersection with D1. Therefore, c ∈ sr(D1).

(ii) Let c ∈ sr(sr(D1)) and assume that c /∈ sr(D1). Then, a strongly m-system Mc

exists such that c ∈ Mc and Mc ∩ D1 = φ. Since c ∈ sr(sr(D1)), we have got
Mc ∩ sr(D1) �= φ. Let p ∈ Mc ∩ sr(D1). As p ∈ sr(D1), then every strongly
m-system containing p must intersect D1. So, in particular Mc ∩ D1 �= φ, a
contradiction.

(iii) It is trivial.
(iv) For any ideals D1 and D2 of X, we have (D∗

1 , D
∗
2)

� ⊆ D1 ∩ D2 ⊆ D1. Then, by
(iii), we have sr((D∗

1 , D
∗
2)

�) ⊆ sr(D1 ∩ D2) ⊆ sr(D1) which implies sr((D∗
1 ,

D∗
2)

�) ⊆ sr(D1 ∩ D2) ⊆ sr(D1) ∩ sr(D2). Let x ∈ sr(D1) ∩ sr(D2) and K be
a strongly m-system of X containing x . Then, we have K ∩ D1 �= φ and K ∩
D2 �= φ which implies (D∗

1 , D
∗
2)

� ∩ K �= φ which implies x ∈ sr((D∗
1 , D

∗
2)

�).
(v) Let D1 be strongly prime ideal of X. Suppose sr(D1) � D1. Then, there exists

c ∈ sr(D1) such that c /∈ D1. As D1 is strongly prime, we gotX\D1 is a strongly
m-system of X containing c and (X\D1) ∩ D1 = φ, a contradiction to the fact
that c ∈ sr(D1). Hence, D1 = sr(D1).

(vi) Let D1 and D2 be ideals of X and D1 be strongly prime such that D2 ⊆ D1.
Then, by (iii) and (v), we have sr(D2) ⊆ sr(D1) = D1. �

Corollary 1 Let X be a poset and D be a maximal ideal of X. If D is strongly
semi-prime, then sr(D) = D.

Theorem 2 ([6], Theorem 2.1) Let T be a non-void strongly m-system of X and K
be an ideal of X with K ∩ T = φ. Then, K is contained in a strongly prime ideal D
of X with D ∩ T = φ.
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Theorem 3 For an ideal B of X, we have {
⋂

i
Qi : Qi is strongly prime ideal of

X containing B} = {c ∈ X : every strongly m-system of S which contains c has a
non-empty intersection with B}.
Proof Let H = {c ∈ X: Every strongly m-system of X which contains c has a non-
empty intersection with B} and c /∈ H . Then, a strongly m-system S of X which
contains c and S ∩ B is an empty set. With the support of Theorem 2, ∃ a strongly
prime ideal Q of X 
 B ⊆ Q together with Q ∩ S = φ implies that c /∈ ∩Qi . So,
∩Qi ⊆ H . Conversely, let c /∈ ∩Qi . Then, there will be a strongly prime ideal Qi

of X with c /∈ Qi which implies c ∈ X\Qi and X\Qi is a strongly m-system in X.
Since (X\Qi ) ∩ B = φ, we have c /∈ H . Hence H ⊆ ∩Qi . �

Definition 2 For an ideal D of X and a strongly prime ideal B of X with D ⊆ B,
B is referred as minimal strongly prime ideal of D if there is not any strongly prime
ideal K of X with D ⊂ K ⊂ B.

Sspec(X) represents all strongly prime ideal collections ofX, and Smin(X) indicates
all minimal strongly prime ideal collections of X. For any ideal D of X, SP(D) =⋂

Qi⊇D
Qi and SP(X) =

⋂
Qi , where Qi s are strongly prime ideal of X. We also

have SP(D) = SP(X) if D = 0.

Remark 1 For an ideal D of X, we have SP(D) = sr(D). Moreover, sr(D) is an
ideal of X because

⋂
D∈I d(X)

D remains an ideal in X. From [7], for an ideal D of

X,
⋂

Pi⊇D
Pi = D, where Pi s are prime ideals in X

But here is an illustration for
⋂

Qi⊇D
Qi �= D, where Qi s are strongly prime ideals

in X.

Example 1 Let X = {0, q, r, h, g} be a poset with the relation ≤ on X as follows:

0

q

rh

g

Here, I1 = {0, q, r}; I2 = {0, q, h, g} are strongly prime ideals of X, and the
ideal D1 = {0, q} gives SP(D1) = I1 ∩ I2 = {0, q} = D1. But for the ideal D2 =
{0, q, h}, we have SP(D2) = I2 = {0, q, h, g} �= D2. �
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Definition 3 An ideal B(� X) ofX is referred as S-primary, if (I ∗, D∗)� ⊆ B imply
that I ⊆ B or D ⊆ sr(B) for any different proper ideals I, D of X and I ∗ = I\{0}.

It is a prompt findings that in a poset X, each strongly prime ideal is also a S-
primary ideal. However, reverse does not need to be valid in general using the below
example.

Example 2 Let X = {0, h, s, t, u, v, w} be a poset with the relation ≤ on X as fol-
lows:

0

h

s

t

u

v

w

Here, I = {0, h, t} is a S-primary ideal of X, but not a strongly prime ideal
(((u)�)∗, ((s)�)∗) ⊆ I and (u)�) � I and (s)� � I . �

Definition 4 Let D be an ideal of X. Then, D is referred as SQ-primary if D is
S-primary with sr(D) = Q, for some strongly prime ideal Q of X.

The S-primary decomposition of D is an expression of the type D = K1 ∩ K2 ∩
· · · ∩ Kn , where each Ki is a SQi -primary.

Definition 5 LetX be a poset and D be an ideal ofXwith a S-primary decomposition
D = K1 ∩ K2 ∩ · · · ∩ Km . A S-primary decomposition of D is called minimal if
Ki �

⋂
j �=i

K j for every i = 1, 2, . . . ,m and all these K ′
i s are distinct.

Definition 6 For a poset X and an ideal D of X, D =
⋂m

i=1
Ki with sr(Ki ) = Qi ,

i = 1, 2, . . . ,m be aminimal S-primary decomposition of D inX. Then, the strongly
prime ideals Qi , i = 1, 2, . . . ,m, are said to be collection of associated strongly
prime ideals of the decomposition. Moreover, D is called decomposable if the S-
primary decomposition exists.

Example 3 Let X = {0, k, u, v, w} be a poset with the relation ≤ on X as follows:
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0

k u

v w

Here, D = {0, k} is a SQ-primary ideal of X where sr(D) = (v] = Q. �

Remark 2 For a semi-ideal D of X and V ⊆ X, we have described 〈V, D〉 = {q ∈
X : L(v, q) ⊆ D ∀v ∈ V } =

⋂
v∈V 〈v, D〉 [5]. If V = {z},, then we are writing

〈{z}, D〉 = 〈z, D〉. We say that D satisfies (∗) condition if (S, Q)� ⊆ D implies
S ⊆ 〈Q, D〉 ∀S, Q ⊆ X [6].

Theorem 4 Let D be a SQ-primary ideal of a poset X for some strongly prime Q
of X and v ∈ X. Then,

(i) v /∈ D and 〈v, D〉 has (∗) condition that implies that 〈v, D〉 is a SQ-primary
ideal;

(ii) v /∈ Q gives that 〈v, D〉 = D.

Proof (i) Let h ∈ 〈v, D〉, then (((v)�)∗, ((h)�)∗)� ⊆ (v, h)� ⊆ D. As D is SQ-
primary and (v)� � D, we have got h ∈ (h)� ⊆ sr(D) = Q for some strongly
primary idealQ ofX. Therefore,D ⊆ 〈v, D〉 ⊆ Q. ByTheorem1,Q = sr(D) ⊆
sr(〈v, D〉) ⊆ Q. Thus, Q = sr(〈v, D〉). Now, we have established that 〈v, D〉
is S-primary. Consider (((h)�)∗, ((w)�)∗)� ⊆ 〈v, D〉. If (h)� � 〈v, D〉, then
L(v, h) � D. So, there is a t ∈ L(v, h) and t /∈ D. Consequently, we get
sr(〈t, D〉) = Q. Since L(t, w) ⊆ L(h, w) ⊆ 〈v, D〉, we have L(v, t, w) ⊆ D.
As t ≤ v, we have L(t, w) ⊆ D. Accordingly, w ∈ 〈t, D〉 ⊆ sr(〈t, D〉) = Q =
sr(〈v, D〉. Thus, w ∈ sr(〈v, D〉) and (w)� ⊆ sr(〈v, D〉). On the other side,
if (h)� � sr(〈v, D〉) = Q, then we are showing that (w)� ⊆ 〈v, D〉. Let t ∈
(v,w)�. So, (t, h)� ⊆ (v, h, w)� ⊆ D. Since D is S-primary and h /∈ Q =
sr(D), We have got t ∈ D.

(ii) Assume that v /∈ Q. Suppose that D ⊂ 〈v, D〉. Then there remains that there is
t ∈ 〈v, D〉 and t /∈ D. As D is SQ-primary and v /∈ Q = sr(D), we have t ∈ D,
which is a contradiction. Hence, 〈v, D〉 = D. �

Theorem 5 Consider a decomposable ideal W of X, if W =
⋂m

i=1
Di is a minimal

S-primary decomposition of W, where Qi = sr(Di ), i = 1, 2, 3 . . .m be associated
strongly prime ideals of the decomposition, then each strongly prime ideal of the
form sr(〈h,W 〉) for some h ∈ X is one of the associated strongly prime ideals Qi

for some i, and moreover, for each associated strongly prime ideal Qi , ∃hi ∈ X 

sr(〈hi ,W 〉) = Qi .
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Proof Consider W = D1 ∩ D2 ∩ · · · ∩ Dm . For h /∈ W , 〈h,W 〉 = 〈h,
⋂m

i=1
Di 〉 =

⋂m

i=1
〈h, Di 〉. Hence 〈h,W 〉 =

⋂

h /∈Dj

(〈h, Dj 〉), 1 ≤ j ≤ m. By Theorem1, we get

sr(〈h,W 〉) = sr(
⋂

h /∈Dj

〈h, Dj 〉) =
⋂

h /∈Dj

sr〈h, Dj 〉, 1 ≤ j ≤ m. If sr(〈h,W 〉) is
strongly prime, thereafter it needs to be noted that sr(〈h,W 〉) = Q j , for some j ,
1 ≤ j ≤ m. Therefore, each strongly prime ideal of the structure sr(〈h,W 〉) is one
of the Q j s for some j , 1 ≤ j ≤ m. Take the associated strongly prime ideal Q j ,
1 ≤ j ≤ m. We must look out h ∈ X 
 sr(〈h,W 〉) = Q j . As the decomposition of

W is minimal, so Dj �

⋂
i �= j

Di for each j ∈ {1, 2, 3, . . . ,m}. It gives that ∃ h j ∈
⋂

i �= j
Di and h j /∈ Dj . Now, 〈h j ,W 〉 = 〈h j ,

⋂n

i=1
Dj 〉 =

⋂n

i=1
〈h j , Di 〉. Since

h j ∈
⋂

i �= j
Di we get that 〈h j ,W 〉 = 〈h j , Dj 〉. This implies that sr(〈h j ,W 〉) =

sr(〈h j , Dj 〉) = Q j , by Theorem4. �

Example 4 In Example1, consider the ideal W = (q]. Observe that (q] = (r ] ∩
(h] ∩ (g] is a S-primary decomposition ofW = (q] and aminimal S-primary decom-
position of (q] is (q] = (r ] ∩ (h]. Further, Sr((r ]) = (r ] and sr((h]) = (g]. Thus,
(r ] and (g] are associated strongly prime ideals of the minimal S-primary decom-
position of W = (q]. For the associated strongly prime ideal (r ], there exists h such
that sr(〈h,W 〉) = (r ], and for that associated strongly prime ideal (g], there exists
r such that sr(〈r,W 〉) = (g].

Following [5], let X be a poset and B be an ideal of X. For a strongly prime
ideal Q of X, we have stated BQ = {w ∈ X : (w, s)� ⊆ B for some s ∈ X\Q} =⋃

s∈X\Q 〈s, B〉.

Theorem 6 Let B be an ideal of X with B =
⋂n

i=1
Di , a minimal S-primary

decomposition of B, where sr(Di ) = Qi be associated strongly prime ideals of
the decomposition. Then, the below proclamation holds. If Q is strongly prime
and B ⊆ Q which also contains Q1, Q2, . . . , Qk (1 ≤ k ≤ n) but does not having
Qk+1, Qk+2, . . . , Qn, then BQ = D1 ∩ D2 ∩ · · · ∩ Dk and if Q contains none of the
Qi ’s then BQ = X.

Proof Suppose that Q contains Q1, Q2, . . . , Qk , but does not contain Qk+1,

Qk+2, . . . , Qn . Let v ∈ BQ , that is, for some r /∈ Q, (v, r)� ⊆ B. This implies that
(v, r)� ⊆ Di ⊆ sr(Di ), for each i = 1, 2, . . . , n. It can be quickly found that r is pre-
cisely not in Q1, Q2, . . . , Qk . For otherwise, if r ∈ Qi , for some i ∈ {1, 2, . . . , k},
then by assumption, r ∈ Q, an incoherence. So, r /∈ sr(D1), sr(D2), . . . , sr(Dk)

which gives (r)� � sr(D1), sr(D2), . . . , sr(Dk). As D1, D2, . . . , Dk are S-primary,
wehavegot (v)� ∈ D1, D2, . . . , Dk .Hence, (v)� ∈ D1 ∩ D2 ∩ · · · ∩ Dk . Conversely,
let x ∈ D1 ∩ D2 ∩ ∩ ∩ Dk .AsQk+1, Qk+2, . . . , Qn � Q, there existvk+1∈Qk+1\Q,

vk+2 ∈ Qk+2\Q, . . . , vn∈Qn\Q. Since v j ∈ Q j=sr(Dj ), j = k+1, . . . , n, hence
every strongly m-system including v j intersects with Dj . In particular, X\Q is a
strongly m-system containing v j which intersects Dj for every j = k + 1, . . . , n.
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Choose h j ∈ Dj ∩ (X\Q), j = k + 1, . . . , n. As Q is strongly prime, we have
({hk+1, hk+2, . . . , hn})� � Q. Therefore, there exists h ∈ ({hk+1, hk+2, . . . , hn})�
and h /∈ Q. Thus, (x, h)� ⊆

⋂n

i=1
Di = B with h /∈ Q. Hence, x ∈ BQ . Suppose

Qi � Q for every i = 1, 2, . . . , n. Then, ∃ vi ∈ Qi\Q for each i = 1, 2, . . . , n.
Since X\Q is a strongly m-system of X, applying similar technical in procedure
as above, we get hi ∈ Di ∩ (X\Q), i = 1, . . . , n. As Q is strongly prime ideal,
we get ({h1, h2, . . . , hn})� � Q. Therefore, there exists h ∈ ({h1, h2, . . . , hn})� 

h /∈ Q. It is obvious that h ∈

⋂n

i=1
Di = B and therefore for any x ∈ X, we have

(x, h)� ⊆ B, which gives x ∈ BQ . Hence, BQ = X. �

Theorem 7 ([6], Theorem 2.4) For an ideal B of X, we have if B has the prop-
erty below that for n > 2, if pairwise distinct ideals K1, K2, . . . , Kn of X with
(K ∗

1 , K
∗
2 , . . . , K

∗
n )

� ⊆ B, then at least (n − 1) of n subsets (K ∗
2 , K

∗
3 , . . . , K

∗
n )

�,

(K ∗
1 , K

∗
3 , . . . , K

∗
n )

�, . . . , (K ∗
1 , K

∗
2 , . . . , K

∗
n−1)

� are subsets of B.

Theorem 8 Let X be a poset and B be an ideal of X. If B has two minimal primary
decomposition I1 ∩ I2 ∩ · · · ∩ Ik = D1 ∩ D2 ∩ · · · ∩ Ds, where Ii is SAi -primary
and Dj is SBj -primary and each Ai and Bj are isolated strongly prime, then k = s.

Proof Let I1 ∩ I2 ∩ · · · ∩ Ik = D1 ∩ D2 ∩ · · · ∩ Ds where Ii is SAi -primary and
Dj is SBj -primary. Then, A1 ∩ A2 ∩ · · · ∩ Ak = sr(I1) ∩ sr(I2) ∩ · · · ∩ sr(Ik) =
sr(I1 ∩ I2 ∩ · · · ∩ Ik)= sr(D1 ∩ D2 ∩ · · · ∩ Ds)= sr(D1) ∩ sr(D2) ∩ · · · ∩ sr(Ds)

= D1 ∩ D2 ∩ · · · ∩ Ds . Now, L(A∗
1, A

∗
2, . . . , A

∗
k) ⊆ A1 ∩ A2 ∩ · · · ∩ Ak ⊆ Dj for

all j . Since Bj is strongly prime ideal and Theorem 7, we have got Ai ⊆ Bj for some
i . Also, L(B∗

1 , B
∗
2 , . . . , B

∗
s ) ⊆ B1 ∩ B2 ∩ · · · ∩ Bs ⊆ Ai for all i . Since Ai is strongly

prime ideal and Theorem 7, we have got Br ⊆ Ai for some r . So, Br ⊆ Ai ⊆ Bj .
Since Bj is an isolated strongly prime, we have Br = Bj which implies Bj = Ai , so
k = s. �

4 Conclusion

The definition and its generalization of the prime ideal have a distinguished place
in algebraic geometry and commutative algebra. These are useful tools to determine
the properties of algebraic structure. In this article, more generalization of primary
ideals in posets is given, and some properties of these S-primary ideals are obtained.
Also, the S-primary decomposition of an ideal in posets is discussed.
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Association Schemes Over Some Finite
Group Rings

Anuradha Sabharwal and Pooja Yadav

Abstract In this paper, we study non-symmetric commutative association schemes
for cyclic groups Zp × Zp × · · · × Zp

︸ ︷︷ ︸

r times

(p is prime),Zp1 × Zp2 × · · · × Zpr (p
′
i s are

distinct primes), dihedral group and symmetric group without using conjugacy
classes. We also construct commutative association schemes for finite group rings
over Zn , the ring of integers mod n. Moreover, we construct association scheme for
n × n circulant matrices over Zp, for p prime.

Keywords Group ring · Association scheme · Symmetric group · Dihedral
group · Circulant matrices

1 Introduction

In the theory of algebraic combinatorics, association scheme plays a vital role. Asso-
ciation schemeswere introducedbyBose andShimamoto [1]. They are used in coding
theory, graph theory, design theory and group theory. Association schemes may also
be seen as colorings of the edges of complete graphs which satisfies nice regularity
conditions. Jørgensen [5] has listed non-symmetric association schemes with classes
less than 96 vertices which stimulate us to study non-symmetric association scheme
for various finite groups and group rings. We start with a brief introduction of asso-
ciation scheme. For more basic results on association schemes, we refer to [8]. In
this paper, for a finite set X , we denote by G the partition of X × X .
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2 Preliminaries

Definition 1 Association Scheme (AS): Let X be a finite set, and G be a partition of
X × X with R0, R1, . . . , Rn binary relations onG. Then,χ = (X,G) is an association
scheme of n-class if the following conditions hold:

1. Existence of identity relation R0 = {(x, x) : x ∈ X} in G.
2. For any relation R ∈ G, there exists a relation R∗ ∈ G such that for every (x, y) ∈

R, (y, x) ∈ R∗.
3. For each i, j, k, if (x, y) ∈ Rk , the cardinality |x Ri ∩ yR∗

j | is a constant pki j
which does not depend on choice of x and y.

The order of G is the number of elements in X . The non-negative integers
{pki j }0≤i, j,k≤n are the intersection numbers or parameters of G. The association
scheme G is commutative if pki j = pkji ∀ 0 ≤ i, j, k ≤ n, and it is symmetric if each
relation Ri is a symmetric relation, that is, Ri = R∗

i ∀ i ∈ {0, 1, . . . , n}. If (x, y) ∈ Ri

with x �= y, then x and y are called ith associates. For x ∈ X and R ∈ G, let the set
x R be the set of all elements y ∈ X when (x, y) ∈ R.

Example 1 Let X = Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Let us define the fol-
lowing relations in G:

R0 = {((0, 0), (0, 0)), ((0, 1), (0, 1)), ((1, 0), (1, 0)), ((1, 1), (1, 1))}
R1 = {((0, 0), (1, 1)), ((0, 1), (1, 0)), ((1, 0), (0, 1)), ((1, 1), (0, 0))}
R2 = {((0, 0), (1, 0)), ((0, 1), (1, 1)), ((1, 0), (0, 0)), ((1, 1), (0, 1))}
R3 = {((0, 0), (0, 1)), ((0, 1), (0, 0)), ((1, 0), (1, 1)), ((1, 1), (1, 0))}

Then, there exist an identity relation R0, and if (x, y) ∈ Rk , the cardinality |x Ri ∩
yR∗

j | is a constant 0 and1depending on i, j, k . Also since, Rk = R∗
k for all 0 ≤ k ≤ 3,

(X,G) is a symmetric AS.

Note: Every symmetric AS is commutative.

Definition 2 Group Association Scheme(GAS): A finite group G having conjugacy
classes C0,C1, . . . ,Cd yields a commutative association scheme with a class of
relations Rk on G defined by Rk = {(x, y)|yx−1 ∈ Ck} ∀0 ≤ k ≤ d. This scheme is
called group association scheme of G.

Any finite group (X, ∗) yields an association scheme with the following class of
relations:

Rk = {(x, y)|x = k ∗ y|x, y ∈ X} for all k ∈ X.

This association scheme is commutative iff X is an abelian group. In this paper, we
will study association schemes using these kinds of relations for some finite groups,
and further, we will compute its parameters also. We define relations for association
schemes in such a way that their intersection numbers are either 0 or 1.
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Theorem 1 [4, Theorem 3.3] An association scheme of a group is commutative, if
its order is a prime number.

Therefore, for X = Zp where p is prime, association scheme (X,G) defined in
Lemma1 is commutative.

3 Main Results

Wenow study association schemes forZp1 × Zp2 × · · · × Zpr , where p1, p2, . . . , pr
are distinct primes and for Zp × Zp × · · · × Zp

︸ ︷︷ ︸

r times

, where p is odd prime.

Lemma 1 Let X = Zp. Let us define relations Rk in G by Rk = {(i, j)|i = k +
j |i, j ∈ Zp} ∀ k ∈ Zp. Then, (X,G) is a non-symmetric commutative AS, and inter-
section numbers of this AS are as follows:

pki j =
{

1 if k = i + j,

0 if k �= i + j

Proof As Zp is an abelian group, (Zp,G) with the given relations forms a commu-
tative association scheme.

Let Ri , R j , Rk be arbitrary relations in G. To find cardinality pki j such that for
all (x, y) ∈ Rk , we have |x Ri ∩ yR∗

j | = pki j , let (x, y) ∈ Rk and let x Ri = x ′ and
yR∗

j = y′. That is, x = x ′ + i, y′ = y + j and x = y + k. Since every pair of points
(x, y) are i th associates for exactly one i, pki j can be either 0 or 1. Therefore, p

k
i j = 1

if x ′ = y′ that is, if k = i + j , and pki j = 0 if x ′ �= y′ that is, if k �= i + j .

Lemma 2 Let X = Zp × Zq , where p and q are distinct primes. Then, the relations
Rk in G defined by

Rk = {(x, y)|x1 ≡ (k + y1)mod p, x2 ≡ (k + y2)mod q |x = (x1, x2),

y = (y1, y2) ∈ Zp × Zq} ∀ 0 ≤ k ≤ pq − 1

is a non-symmetric commutative AS with intersection numbers

pki j =
{

1 if k ≡ (i + j)mod pq,

0 otherwise

Proof Since Zp × Zq is an abelian group, it can be easily verified that (X,G) is
a commutative AS with non-symmetric relations as R∗

i = R j if i + j = pq. Let
Ri , R j , Rk ∈ G. Now, we will find cardinality pki j such that for all (x, y) ∈ Rk we
have |x Ri ∩ yR∗

j | = pki j .
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Let (x, y) ∈ Rk , where x = (x1, x2), y = (y1, y2) ∈ Zp × Zq , and let x Ri = x ′ =
(x ′

1, x
′
2) and yR∗

j = y′ = (y′
1, y

′
2).

That is, x1 ≡ (y1 + k) mod p, x2 ≡ (y2 + k) mod q; x1 ≡ (x ′
1 + i) mod p,

x2 ≡ (x ′
2 + i) mod q; y′

1 ≡ (y1 + j) mod p, y′
2 ≡ (y2 + j) mod q. Using these

equations, we have pki j = 1 iff x ′ = y′ that is, if k ≡ (i + j) mod pq.

Theorem 2 Let X = Zp1 × Zp2 × · · · × Zpr , where p1, p2, . . . , pr are distinct
primes and r ≥ 3. For each t ∈ Zpr−1 pr and ds ∈ Zps∀ 1 ≤ s ≤ r − 2, the relations
Rk in G defined by

Rk = {(x, y)| yr ≡ (k + xr )mod pr , yr−1 ≡ (k + xr−1)mod pr−1,

ys ≡ (ds + xs)mod ps ∀ 1 ≤ s ≤ r − 2| x = (x1, x2, . . . , xr ),

y = (y1, y2, . . . , yr ) ∈ Zp1 × Zp2 × · · · × Zpr }
∀ k = p2 p3 · · · prd1 + p3 p4 · · · prd2 + · · · + pr−1 prdr−2 + t

is a non-symmetric commutative AS with intersection numbers

pki j =

⎧

⎪
⎨

⎪
⎩

1 if k ≡ (i + j)mod pr−1 pr , and

ds ≡ (d(1)
s + d(2)

s )mod ps ∀ 1 ≤ s ≤ r − 2

0 otherwise

where k = p2 p3 · · · prd1 + p3 p4 · · · prd2 + · · · + pr−1 prdr−2 + t; i = p2 p3 · · ·
prd

(1)
1 + p3 p4 · · · prd(1)

2 + · · · + pr−1 prd
(1)
r−2 + t (1); j = p2 p3 · · · prd(2)

1 + p3 p4 · · ·
prd

(2)
2 + · · · + pr−1 prd

(2)
r−2 + t (2) for some t, t (1), t (2) ∈ Zpr−1 pr and ds, d(1)

s , d(2)
s ∈

Zps ∀ 1 ≤ s ≤ r − 2.

Proof |X | = |Zp1 × Zp2 × · · · × Zpr | = p1 p2 · · · pr = |Rk | for all 0 ≤ k ≤ p1 p2 · · ·
pr − 1. All the relations Rk are disjoint, and they form partition of G.

Let Ri , R j , Rk be arbitrary relations in G. We will show that for each pair x, y
with (x, y) ∈ Rk, the cardinality |{z ∈ X |(x, z) ∈ Ri , (z, y) ∈ R j }| is a constant. Let
(x, y) ∈ Rk , where x = (x1, x2, . . . , xr ), y = (y1, y2, . . . , yr ) ∈ X , and let x Ri =
x ′ = (x ′

1, x
′
2, . . . , x

′
r ), yR

∗
j = y′ = (y′

1, y
′
2, . . . , y

′
r ).

Now, (x, y) ∈ Rk implies yr ≡ (k + xr ) mod pr , yr−1 ≡ (k + xr−1) mod pr−1,
ys ≡ (ds + xs) mod ps ∀1 ≤ s ≤ r − 2where k = p2 p3 · · · prd1 + p3 p4 · · · prd2 +
· · · + pr−1 prdr−2 + t for some t ∈ Zpr−1 pr and ds ∈ Zps ∀ 1 ≤ s ≤ r − 2.

Similarly, as (x, x ′) ∈ Ri and (y′, y) ∈ R j ,wehave x ′
r ≡ (i + xr ) mod pr , x ′

r−1 ≡
(i + xr−1) mod pr−1, x ′

s ≡ (d(1)
s + xs) mod ps ∀ 1 ≤ s ≤ r − 2 where i = p2 p3 · · ·

prd
(1)
1 + p3 p4 · · · prd(1)

2 + · · · + pr−1 prd
(1)
r−2 + t (1) for some t (1) ∈ Zpr−1 pr , d

(1)
s ∈

Zps ∀ 1 ≤ s ≤ r − 2, and yr ≡ ( j + y′
r ) mod pr , yr−1 ≡ ( j + y′

r−1)mod pr−1, ys ≡
(d(2)

s + y′
s)mod ps ∀ 1 ≤ s ≤ r − 2 where j = p2 p3 · · · prd(2)

1 + p3 p4 · · · prd(2)
2 +

· · · + pr−1 prd
(2)
r−2 + t (2) for some t (2) ∈ Zpr−1 pr , d

(2)
s ∈ Zps ∀ 1 ≤ s ≤ r − 2.

Using above equations, we have pki j = 1 if and only if x ′ = y′ that is, if k ≡
(i + j) mod pr−1 pr and ds ≡ (d(1)

s + d(2)
s ) mod ps ∀ 1 ≤ s ≤ r − 2. Hence, (X,G)

is a non-symmetric commutative AS.
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Lemma 3 Let X = Zp × Zp, where p is oddprime.For eachd, t ∈ Zp, the relations
Rk in G defined by

Rk = {(x, y)|x1 ≡ (k + d + y1)mod p, x2 = (k + t + y2)mod p |x = (x1, x2),

y = (y1, y2) ∈ Zp × Zp} ∀ k = pd + t

yields a non-symmetric commutative association scheme, and its intersection num-
bers are

pki j =
{

1 if 2k + d + t ≡ (2i + 2 j + d1 + d2 + t1 + t2)mod p,

0 otherwise

where k = pd + t; i = pd1 + t1; j = pd2 + t2 for some d, d1, d2, t, t1, t2 ∈ Zp.

Proof |X | = |Zp × Zp| = p2 and |Rk | = p2 ∀0 ≤ k ≤ p2 − 1. All the relations Rk

are disjoint and ∪{Rk : 0 ≤ k ≤ p2 − 1} = G.
Let Ri , R j , Rk be arbitrary relations in G. We will show that for each (x, y) ∈

Rk , the cardinality |{z ∈ X |(x, z) ∈ Ri , (z, y) ∈ R j }| is a constant. Let (x, y) ∈ Rk

where x = (x1, x2), y = (y1, y2) ∈ Zp × Zp and let x Ri = x ′ = (x ′
1, x

′
2), yR∗

j =
y′ = (y′

1, y
′
2).

Now, (x, y) ∈ Rk implies x1 ≡ (y1 + k + d) mod p, x2 ≡ (y2 + k + t) mod p,
where k = pd + t for some d, t ∈ Zp.

Similarly, as (x, x ′) ∈ Ri and (y′, y) ∈ R j , x1 ≡ (x ′
1 + i + d1) mod p, x2 ≡ (x ′

2 +
i + t1) mod pwhere i = pd1 + t1 for somed1, t1 ∈ Zp and y′

1 ≡ (y1 + j + d2) mod
p, y′

2 ≡ (y2 + j + t2) mod p where j = pd2 + t2 for some d2, t2 ∈ Zp.
Using above equations, we have pki j = 1 if and only if x ′ = y′ that is, if 2k + d +

t ≡ (2i + 2 j + d1 + d2 + t1 + t2) mod p.

Theorem 3 Let X = Zp × Zp × · · · × Zp
︸ ︷︷ ︸

r times

, where p is odd prime and r ≥ 3. For

each t, ds ∈ Zp ∀ 1 ≤ s ≤ r − 1, the relations Rk in G defined by

Rk = {(x, y)| yr ≡ (k + t + xr )mod p, ys ≡ (ds + xs)mod p ∀ 1 ≤ s ≤ r − 1|
x = (x1, x2, . . . , xr ), y = (y1, y2, . . . , yr ) ∈ X}

∀ k = pr−1d1 + pr−2d2 + · · · + pdr−1 + t

is a non-symmetric commutative AS with intersection numbers

pki j =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 if
(
∑r−1

s=1 d
(k)
s + t (k) + k

)

≡
(
∑r−1

s=1(d
(i)
s + d( j)

s ) + t (i) + t ( j) + i + j
)

mod p

0 otherwise
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where k = pr−1d(k)
1 + pr−2d(k)

2 + · · · + pd(k)
r−1 + t (k); i = pr−1d(i)

1 + pr−2d(i)
2 + · · ·

+ pd(i)
r−1 + t (i); j = pr−1d( j)

1 + pr−2d( j)
2 + · · · + pd( j)

r−1 + t ( j) for some t (k), t (i), t ( j),

d(k)
s , d(i)

s , d( j)
s ∈ Zp ∀ 1 ≤ s ≤ r − 1.

Proof |X | = pr and |Rk | = pr for all 0 ≤ k ≤ pr − 1. All the relations Rk are dis-
joint, and they form partition of G.

Let Ri , R j , Rk be arbitrary relations in G. We will show that for each (x, y) ∈
Rk, the cardinality |{z ∈ X |(x, z) ∈ Ri , (z, y) ∈ R j }| is a constant. Let (x, y) ∈ Rk

where x = (x1, x2, . . . , xr ), y = (y1, y2, . . . , yr ) ∈ X and let x Ri = x ′ = (x ′
1, x

′
2,

. . . , x ′
r ), yR

∗
j = y′ = (y′

1, y
′
2, . . . , y

′
r ).

Now, (x, y) ∈ Rk implies yr ≡ (k + t (k) + xr ) mod p, ys ≡ (d(k)
s + xs) mod p

∀ 1 ≤ s ≤ r − 1 where k = pr−1d(k)
1 + pr−2d(k)

2 + · · · + pd(k)
r−1 + t (k) for some t (k),

d(k)
s ∈ Zp ∀ 1 ≤ s ≤ r − 1.
Similarly, as (x, x ′) ∈ Ri and (y′, y) ∈ R j , we have x ′

r ≡ (i + t (i) + xr ) mod p,
x ′
s ≡ (d(i)

s + xs) mod p ∀ 1 ≤ s ≤ r − 1 where i = pr−1d(i)
1 + pr−2d(i)

2 + · · · +
pd(i)

r−1 + t (i) for some t (i), d(i)
s ∈ Zp ∀ 1 ≤ s ≤ r − 1, and yr ≡ ( j + t ( j) + y′

r ) mod

p, ys ≡ (d( j)
s + y′

s) mod p ∀ 1 ≤ s ≤ r − 1where j = pr−1d( j)
1 + pr−2d( j)

2 + · · · +
pd( j)

r−1 + t ( j) for some t ( j), d( j)
s ∈ Zp ∀ 1 ≤ s ≤ r − 1.

We have pki j = 1 if and only if x ′ = y′ that is, if k + t (k) ≡ (i + j + t (i) +
t ( j)) mod p, and d(k)

s ≡ (d(i)
s + d( j)

s ) mod p ∀ 1 ≤ s ≤ r − 1. Adding these equa-
tions, we have the desired result, and hence, (X,G) is a non-symmetric commutative
association scheme.

Yue Meng-tian, Li Zeng-ti (see [7]) constructed symmetric association schemes
on the dihedral group. In next theorem, we provide a new family of commutative
association schemes with non-symmetric relations on the dihedral group.

Theorem 4 Let X = D2n = 〈a, b|a2, bn, ab = b−1a〉. That is, the canonical form
of any element of D2n is albm where 0 ≤ l ≤ 1 and 0 ≤ m ≤ n − 1. Define relations
Rk in G by

Rk = {(albm, ak+lbk+m)|0 ≤ l ≤ 1, 0 ≤ m ≤ n − 1} for all 0 ≤ k ≤ 2n − 1.

Then, (X,G) is a non-symmetric AS, and intersection numbers of this scheme are as
follows:

pki j =
{

1 if k = i + j,

0 if k �= i + j

Proof R0 = {(x, x)|x ∈ D2n} is an identity relation. It can be verified that (X,G) is
an AS and the relations are non-symmetric.

Let Ri , R j , Rk ∈ G. To find cardinality pki j such that for each (x, y) ∈ Rk , |x Ri ∩
yR∗

j | = pki j . Let (x, y) ∈ Rk and let x Ri = x ′ and yR∗
j = y′. That is, x = albm, y =

ak+lbk+m; x = al1bm1 , x ′ = ai+l1bi+m1; y′ = al2bm2 , y = a j+l2b j+m2 where 0 ≤ l, l1,


