


About the Authors

Andreas Spillner is emeritus professor of computer science at the University of
Applied Sciences Bremen. During the 1990s and early 2000s he spent 10 years
as spokesman for the TAV (Test, Analysis, and Verification) group at the
Gesellschaft für Informatik (German Computer Science Society) that he also
helped to found. He is a founder member of the German Testing Board and was
made an honorary member in 2009. He was made a fellow of the Gesellschaft
für Informatik in 2007. His software specialty areas are technology, quality
assurance, and testing.

Tilo Linz is co-founder and a board member of imbus AG, a leading software
testing solution provider. He has been deeply involved in software testing and



quality assurance for more than 25 years. As a founding member and chairman
of the German Testing Board and a founding member of the International
Software Testing Qualifications Board, he has played a major role in shaping and
advancing education and training in this specialist area both nationally and
internationally. Tilo is the author of Testing in Scrum (published by Rocky Nook),
which covers testing in agile projects based on the foundations presented in this
book.



Andreas Spillner · Tilo Linz

Software Testing
Foundations
A Study Guide for the Certified Tester
Exam

Foundation Level
ISTQB® Compliant

5th, revised and updated Edition



Andreas Spillner · andreas.spillner@hs-bremen.de
Tilo Linz · tilo.linz@imbus.de

Editor: Dr. Michael Barabas / Christa Preisendanz
Translation and Copyediting: Jeremy Cloot
Layout and Type: Josef Hegele
Production Editor: Stefanie Weidner
Cover Design: Helmut Kraus, www.exclam.de
Printing and Binding: mediaprint solutions GmbH, 33100 Paderborn, and
Lightning Source®, Ingram Content Group.

Bibliographic information published by the Deutsche Nationalbibliothek
(DNB)
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data can be found on the Internet at
http://dnb.dnb.de.

ISBN dpunkt.verlag:
Print 978-3-86490-834-7
PDF 978-3-96910-298-5
ePUB 978-3-96910-299-2
mobi 978-3-96910-300-5

ISBN Rocky Nook:
Print 978-1-68198-853-5
PDF 978-1-68198-854-2
ePUB 978-1-68198-855-9
mobi 978-1-68198-856-6

5th, revised and updated edition 2021 Copyright © 2021 dpunkt.verlag GmbH
Wieblinger Weg 17
69123 Heidelberg

Title of the German Original: Basiswissen Softwaretest
Aus- und Weiterbildung zum Certified Tester – Foundation Level nach
ISTQB®-Standard
6., überarbeitete und aktualisierte Auflage 2019
ISBN 978-3-86490-583-4

Distributed in the UK and Europe by Publishers Group UK and dpunkt.verlag
GmbH.

http://andreas.spillner@hs-bremen.de/
http://tilo.linz@imbus.de/
http://www.exclam.de/
http://dnb.dnb.de/


Distributed in the U.S. and all other territories by Ingram Publisher Services and
Rocky Nook, Inc.

Many of the designations in this book used by manufacturers and sellers to
distinguish their products are claimed as trademarks of their respective
companies. Where those designations appear in this book, and dpunkt.verlag
was aware of a trademark claim, the designations have been printed in caps or
initial caps. They are used in editorial fashion only and for the benefit of such
companies, they are not intended to convey endorsement or other affiliation
with this book. No part of the material protected by this copyright notice may be
reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system,
without written permission of the copyright owner. While reasonable care has
been exercised in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.
This book is printed on acid-free paper.
Printed in Germany and in the United States.

5 4 3 2 1 0



Preface to the 5th Edition

Bestseller

The first edition of the book was published in German at
the end of 2002. Since then, Basiswissen Softwaretest has
been the best-selling book on software testing in the
German-speaking world.

This 5th edition in English has been comprehensively
revised and updated. It is based on the latest (6th) edition
of the German-language book and the current 2018
ISTQB® Certified Tester – Foundation Level syllabus.
The Certified Tester training scheme

The Certified Tester qualification scheme is extremely
successful and is widely recognized and accepted within
the IT industry. It has become the de facto global standard
for software testing and quality assurance education. By
the end of 2020 there were over 955,000 exams taken and
more than 721,000 certifications issued in 129 countries
around the world [URL: ISTQB]. Many IT employment ads
for beginners and experienced workers reflect this, and
certified training is often an obligatory requirement. The
Certified Tester scheme is also part of the curriculum at
many universities and technical colleges.
Grass-roots knowledge required in the IT world

In spite of this rapid development, there is a lot of the
grass-roots knowledge in the field of computer science that



doesn’t change very much over the years. We take the
Foundations part of our book title seriously and don’t
discuss topics that have yet to be proven in everyday
practice. Specialist topics such as web app or embedded
system testing are not part of these foundations.
What’s new?

This 5th edition of Software Testing Foundations has
been comprehensively revised and extended, and its
content brought completely up to date.

Side notes are not part of the official syllabus

The latest revision of the ISTQB® syllabus has seen
some test techniques shifted to higher training levels, so
these are no longer part of the Foundations syllabus.
However, we have kept the corresponding sections in the
book and have highlighted them as side notes. If you are
using the book exclusively for exam preparation you can
simply skip the side note sections.
New test techniques included

Many readers have told us that they use the book for
reference in their everyday work scenarios. This is why we
have included a number of additional test techniques that
do not appear in the Foundations syllabus. These include
techniques such as pair-wise testing that weren’t covered
in previous editions.

The case study that illustrates the implementation of the
test techniques has been adapted and comprehensively
updated.

We have revised the lists of standards to reflect the
changes made by the introduction of ISO 29119, and all the
URLs referenced in the text have been updated too.



Online resources

Any future changes to the syllabus and the glossary that
affect the book text can be found on our website [URL:
Softwaretest Knowledge], where you will also find
exercises that relate to the individual chapters in the book.
Any necessary corrections or additions to the book text are
also made available at the website.
Thanks

For a book like this, success is rarely down to the
authors alone, and we would like to thank all our
colleagues at the German Testing Board and the
International Software Testing Qualifications Board,
without whom the Certified Tester program would never
have achieved the global success that it enjoys. Many
thanks also to Hans Schaefer, our co-author of the previous
four editions of the book, for his constructive cooperation.

We would further like to thank our readers for their
many comments and reviews, which have encouraged us
during our work and motivated us to keep getting better.
Heartfelt thanks also go to our editor Christa Preisendanz
and the entire team at dpunkt.verlag for years of successful
cooperation.

We wish all our readers success in the practical
implementation of the testing approaches described in the
book and—if you are using the book to prepare for the
Certified Tester Foundation Level exam—we wish you every
success in answering the exam questions.

Andreas Spillner and Tilo Linz
May 2021



Foreword by Yaron Tsubery

The software systems industry continues to grow rapidly
and, especially over the last two decades, exponentially.
Market requirements and a growing appetite for exciting
new challenges have fuelled the development of new
software technologies. These new opportunities affect
almost everyone on our planet and reach us primarily via
the internet and, subsequently, via smart devices and
technologies.

The need for software that is easy to create and
maintain has caused many key industries—such as health,
automotive, defense, and finance— to open up and become
visible to the world via applications and/or web interfaces.
Alongside these traditional domains, new types of services
(such as social media and e-commerce) have appeared and
thrived on the global market. The rapid growth and
enormous demands involved in introducing new software-
based products that greatly impact our lifestyles and our
wellbeing require new and faster ways of producing
software solutions.

This situation has created a market in which multiple
companies compete for market share with extremely
similar products. Such competition is beneficial to
consumers (i.e., software users) and, as a result, software-
based products have started to become commoditized.
Software manufacturers have begun to think more
economically, generating increased revenues using fewer



resources (i.e., doing more with less). Continual
introduction of new products into our daily lives has given
rise to the “agile” design and production ethos—driving a
cultural change in the tradition software development life
cycle, as well as pushing forward the necessity of more and
early automatic tests (e.g. as driven by the DevOps
movement)—that is increasingly commonplace in today’s
software industry, while the business leaders behind
software-based products have understood that the world is
becoming smaller and that competition is getting fiercer all
the time. An increasingly short time to market is essential
not only for generating revenue, but also simply to survive
in today’s market. Successful and innovative companies
understand that they need to put the customer first if they
want to maintain product quality, generate brand loyalty,
and increase their market share. In other words, the
software industry has understood the importance of the
customer to the overall product life cycle.

We in the software testing business have always known
the importance of quality to the customer, because part of
our job is to represent the customer’s point of view. The
challenges we face have grown with the complexity of
software products, and we sometimes still find ourselves
having to justify the necessity for software testing, even if
it has become a largely standard practice within the
software industry. Recently, the rise of software-based
artificial intelligence (AI)—such as software enhancement
in robots and autonomous devices—has created a whole
new set of challenges.

Software testing is an extremely important factor in the
industry. Alongside controlling costs and quality, the main
issue is customer focus. Preserving a healthy balance
between cost and quality is an essential customer
requirement, making it critical to have well-trained and



highly professional people assigned to quality and software
testing roles. Recruiting skilled professionals is the key to
success. The primary factors we look for when recruiting
are related to a person’s knowledge and skills. We look at
the degree to which a person is aligned with the software
testing profession, and with the required technology and
industry domain (such as web, mobile, medical devices,
finance, automotive, and so on). We also have to ask
ourselves whether a person is suited to work in the product
domain itself (for example, when candidates come from
competitors). Communications and soft skills that fit in with
the team/group/company are important too. In the case of
industry newcomers, we have to consider how much
potential a person has. This book teaches the fundamentals
of software testing and provides a solid basis for enhancing
your knowledge and experience through constant learning
from external sources, your own personal experience, and
from others.

When reading an educational book, I expect it to be
sequentially structured and easy to understand. This book
is based on the Certified Tester Foundation Level (CTFL)
syllabus, which is part of the ISTQB® (International
Software Testing Qualifications Board) education program.
The ISTQB® has created a well-organized and systematic
training program that is designed to teach and qualify
software testers in a variety of roles and domains. One of
the primary objectives of the ISTQB® program is to create
professional and internationally accepted terminology
based on knowledge and experience. The chapters in the
book are designed to take you on that journey and provide
you with the established and cutting-edge fundamentals
necessary to becoming a successful tester. They combine
comprehensive theory with detailed practical examples and
side notes that will enhance and broaden your view of



software systems and how to test them. This book provides
a great way to learn more about software testing for
anyone who is studying the subject, thinking about joining
the software testing profession, or for newcomers to the
field.

For those who already have a role in software testing,
the practical examples provided (based on a case study and
corresponding side notes) are sure to help you learn. They
provide a great basis for comparison with and application
to your own real-world projects. This book contains a
wealth of great ideas that will help you to build and
improve your own software testing skills. The new, revised
edition is based on the latest (2018) ISTQB® CTFL, which
has been updated to cover agile processes and experience
gained from changes that have taken place within the
industry over the last few years. It also includes references
to the other syllabi and professional content upon which it
is based, and an updated version of the case study
introduced in earlier editions. The case study is based on a
multilayer solution that includes both specific and general
technical aspects of software system architecture. The case
study in this edition is based on a new-generation version
of the system detailed in previous editions, thus enabling
you to learn from a practical, project-based viewpoint.

The world is changing fast every day. Some of the
technologies that we use today will become obsolete within
a few years and the products we build will probably
become obsolete even sooner. Software is an integral and
essential part of virtually all the technology that surrounds
us. Along with growth and expansion in the artificial
intelligence (AI) arena and other new technologies that
have yet to be introduced, this continual change offers new
and exciting opportunities for the software testing
profession. We are sure to find ourselves tuning our



knowledge and experience in various ways, and we may
even find ourselves teaching and coaching not only humans
but also machines and systems that test products for us.

The fundamental knowledge, grass-roots experience,
and practical examples provided by this book will prepare
you for the ever-changing world and will shape your
knowledge to enable you to test better and, in the future,
perhaps pass on your knowledge to others.

I wish you satisfying and fruitful reading.
Yaron Tsubery

Former ISTQB® President
President ITCB®



Overview

1 Introduction

2 Software Testing Basics

3 Testing Throughout the Software Development
Lifecycle

4 Static Testing

5 Dynamic Testing

6 Test Management

7 Test Tools

Appendices

A Important Notes on the Syllabus and the Certified
Tester Exam

B Glossary

C References

Index



Contents

1 Introduction

2 Software Testing Basics

2.1 Concepts and Motivations
2.1.1 Defect and Fault Terminology
2.1.2 Testing Terminology
2.1.3 Test Artifacts and the Relationships Between

Them
2.1.4 Testing Effort
2.1.5 Applying Testing Skills Early Ensures

Success
2.1.6 The Basic Principles of Testing

2.2 Software Quality
2.2.1 Software Quality according to ISO 25010
2.2.2 Quality Management and Quality Assurance

2.3 The Testing Process
2.3.1 Test Planning
2.3.2 Test Monitoring and Control
2.3.3 Test Analysis
2.3.4 Test Design
2.3.5 Test Implementation
2.3.6 Test Execution



2.3.7 Test Completion
2.3.8 Traceability
2.3.9 The Influence of Context on the Test Process

2.4 The Effects of Human Psychology on Testing
2.4.1 How Testers and Developers Think

2.5 Summary

3 Testing Throughout the Software Development
Lifecycle

3.1 Sequential Development Models
3.1.1 The Waterfall Model
3.1.2 The V-Model

3.2 Iterative and Incremental Development Models

3.3 Software Development in Project and Product
Contexts

3.4 Testing Levels
3.4.1 Component Testing
3.4.2 Integration Testing
3.4.3 System Testing
3.4.4 Acceptance Testing

3.5 Test Types
3.5.1 Functional Tests
3.5.2 Non-Functional Tests
3.5.3 Requirements-Based and Structure-Based

Testing

3.6 Testing New Product Versions
3.6.1 Testing Following Software Maintenance



3.6.2 Testing Following Release Development
3.6.3 Regression Testing

3.7 Summary

4 Static Testing

4.1 What Can We Analyze and Test?

4.2 Static Test Techniques

4.3 The Review Process
4.3.1 Review Process Activities
4.3.2 Different Individual Review Techniques
4.3.3 Roles and Responsibilities within the Review

Process

4.4 Types of Review

4.5 Critical Factors, Benefits, and Limits

4.6 The Differences Between Static and Dynamic
Testing

4.7 Summary

5 Dynamic Testing

5.1 Black-Box Test Techniques
5.1.1 Equivalence Partitioning
5.1.2 Boundary Value Analysis
5.1.3 State Transition Testing
5.1.4 Decision Table Testing
5.1.5 Pair-Wise Testing
5.1.6 Use-Case Testing
5.1.7 Evaluation of Black-Box Testing



5.2 White-Box Test Techniques
5.2.1 Statement Testing and Coverage
5.2.2 Decision Testing and Coverage
5.2.3 Testing Conditions
5.2.4 Evaluation of White-Box Testing

5.3 Experience-Based Test Techniques

5.4 Selecting the Right Technique

5.5 Summary

6 Test Management

6.1 Test Organization
6.1.1 Independent Testing
6.1.2 Roles, Tasks, and Qualifications

6.2 Testing Strategies
6.2.1 Test Planning
6.2.2 Selecting a Testing Strategy
6.2.3 Concrete Strategies
6.2.4 Testing and Risk
6.2.5 Testing Effort and Costs
6.2.6 Estimating Testing Effort
6.2.7 The Cost of Testing vs. The Cost of Defects

6.3 Test Planning, Control, and Monitoring
6.3.1 Test Execution Planning
6.3.2 Test Control
6.3.3 Test Cycle Monitoring
6.3.4 Test Reports

6.4 Defect Management



6.4.1 Evaluating Test Reports
6.4.2 Creating a Defect Report
6.4.3 Classifying Failures and Defects
6.4.4 Defect Status Tracking
6.4.5 Evaluation and Reporting

6.5 Configuration Management

6.6 Relevant Standards and Norms

6.7 Summary

7 Test Tools

7.1 Types of Test Tools
7.1.1 Test Management Tools
7.1.2 Test Specification Tools
7.1.3 Static Test Tools
7.1.4 Tools for Automating Dynamic Tests
7.1.5 Load and Performance Testing Tools
7.1.6 Tool-Based Support for Other Kinds of Tests

7.2 Benefits and Risks of Test Automation

7.3 Using Test Tools Effectively
7.3.1 Basic Considerations and Principles
7.3.2 Tool Selection
7.3.3 Pilot Project
7.3.4 Success Factors During Rollout and Use

7.4 Summary

Appendices



A Important Notes on the Syllabus and the Certified
Tester Exam

B Glossary

C References

C.1 Literature
C.2 Norms and Standards
C.3 URLs

Index



1 Introduction

Software is everywhere! Nowadays there are virtually no
devices, machines, or systems that are not partially or
entirely controlled by software. Important functionality in
cars—such as engine or gear control—have long been
software-based, and these are now being complemented by
increasingly smart software-based driver assist systems,
anti-lock brake systems, parking aids, lane departure
systems and, perhaps most importantly, autonomous
driving systems. Software and software quality therefore
not only govern how large parts of our lives function, they
are also increasingly important factors in our everyday
safety and wellbeing.

Equally, the smooth running of countless companies
today relies largely on the reliability of the software
systems that control major processes or individual
activities. Software therefore determines future
competitiveness. For example, the speed at which an
insurance company can introduce a new product, or even
just a new tariff, depends on the speed at which the
corresponding IT systems can be adapted or expanded.
High dependency on reliable software

Quality has therefore become a crucial factor for the
success of products and companies in the fields of both
technical and commercial software.



Most companies have recognized their dependence on
software, whether relying on the functionality of existing
systems or the introduction of new and better ones.
Companies therefore constantly invest in their own
development skills and improved system quality. One way
to achieve these objectives is to introduce systematic
software evaluation and testing procedures. Some
companies already have comprehensive and strict testing
procedures in place, but many projects still suffer from a
lack of basic knowledge regarding the capacity and
usefulness of software testing procedures.
Grass-roots knowledge of structured evaluation and testing

This book aims to provide the basic knowledge
necessary to set up structured, systematic software
evaluation and testing techniques that will help you
improve overall software quality.

This book does not presume previous knowledge of
software quality assurance. It is designed for reference but
can also be used for self-study. The text includes a single,
continuous case study that provides explanations and
practical solutions for each of the topics covered.

This book is aimed at all software testers in all types of
companies who want to develop a solid foundation for their
work. It is also for programmers and developers who have
taken over (or are about to take over) existing test
scenarios, and it is also aimed at project managers who are
responsible for budgeting and overall procedural
improvement. Additionally, it offers support for career
changers in IT-related fields and people involved in
application approval, implementation, and development.

Especially in IT, lifelong learning is essential, and
software testing courses are offered by a broad range of
companies and individuals. Universities, too, are



increasingly offering testing courses, and this book is
aimed at teachers and students alike.
Certification program for software testers

The ISTQB® Certified Tester program is today seen as
the worldwide standard for software testing and quality
assurance training. The ISTQB® (International Software
Testing Qualifications Board) [URL: ISTQB] coordinates
qualification activities in individual countries and ensures
the global consistency and comparability of the syllabi and
exam papers. National Testing Boards are responsible for
publishing and maintaining local content as well as the
organization and supervision of exams. They also approve
courses and offer accreditation for training providers.
Testing Boards therefore guarantee that courses are of a
consistently high standard and that participants end up
with an internationally recognized certificate. Members of
the Testing Boards include training providers, testing
experts from industrial and consulting firms, and university
lecturers. They also include representatives from trade
associations.
Three-stage training scheme

The Certified Tester training scheme is made up of units
with three levels of qualification. For more details, see the
ISTQB® [URL: ISTQB] website. The basics of software
testing are described in the Foundation Level syllabus. You
can then move on to take the Advanced Level exam, which
offers a deeper understanding of evaluation and testing
skills. The Expert Level certificate is aimed at experienced
software testing professionals, and consists of a set of
modules that cover various advanced topics (see also
section 6.1.2). In addition, there are syllabi for agile
software development (foundation and advanced level) as



well as special topics from the testing area (for example,
Security Tester, Model-Based Tester, Automotive Software
Tester).

This book covers the contents of the Foundation Level
syllabus. You can use the book for self-study or in
conjunction with an approved course.
Chapter overview

The topics covered in this book and the basic content of
the Foundation Certificate course are as follows:
Software testing basics

Chapter 2 discusses the basics of software testing.
Alongside the concepts of when to test, the objectives to
aim for, and the required testing thoroughness, it also
addresses the basic concepts of testing processes. We also
talk about the psychological difficulties that can arise when
you are looking for errors in your own work.
Lifecycle testing

Chapter 3 introduces common development lifecycle
models (sequential, iterative, incremental, agile) and
explains the role that testing plays in each. The various test
types and test levels are explained, and we investigate the
difference between functional and non-functional testing.
We also look at regression testing.
Static testing

Static testing (i.e., tests during which the test object is
not executed) are introduced in Chapter 4. Reviews and
static tests are used successfully by many organizations,
and we go into detail on the various approaches you can
take.
Dynamic testing



Chapter 5 addresses testing in a stricter sense and
discusses “black-box” and “white-box” dynamic testing
techniques. Various test techniques and methods are
explained in detail for both. We wrap up this chapter by
looking at when it makes sense to augment common testing
techniques using experience-based or intuitive testing
techniques.
Test management

Chapter 6 discusses the organizational skills and tasks
that you need to consider when managing test processes.
We also look at the requirements for defect and
configuration management, and wind up with a look at the
economics of testing.
Test tools

Testing software without the use of dedicated tools is
time-consuming and extremely costly. Chapter 7 introduces
various types of testing tools and discusses how to choose
and implement the right tools for the job you are doing.

Most of the processes described in this book are
illustrated using a case study based on the following
scenario:
Case Study: Virtual-ShowRoom VSR-II

A car manufacturer has been running an electronic sales
system called VirtualShowRoom (VSR) for over a decade.
The system runs at all the company’s dealers worldwide:

Customers can configure their own vehicle (model,
color, extras, and so on) on a computer, either alone or
assisted by a salesperson. The system displays the
available options and immediately calculates the
corresponding price. This functionality is performed
by the DreamCar module.



Once the customer has selected a configuration, he
can then select optimal financing using the
EasyFinance module, order the vehicle using the
JustInTime module, and select appropriate insurance
using the NoRisk module. The FactBook module
manages all customer and contract data.

The manufacturer’s sales and marketing department has
decided to update the system and has defined the following
objectives:

VSR is a traditional client-server system. The new
VSR-II system is to be web-based and needs to be
accessible via a browser window on any type of device
(desktop, tablet, or smartphone).
The DreamCar, EasyFinance, FactBook, JustInTime,
and NoRisk modules will be ported to the new
technology base and, during the process, will be
expanded to varying degrees.
The new ConnectedCar module is to be integrated
into the system. This module collects and manages
status data for all vehicles sold, and communicates
data relating to scheduled maintenance and repairs to
the driver as well as to the dealership and/or service
partner. It also provides the driver with various
additional bookable services, such as a helpdesk and
emergency services. Vehicle software can be updated
and activated “over the air”.
Each of the five existing modules will be ported and
developed by a dedicated team. An additional team
will develop the new ConnectedCar module. The
project employs a total of 60 developers and other
specialists from internal company departments as well
as a number of external software companies.



The teams will work using the Scrum principles of
agile development. This agile approach requires each
module to be tested during each iteration. The system
is to be delivered incrementally.
In order to avoid complex repeat data comparisons
between the old and new systems, VSR-II will only go
live once it is able to duplicate the functionality
provided by the original VSR system.

Within the scope of the project and the agile approach,
most project participants will be confronted or entrusted
with test tasks to varying degrees. This book provides the
basic knowledge of the test techniques and processes
required to perform these tasks. Figure 1-1 shows an
overview of the planned VSR-II system.

Fig. 1-1 VSR-II overview



Certified Tester syllabus and exam

The appendices at the end of the book include references to
the syllabus and Certified Tester exam, a glossary, and a
bibliography. Sections of the text that go beyond the scope
of the syllabus are marked as side notes.
The book’s website

The book’s website [URL: Softwaretest Knowledge]
includes sample exam questions relating to each chapter,
updates and addenda to the text, and references to other
books by authors whose work supports the Certified Tester
training scheme.
Web-based Training System vsr.testbench.com

We have put a free implementation of VSR-II as a test
object online for training purposes1. It reproduces the VSR-
II examples included in the book on a realistic, executable
system, so you can “test” live to find the software bugs
hidden in VSR-II by applying the test techniques presented
in the book. It takes just a few mouse clicks to get started:

1. Open your browser and load vsr.testbench.com
2. Create your personal VSR-II training workspace
3. Log into your VSR-II workspace and start

http://vsr.testbench.com/


Fig. 1-2 VSR-II Training System Login-Screen

Also included in your registration for a VSR-II training
workspace is a free basic license for the test management
system TestBench CS, which includes the VSR-II test
specification as a demo project and several of the VSR-II
test cases presented in the book.

You can use TestBench CS not only for learning and
training, but also for efficient testing of your own “real”
software. A description of all features can be found at
[URL: TestBench CS].

Many thanks to our colleagues at imbus Academy, imbus
JumpStart and imbus TestBench CS Development Team for
this awesome implementation of the VSR-II Case Study as a
web-based training system.


