David W. Russell

The BOXES
Methodology
Second Edition

Black Box Control of Ill-defined Systems

- Second Edition

The BOXES Methodology Second Edition

David W. Russell

The BOXES Methodology
Second Edition

Black Box Control of Ill-defined Systems

Second Edition

@ Springer

David W. Russell
Audubon, PA, USA

ISBN 978-3-030-86068-4 ISBN 978-3-030-86069-1 (eBook)
https://doi.org/10.1007/978-3-030-86069-1

First edition of this title: https://www.springer.com/gp/book/9781849965279.

1% edition: © Springer-Verlag London 2012

27 edition: © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-86069-1
https://www.springer.com/gp/book/9781849965279

To Donna,

without whose encouragement this work
would never have been completed,

and to my brother George.

Preface

It is interesting how casual browsing through a technical article can capture one’s
imagination and alter a career. In 1973, while looking for reference materials to
supplement my doctoral studies in real-time adaptive, intelligent control, my attention
came upon a series of papers describing a new genre of research namely learning
machines.

The author’s own doctoral studies [1] had focused on the design of a real-time
pattern generating automaton for the control of an experimental fast reactor, in which
control was maintained by filling and emptying tubes of moderator fluid based on
what, today, would be called rule-based control laws. Yet, it was also a sly game!
The selection of not just how many control tubes needed to be activated to respond
to a power demand, but it was also necessary that an even distribution of tubes be
maintained for stability reasons, and that the choice of tube be made with minimum
disturbance. Of course, in the fast reactor setting, the proximity of any tube to any
other enhances the control strength of both. But enough about fast reactors—what
was fascinating was that when it was necessary to make changes to the control setting,
the pattern needed to change but with minimum alteration of tube activations. It was
a sort of Connect Four® situation in which one player’s move not only affects his/her
board plan but reverses and obliterates those of the opponent.

As in a board game, dynamic systems create control situations that can be calm,
erratic or even chaotic, and change without much, if any, warning. To keep up with
these demands it became obvious that computational assistance would be necessary.
This would need to have the capacity to perform not only the usual control functions
but also have the intellect to solve logical problems. Around that time, machine
learning was emerging, pioneered by Prof. Donald Michie at Edinburgh and others.
In this field of study, it was clear that the digital computer, with its speed of calculation
could compare many options and return a good control decision in almost real-time.

But was it doing more than running sophisticated trial and error sequences, keeping
a tabulation of what was the best so far, until it ran out of time when it returned an
intelligent guess? Artificial intelligence was on the horizon!

With faster hardware came a new slew of algorithms that seemed to be able
to present fast solutions to puzzles, games and conundrums that elude all but the

vii

viii Preface

smallest percentage of humankind. For example, as far back as 1959, Samuel [2] had
developed a program that purported to have learned to play checkers and improved
with each game. What was especially intriguing was the fact that the automaton
(which was the computer program and an avatar to assert board entries and read
opponents moves) improved in the performance of certain tasks (i.e. not losing or
winning) over time. Around that era many software developers (too numerous to
mention here) began to work on the resolution of various game situations in the
much more complex game of chess which culminated in the now historical match
[3] in 1997 between Deep Blue® and the then reigning World Chess Champion,
Garry Kasparov. In 2010, the state of the art in chess playing software systems had
reached such a level of proficiency that Veselin Toparov trained for the World Chess
Championship using the Blue Gene [4] Supercomputer, although eventually losing
to Viswanathan Anand in games that were all close.

What has fascinated scientists, especially engineers, is not only the answer to
is the machine truly intelligent but also can an automaton perform real-work tasks
better than a human or analog system?

Concurrent with this activity by what was to become the Artificial Intelligence
community, was a surge in interest in the replacement of analog process systems by
what became known as adaptive digital controllers. It was only a matter of time before
the two fields overlapped and the era of learning systems began. For example, among
many others, a 1968 paper by Lambert and Levine [5] appeared titled “Learning
Control Heuristics.” By replacing analog control systems by digital computers it
became obvious that the digital system could do much more than produce pretty
graphs and digital meter readings. The era of analog controllers was coming to an
end and the new world of control algorithms such as statistical trending, optimization,
state space, and fuzzy logic had arrived.

All the system needed was the ability of a human to program its rule sets, be it
the exclusion rule for noughts and crosses (a.k.a. tic-tac-toe in the US) in which it is
not legal (or nice!) to overwrite a square already held by the opponent, or the control
limits on the temperature of a chemical process. A fatal flaw had emerged: Was all
the digital processor doing replacing functions that an analog computer or human
could do with some rather expensive electronic apprentice. Most systems required
a mathematical model of the process under control that was derived from physical
laws or known rules. The programmer’s task was to code the algorithms and attach
them to a waiting program. Did this introduce intelligence or just mimic the workings
of analog systems? Was direct digital control (DDC) the answer to solving complex
control problems that were rapidly exhausting the capacity of analog controllers?

The assertion that machines (vis-a-vis) robots possess intelligence was and is
fiercely debated by engineers and philosophical purists alike. The now infamous
Lighthill Controversy debate that was aired live by BBC TV in 1973 was in essence
an 81 minute argument between Donald Michie and leading researchers that is still
blamed for the AI Winter, so called because of the bleak times Al researchers went
through in terms of getting grants and support. Over thirty years later, a 2007 posting
on the Steeb-Greebling Diary [5] sadly reported he ongoing disagreement between
Michie and his colleagues. As an outcome of that same debate, it recounts that Sir

Preface ix

James Lighthill subsequently published a report that called halt to artificial intelli-
gence research in all but two area. The resulting dissolution of Donald’s research
group in Edinburg left him isolated in the research unit.

Michie left Edinburgh in 1984 to become Professor of Computer Science at Strath-
clyde University, where he established the Turing Institute. He worked there for 10
years contributing much to the field of machine learning. In March 1990, the author
visited Michie at the Turing Institute and gave a presentation based on the Liverpool
work aptly titled The Trolley and Pole Revisited.

Machine intelligence is still a hot topic of conversation. In 2008 the Guardian
[7] ran a headline: “Artificial intelligence: God help us if machines ever think like
people” in which Charles Arthur cites a paper by Gary Marcus [8] in which he
states that there are two systems operating in our minds, one ancestral and the other
deliberative. The deliberative system is younger genetically speaking but the older
one, being better wired into our subconscious, often gets the upper hand. What this
suggests is that human minds are not really able to create much that is new regardless
of the challenge, so why should an artificial system that may be relentlessly pursuing
some algorithmic agenda produce innovative, yet viable and practical solutions to a
problem? In the 21st century, there is hardly a day goes by that artificial intelligence
is not proudly the topic of admiration in the public eye.

Returning to history around same this same time, a seminal work by Michie and
Chambers [9] written in 1968 attracted the author’s special attention. The latent
thesis of the work was that Machines can learn and researchers have been pursuing
this and the obvious extension Do machines think to this day. The outcome of the
revelation was the foundation of the research team at the then Liverpool Polytechnic
in the UK and where this journey began and the genesis of this book [10]. Almost 50
years later, the BOXES algorithm still fascinates researchers, especially this author
and this second edition highlights some features and issues that scholars might have
pondered.

Audubon, PA, USA David W. Russell

References

1. Russell, D.W. Advanced Analysis of Fluid Control Systems for Nuclear Reactors (1970)
PhD thesis. Council for National Academic Awards, London.

2. Samuel A.L. Some studies in Machine Learning using the game of checkers 1959. IBM J. of
Res. Dev 3, 210-229.

3. Deep Blue: Game 6: May 11 (1997) www.research.ibm.com/deepblue/watch/html/c.shtml
(Accessed December 21, 2010)

4. Blue Gene. IBM J. of Res. Dev. 2005: 49, No: 2/3 191-489.

5. Lambert, J.D. and Levine, M.D. Learning Control Heuristics. 1968. IEEE Trans on Automatic
Control. Vol:AC-13, 741-742.

6. The Lighthill controversy The Streeb-Greebling Diaries (2007) http://streebgreebling.blo
gspot.com/2007/07/lighthill-controversy.html

https://www.research.ibm.com/deepblue/watch/html/c.shtml
http://streebgreebling.blogspot.com/2007/07/lighthill-controversy.html

10.

Preface

Arthur, C. Artificial intelligence: God help us if machines ever think like people 2008 http://
www.guardian.co.uk/technology/2008/jun/20/artificial.intelligence

Marcus, G. Kluge: The Haphazard Evolution of the Human Mind. 2008. Houghton, Mifflin
Harcourt Publishing Company, New York: NY ISBN 978-0-618-87964-9.

Michie, D. On Machine Intelligence. 1986. Ellis Horwood Ltd. Chichester, England. ISBN:
0-7458-0084-X.

Russell, D.W., The BOXES Methodology: Black Box Dynamic Control. 2012. Springer
Verlag, London, England. ISBN 978-1-84996-528-6.

http://www.guardian.co.uk/technology/2008/jun/20/artificial.intelligence

Acknowledgements

Special acknowledgement is due to Steve Rees and John Boyes, my long-suffering
Liverpool team members, through whose endeavour the BOXES automaton was
designed, constructed, and successfully operated. I recall the countless hours over
four years that Steve tried to outplay the automaton manually and his glee at obtaining
a controlled run of 10 seconds one day, when of course the automaton attained 10
seconds after an hour or so of training.

Acknowledgement is also made to James Alpigini whose contributions to the
visualization of dynamic systems were also very valuable. Finally, I am grateful to
Dennis Wadsworth of the Lockheed Martin Corporation for his enthusiasm and skill
in adapting the BOXES algorithm into a form that positively enhances database disc
access and his contribution to Chap. 12.

The writing of this second edition was made possible by the generous use of
facilities and resources of the Engineering Division of Penn State Great Valley in
which I am a proud emeritus professor.

I acknowledge the work of many fellow researchers who have used, altered, and
otherwise adapted the BOXES method over the years and whose work may have
been inadvertently omitted.

Lastly, I am indebted to my Springer editors and friends Anthony Doyle and Mrs.
Padma Subbaiyan without whose help this second edition would never have come
to print. All and any mistakes are mine alone and readers should please feel free to
contact me with any suggestions you may have for improvements or corrections.

xi

Donald Michie: A Personal Appreciation

I met Donald Michie in Edinburgh in the early 70’s after reading some of his papers
and became fascinated by a learning methodology that he called “The BOXES
“Method.” I continued to enjoy a fairly loose but valued relationship with him over
the many years since; meeting at conferences, lunch in London on occasion, giving
a lecture at the Turing Institute in Glasgow and so on. I have published over 30
technical papers—see Appendix C—on the method. Donald was a controversial and
outspoken figure in UK academia over the years and always ready to branch out into
new adventures. Among many others, I was much saddened by his much too soon
departure from this life in July 2007 following a car crash.

It was truly gratifying to see the appearance of a book [1] titled Donald Michie
on Machine Intelligence, Biology and more that contains a wonderful collection of
Professor Michie’s papers, and I quote from page 6:

With the 1990’s also came, finally, recognition of his contributions to machine intelligence
in the form of several awards. In 1995, he co-founded the Human Computer Learning
Foundation, with the aim of exploring ways in which computers could be used to assist and
improve human skills.

Mechatronic machines do very well what we humans are extremely limited in
doing; any task that involves flawless and reliable memory, undivided attention, and
strict devotion to the task at hand. Donald opined (op cit 239) that “The black death
of our times is the world’s escalating complexity” and perhaps it is the profound
simplicity of the BOXES method and Donald’s enthusiasm for everything, that was
my motivation for writing this monograph and now the second edition.

1. Ashwin Srinivasan (ed) (2009) Donald Michie on Machine Intelligence, Biology
and more. Oxford University Press, London. Used with permission.

Xiii

Contents

Introduction
1.1 Machine Intelligencecoiiiiiiiiiiiiinnaan.
1.1.1 Are Computers Intelligent?
1.1.2 Can Computers Learn?
1.1.3 The Robotand the Box
1.1.4 Does the BOXES Algorithm Learn?
1.1.5 Can Computers Think?
1.1.6 Does the BOXES Algorithm Think?
1.2 The Purpose of This Book
1.3 A Road Map to Reading This Book
1.4 Concluding Thoughts i,
References

PartI Learning and Artificial Intelligence (AI)

2

The Game Metaphor
2.1 Computers Can Be Programmed to Play Games
2.1.1 Playingby Rules
2.2 Reactionary Strategy Gamescouveiiunninneann.
2.2.1 Noughts and Crossesc.ooveeiiunnnneann.
222 OXO Not Noughts and Crosses
23 Incentives and Learning Velocity
24 Design of a Noughts and Crosses Engine
24.1 OVEIVIEW ...
242 Software Substructures
2423 Typical Results o ..
2.5 Chance and Trial and Error
2.5.1 Chance and the Community Chest
252 Learning with Guesswork
253 Random Initialization
2.5.4 Positional Move Strengths

XV

Xvi

Contents

2.6 The Payoff MatriXoouuuinii i, 28
2.7 The Signature Table 29
2.8 Rewards and Penalties 30
29 Failure-Driven Learningo ... 31
2.10 Concluding Thoughts i .. 31
2.10.1 Reversi (Othello®)o, 32

2.10.2 The BOXES Method asaGame 32
Referencesooiii 33
Introduction to BOXES L 35
3.1 MatchboXesttt 35
32 Components of the BOXES Method 36
3.2.1 Defining the Game Board 36

322 Identifying Game Situations 37

323 Selecting Game Piece Actions 39

324 Real-Time Data Handling 40

325 Detecting an End Game Situation 41

33 Updating the Signature Table 42
3.3.1 Overall Performance Data 42

332 Desired Level of Achievement 43

333 Individual Box Decision Data 43

34 Overall Software Design, 44
3.5 Concluding Commentsueeiiiuineeeennnnneenn. 46
Referencescoouiiii 46
Dynamic ControlasaGame 47
4.1 Control of Dynamic Systems, 47
4.1.1 The Dynamic System Game Board 48

4.1.2 State Variables and State Integers 49

4.13 Creating a Unique System Integer 50

4.1.4 Signature Table Control 52

4.1.5 End of Game Action 52

4.2 Actual Real-Time Data Collection 53
4.2.1 Short Duration Mechanically Unstable Systems 53

422 Continuous Systems with Sample Data 55

43 Update Proceduresiiiiiiiiiiiiii .. 56
4.4 Concluding Commentsooiiiiiiinnnnnnnnnnnn. 57
References 58

PartII The Trolley and Pole

5

Control of a Simulated Inverted Pendulum Using the BOXES

Method 61
5.1 Introduction oo 61
5.2 The Trolley and Pole Model 62

5.2.1 The Trolley and Pole Signature Table 63

Contents xvii

5.2.2 Systems Engineering, 64
523 An Overall Performance Metric 65
5.2.4 The Importance of State Boundaries 66
5.2.5 Computation of a Unique System Integer 66
53 Simulation Software o il 67
5.3.1 The Campaign Setup Phase 67
5.3.2 The Individual Run Phase 68
5.4 Simulation Results i 69
54.1 Typical Results 70
55 Update of Statistical Databases 70
5.5.1 Determination of Decision Strength 71
5.5.2 Near-Neighbor Advisor Cells 73
5.6 COoNCIUSIONS ...ttt 73
Referencesouiiii i 74
6 The Liverpool Experiment 75
6.1 Introduction to Realitycooiiiiiiiiiiiaa.. 75
6.2 The Liverpool Trolley and Pole Rig 76
6.2.1 Practical Aspects of the Liverpool System 76
6.2.2 Instrumentation and the State Variables 79
6.2.3 Manual Auto-start 80
6.2.4 Driving the Trolley, 80
6.2.5 The MiCrOproCeSSOT « .o v vt e tie e e eeeen 81
6.2.6 The BOXES Algorithm and the Real-Time

A (0] 11110 PP 81
6.3 Systems Engineering i i, 81

6.3.1 How Boundaries on Each State Variable Were
Imposed ... 82
6.4 Results from the Liverpool Rig 83
6.5 ConcluSIoNSt 84
Referencesoouiiiii 84
7 Solving the Auto-Start Dilemma 85
7.1 Introduction to the Auto-Start Dilemma 85
7.2 Random Restart Simulation Software 86
7.2.1 Restart Software, 87
7.2.2 Random Initial State Integers 87
7.3 Automated Catch-Up Restart Method 90
7.3.1 Catch-Up Restart in Simulated Systems 92
7.3.2 Catch-Up Restart in a Real Trolley and Pole Rig 92
7.3.3 Catch-Up Method Conclusion 94
7.4 Systems Engineering i, 95
7.5 Manual EXperimentsouuuiiiiiniininnunnnnnnn. 95
7.6 ConClUSIONS . ..ottt 96

References i 97

XViii Contents

Part IIl Other BOXES Applications

8 Continuous System Control 101
8.1 Continuous Controlt 101
8.2 A Different Perspective on Failure 103

8.2.1 Constructive Failure o .. 103
8.2.2 Limited Failureo ... 104
8.2.3 Creating a Learning Interlude 105
8.3 Outcome-Based Performance Evaluation 107
8.3.1 An Example Outcome-Based Approach 107
8.3.2 Outcome-Based Assessment 108
8.4 Training Continuous Automataccuuuneean.. 108
8.5 BOXES Control of a Continuous System 109
8.5.1 PID Control i, 109
8.5.2 State Variable Control 110
853 BOXES for Continuous Systems 110
8.6 A BOXES Augmented Controller Results 112
8.6.1 Outcome-Based Reward and Penalty 112
8.6.2 Results Obtained for the Example 114
8.7 CONCIUSIONS .+ vttt ettt et et eaas 114
References 115
9 Other On/Off Control Case Studies 117
9.1 On/Off Control 117
9.1.1 Learning Algorithms 118
9.1.2 RunTimeData iiiiiinaa... 118
9.1.3 Signature Table Update 119
9.14 Application Summarycccoiiiii.. 119
9.2 Fedbatch Fermentation, 119
9.2.1 The Fedbatch Fermentation Process 120
9.2.2 A Fedbatch Fermentation Model 122
9.2.3 BOXES Control of a Fedbatch Fermentor 125
9.3 A Municipal Incinerator with BOXES Control 129
9.3.1 A Model of a Municipal Incinerator 129
9.3.2 BOXES Control of the Municipal Incinerator 130
9.4 Reversing a Tractor Trailer 131
9.4.1 Model of the Tractor Trailer 131
94.2 BOXES Control of Tractor Trailer Reversal 132
9.5 ConcluSIONSttt 134
References i 134

10 Two Nonlinear Applications 135
10.1 Introductionuuuieiiiiiieee i, 135
10.2 Database Access Forecasting 136

10.2.1 Application of BOXES to Disk Accessing 136

10.2.2 Learning in the Adapted BOXES Algorithm 138

Contents

10.2.3 Forecastingcoueiiiiiinneiennnnnnenn.
10.2.4 SimulationResults
10.2.5 Conclusions Disk Accessing
10.3 Stabilizing Lorentz Chaos
10.3.1 Introductioncoiiiniiiinieinnnnn.
10.3.2 BOXES and the Fractal Dimension
10.3.3 Results for Lorenz Chaos Under BOXES
Control
10.3.4 Conclusions Lorentz Equations
104 ConcClusionsiiiniiie e
Referenceso

Part IV Extending the Algorithm

11

12

13

Accelerated Learning,
11.1 Introductionl
11.2 Preset Fixed Signature Table Values
11.3 Reduction of the Importance of Short Runs
11.4 Collaboration Among Cells
11.4.1 PlayingBridge
11.42 Swarm and Ant Colony Systems
11.4.3 Advisors in the BOXES Algorithm
11.4.4 Locating Peer Advisor States
11.5 Relocation of Boundaries,
11.6 Conclusionsoiiiiiiiiiiiiiiiiaa..
References
Two Advising Paradigms
12.1 Introduction i il i
12.1.1 Decision Strengthsof Cells
12.1.2 Identification and Ranking of Advisor Cells
12.1.3 Advisor Strength Criteria
12.2 Advising Schemasoiiiiiineiiiiiiin.
12.2.1 Advisingby Voting i i,
12.2.2 Advising Using Cell Strengths
12.2.3 Delayed Advising
12.3 Advisor Accountability L.
12,4 Conclusionsoiiiiiiiiiiiiiiiiiiiiiiiiiiii..
References i
Evolutionary Studies Research
13.1 Introduction,
13.2 State Boundary Experiments,
13.2.1 Variation in the Number and Size of State Zones ...
13.2.2 Preliminary Conclusions

13.3 AnEvolutionary Paradigmo o oL

Xix

XX

Contents

13.3.1 Typesof Zonesooveiiiinniiiuinnnnnn. 182
13.3.2 AnEvolutionary Method 182
13.3.3 Interpreting Signature Table Statistics 184
13.3.4 An Evolutionary Algorithm 188
1335 ExampleResults it 188
134 Conclusionso 189
References i 190

Part V Further Thoughts

14 A Priori Knowledge 193
14.1 What are Black Box Systems? 193
14.1.1 An Intelligent Pacemaker 194
14.1.2 Controlling a Steel Rolling Mill 195
14.1.3 Why Use the Cart-and-Pole Exemplar? 196
142 What does the BOXES Paradigm Need to Know? 196
14.2.1 The Physical System to be Controlled 196
14.2.2 The Division of the State Variables into Zones 197
143 Other BOXES Configuration Data Items 197
14.3.1 The Signature Table 198
14.3.2 Evaluating System Merit 198
14.3.3 In-Run Data Collection 198
14.3.4 The Cell Usage Database 199
143.5 Learning Parameters 199
14.4 Fixed Cell Strategiesouiiiiiiiiiiinnnnnna... 201
14.4.1 Create Non-changeable States 201
1442 Strong Cell Freezing 202

14.4.3 Can Fixed Cells Participate in Evolutionary
Studies? ... 202
145 ConcluSionscoouuuiniii e 202
References 203
15 Detecting and Handling Jitter 205
15.1 Introduction il 205
15.2 Why Does Jittering Occur? 206
15.3 How Jitter Affects Merit 207
15.3.1 A Numerical lllustration 209
15.4 How Jittering Corrupts Individual Cell Data 209
15.5 Detection of Jittering in a BOXES System 211
15.6 Possible Strategies for Jitter Remediation 213
15.6.1 Executive Internal Action 214
15.6.2 lJitter Proof Software 215
157 Conclusionsoiiiiiiiiiiiiiiiiiiiiia.. 216

References e 217

Contents

16 Handling UntrainedData

16.1 Glossary of Computational Terms
16.2 A Mathematical BOXES Test Engine
16.2.1 Scenario 1: Linear Increase or Decrease
16.2.2 Scenario 2: Linear Saw Tooth
16.2.3 Scenario 3: Complex or Random Pattern
16.3 Forgetfulness Observations Using the BOXES Test Engine
16.3.1 AgingGlobal Use (GU)
16.3.2 Aging Global Life (GL)
16.3.3 System Merit just Aging the Global Life (GL)
16.3.4 System Merit for a More Complex Scenario
16.3.5 Effect of Differing Values of Ak
16.3.6 Summary of 8k as a Learning Agent
16.4 An Alternate Aging Strategy Using a FIFO Stack
ATChIteCTUI®ottt e
16.4.1 The FIFO Data Structure
16.4.2 Application of the FIFO Stack to BOXES Merit
16.4.3 Connection of the Test Engine to the FIFO Stack
16.4.4 Merit Values Using the FIFO Stack
16.5 Conclusionsooiiiiiiiiiiiiiiiii..
References

Part VI Conclusions

17 Summary and Conclusions,

17.1
17.2
17.3

17.4

17.5

17.6

Some Philosophical Commentary
Bloom’s TaXonomyuueiiiiiinneeeennnnneenn.
Introduction and Part I: Learning and Artificial Intelligence ...
17.3.1 Chapter 1: Introduction
17.3.2 Chapter 2: The Game Metaphor
17.3.3 Chapter 3: Introduction to BOXES
17.3.4 Chapter 4: Dynamic Control asa Game
Part IT: The Trolley and Pole
17.4.1 Chapter 5: Control of an Inverted Pendulum

Using BOXES il
17.4.2 Chapter 6: The Liverpool Experiment
17.4.3 Chapter 7: Solving the Auto-start Dilemma
Part III: Other BOXES Applications
17.5.1 Chapter 8: Continuous System Control
17.5.2 Chapter 9: Other On/Off Control Case Studies
17.5.3 Chapter 10: Two Nonlinear Applications
Part IV: Improving the Algorithm
17.6.1 Chapter 11: Accelerated Learning
17.6.2 Chapter 12: Two Advising Paradigms
17.6.3 Chapter 13: Evolutionary Studies Research

XXi

219
219
221
222
222
223
223
223
224
225
225
226
227

227
227
228
228
229
231
231

XXii Contents

17.7 Part V: Further Thoughts 244

17.7.1 Chapter 14: A Priori Knowledge 245

17.7.2 Chapter 15: Detecting and Handling Jitter 245

17.7.3 Chapter 16: Handling Untrained Data 245

17.8 Modifications to Standard BOXES Software 246

17.9 Research Questions for Future Study 246

17.9.1 Is There an Optimal Number of States? 246

17.9.2 Is There a Generic Merit Formula? 248

17.9.3 Is There a Generic Cell Strength Formula? 248

17.10 Conclusionsooiiiiiiiiiiiiiiiiia.. 248

17.10.1 Some More Final Thoughts 249

References i 249

Appendix A: Glossary of Terms and Abbreviations 251

Appendix B: BOXES Software Notes 253
Appendix C: BOXES Publications, Lectures, and Presentations

by the Author 269

Author Biography 273

Chapter 1 ®)
Introduction Check for

Abstract This chapter contains a brief introduction to machine intelligence and
how scientists and engineers often approach similar problems from two very distinct
standpoints. That a computational engine can play chess better than almost everyone
on the planet goes without saying, but is it really thinking? While it is obvious that
digital computers are unimaginably fast, data retentive and focused, are they merely
doing what they have been told to do as Ada Lovelace suggested, or are they capable
of learning and making exploration inside their solution space? Automata have taken
the software application process beyond soft tasks such as game playing and moved
them into the real world of process control, material handling, digital assistants,
and autonomous motion. This is exactly what this book covers using the BOXES
methodology as the software agent to be discussed at some length throughout. This
introductory chapter is written in a deliberately non-technical style and serves to
introduce the basis of the topic at hand. It ends with a road map of the how the
book is organized to assist the casual reader to browse and skip to sections of special
interest.

1.1 Machine Intelligence

There are simply scores of books written about machine intelligence, too numerous
to even try to reference here. Interested readers should try a Web search when for
instance on December 3, 2010, Google™ identified 8.7 million hits with machine
intelligence in the subject line. In 2021, the number of hits was 562 million. Authors
who write on this subject are engineers, (computer) scientists, mathematicians,
philosophers, and pundits seemingly from every walk of life. Some devote their
contributions to clever search methods that navigate through esoteric multi-tuple
tree structures, others seek to process strings of natural language using context-
dependent lexicology to reduce sentence complexity and reduce ambiguity, while
others construct expert or fuzzy logic systems which are in use everywhere. All
add valuable contribution to the field, and each year intelligent systems applications
become more sophisticated and less visible to the user.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 1
D. W. Russell, The BOXES Methodology Second Edition,
https://doi.org/10.1007/978-3-030-86069-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86069-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86069-1_1

2 1 Introduction

Luger and Stubblefield [1] in the preface of their book offer two delightful discrim-
inatory phyla concerning the major schools of Al methodology which they called
the neats and the scruffies. The neats focus on theory and knowledge representation,
whereas the scruffies are interested more in the application of intelligent systems.
Their book correctly postulates that the two approaches have much common ground
and they further propose that there is much synergy when both are combined. In any
research or application that involves computational intelligence as it is called, there
is controversy. The controversy that has swirled around machine intelligence has
been largely fuelled by the confusion between machine function, cognition, being,
and self-awareness. This book does not address those issues beyond this chapter, but
it is very fascinating to consider how the interface between humans, automata, and
humanoids is becoming more blurry every day.

Video games are now so immersive and addictive that their level of reality has to
be carefully regulated to safeguard the sanity of the players. It is sad but true that some
people would rather live in this second world than in reality. The more sophisticated
virtual reality (VR) environments [2] provide a wonderful arena for training or re-
training personnel in a new technology or operational technique. Using a haptic
interface allows the trainee to not only gain new knowledge but also experience how
the real system will feel. Of course, the well-known DaVinci® robot can observe a
complex surgical maneuver once and reproduce it repeatedly on patients who may
be thousands of miles away.

VR can be so persuasive that it can even provide an advanced form of artificial
life, for example, for persons with crippling disabilities. Using stimulation of the
person’s senses, participants can become so engrossed and immersed in the system
that they are able to believe that they are actually flying a plane, scoring a goal, or
attending a class and learning a new language. Avatars can now reflect the facial
expressions of the user to convey a sense of mood as it takes the user’s part in a
discussion or play.

The insertion of technology into main street life is here to stay. It is estimated [3]
that in 2010 there were over 100 million Twitter ™ users, a number that is increasing
at a reported 300,000 new subscribers every day. Humanoid personal digital assis-
tants (PDA) exist (for the very rich), and the nouveau Jeeves [4] (who was Wode-
house’s gentleman’s personal gentleman) is an Internet-enabled system that adap-
tively manages calendars, suggests dress for the day’s weather, merges schedules,
and handles routine conversations with other PDAs. Technology is becoming more
invisible, ubiquitous, and necessary part of society everywhere.

1.1.1 Are Computers Intelligent?

What is intelligence? Is a person who plays chess (or Shatranj as it was originally
known in the first Millennium) at the master level more intelligent than somebody
who does not play at all? Does intelligence depend on a person’s ability to reason and
strategize within some rule set? Computers play at high levels and regularly defeat

1.1 Machine Intelligence 3

lesser players. Is intelligence simply defined by what a person can do, or are there
deeper matters that must be considered? It can be argued that the game of chess can
be learned by anybody after enough losses and repetitions. A grandmaster must not
only play many games but also possess the drive to improve and a semi-photographic
memory to learn from not only the game in progress, but also reference past games
that s/he played and games that were played by others over the years.

Once all of these factors are in place, a player can imagine a next move. Before
instantiating what seems to be the best move available in the current board situation,
the player must now view the future—searching as far down an enormous solution
tree as able—to see the consequence of the move in regard to winning the game
while thwarting the present and future wiles of an opponent. And all this must be
done quickly. It is reported that there are 6,134 combinations of position which the
pieces on the chessboard can occupy and the number of legal moves is estimated to be
somewhere between 10** and 10°°. The overall game-tree complexity of chess was
first calculated by Claude Shannon as 10'?°, a number known as the Shannon number.
Typically, an average position dictates one of thirty to forty possible moves, but there
may be as few as zero (in the case of checkmate or stalemate) or as many as 218 [5].
With this in mind, it is not inconceivable that a program can search through millions
of legal moves per second and consequently outplay all but the most expert chess
aficionados. Computationally, a major problem is to decide which of maybe several
moves is best within the game clock’s timer. So, in addition to finding strategically
advantageous moves, the program must have a way of ranking each solution.

Automata do not necessarily learn from past mistakes, rather the computer by
virtue of its blistering processing speed and power can take advantage of the fact
that chess is a deterministic game and can identify sequences of moves by tree
searching and flawless memorization. If the game is encoded correctly, it is fairly
simple to reference prior games played by humans as is commonplace in many expert
systems. If the current game situation matches one of these games, a set of moves
can be generated to defend or attack a position. So, is the computer as intelligent
as its human opponent? In fact, the chess program performs much better than most
humans do in playing this game. Is this because humans quickly lose interest and lack
concentration when multiple options are available, or is it that they are susceptible
to devious gambits, or simply that they cannot look far enough ahead down a yet
unknown and inscrutable solution tree?

It would appear that the chess playing program is really a scruffy application, yet
there have been countless neat approaches to pruning the search tree to gain temporal
advantage when a finite time is strictly allocated to each move. The so-called rapid-
fire chess game may prove more difficult for the automaton to play than the more
formal competition game. The computer is unaware that it is playing chess, and its
quest for the perfect next move is only limited by the time constraints imposed by
the rules of the competition. The program arrives at and memorizes a list of possible
moves and ranks them according to some measure of their strength.

This is not a simple process as the program might be fending off a latent opponent’s
attack or making an offensive thrust or crafting a draw because of the hopelessness
of its situation. This is very much akin to how humans weigh options before making

4 1 Introduction

a final decision. When all the known options have been exhausted, or as the time
clock nears expiration, the best move (so far) is submitted to continue game play.
This is a fundamental component of the BOXES methodology to be discussed in this
monograph.

Natural language processing (NLP) is another Al topic that has been extensively
researched. As electronic devices have evolved, not only can a system recognize
what has been said, the truth of the statement, and who has said it. Training of
such systems is intuitive and quite simple provided a lexicon of words is provided.
Modern automobile global positioning systems (GPS) all boast speech recognition
software. Yet, language is much more than words, so it takes more than computational
correctness to understand all of the subtleties and nuances, for example, in a spoken
sentence. But, again does a speech synthesizer know what it is saying or is it merely
responding to prompts that produce a choice of sounds and tones from a syntactic
list? A hearing viewer only has to read the close captioning text during a TV show
to see the rather hilarious defects in these systems. However, when programmed and
used correctly, spoken words or even eyelid blinks can result in hitherto unimaginable
levels of communication and control, which has created life changing improvements,
for example, in the quadriplegic community. It is often the interface and trust between
the computer and the user that is of paramount importance.

1.1.2 Can Computers Learn?

Can a machine learn to do a task? The introduction of computer science to our univer-
sity curricula, followed by the more systematic discipline of software engineering,
has enabled researchers and scholars to greatly expand upon what had previously
been a set of theoretical conjectures prior to the 1950s. The visual and plug-and-
play programming paradigms have made applications much simpler to create than
possible in the procedural programming process. The writing of small programs and
constructing Web sites is taught in many high schools around the world. Computer
programming as a commercial skill begat the information technology (IT) industry.
From its number crunching origins, to the replacement of handwritten point-of-
sale and banking processes to today’s handheld automated systems, we all take for
granted, the computer has become an integral part of everyday life. And yet society
demands more and more from what are really quite simple processes. Cartographi-
cally, it is much easier to read and write typescript than handwritten text and is gener-
ally less error prone and consequently much more efficient in document editing. An
email or text message contains far more traceable information content than a partially
heard telephone call or a hastily scribbled note. Modern software can automatically
and accurately transcribe language into text and forward the message on command
as an email or text message.

There are many technical aspects of computing. Attaching machinery to process
controllers and inserting intelligent electronics that provide engine control and navi-
gation was a natural next step. Going further, with the assistance of Hollywood’s

1.1 Machine Intelligence 5

fascination with robots and humanoids, the notion of autonomous thinking machines
appeared. But can an automaton learn for (or about) itself? Expert programmers can
write software that provides a facsimile of real-world interaction, intelligent decision-
making, and demonstrable reasonable action. Some say that this is how the human
brain operates and it is only scalability that separates it from an automaton. Merckle
[6] opined that the thinking that the brain is a type of computer has gained general
acceptance. It is commonly thought that the brain handles 10'® synaptic operations
per second which was far in excess of any man-made machine at the time. In 2020, the
Fugaku supercomputer [7] boasted over 400 times the speed of the brain; however,
because the brain does more than process mathematical data, it might seem feasible to
assume the position that bigger and faster computers could possibly reproduce other
brain tasks such as learning and potentially thinking and feeling. That a computer
could solve problems better and faster than the average human became very clear.
One of the pioneer systems that illustrated this was developed at Stanford University.

1.1.3 The Robot and the Box

Early work at the Stanford Research Institute (SRI) reported mobile automata such as
Shakey [8] in the 1960s, and its successor Flakey [9] in the 1990s had demonstrated
that a mobile computer system could be constructed that could process real-world
data, such as location, the recognition of objects using camera vision, and their
orientation using gyroscopes. With this information, it could create logically correct
plans of action in response to a series of task commands. A rudimentary natural
language processor enabled tasks to be input verbally, and the system could solve a
variety of problems and produce appropriate actions such as steering and pushing.
As the task was being solved, the robot could navigate around obstacles using self-
formulated plans of action. What was more intriguing was the ability of the software
to handle options and interruptions and to build modifiable plans of action in real
time.

Figures 1.1 and 1.2 depict scenes that include objects, rooms and doors that can be
opened and closed by outside gremlins as SRI called them. A typical task directive
might be

>> move block A from room 1 to room 2>>

Figure 1.1 shows the obvious direct route plan, and Fig. 1.2 is the modified plan if
doors (D2) and (D3) were found to be closed. If the robot had started to push the block
toward door D2 when it was slammed shut, the system would abort the current plan
and propose another route on-the-fly. In order for the algorithm to be able to formulate
plans, it must be cognizant of the building layout (i.e., what rooms are available and
where the doors are), where it is, and the status of each door (open/closed) on a
moment by moment basis. It is a given that the robot had been given sufficient power
to overcome inertia and push the box. The three feasible but conditional plans in this
simple system are as follows:

6 1 Introduction

Fig. 1.1 Initial plan for the

| DOORSTATUS !
set task . !
| ROOM1 !
l Al :
! I FIRST PLAN i
I
@ =T
. l
! 1
: ROOM 3 L ROOM 2 !
1 EN \
] \ X
l 3 Y |
I (Af !
I
: 3/ ROOM4 |
! 1
| 4 !
! 1
! 1
I I
! 1
! 1
e e e e e e e e e e e e e e e c e e e e e — - === 4
Fig. 1.2 Modified task plan I T DOORSTATUS T TTTTTTTTTTTTTTTTTTTTTTTTTT !
if doors D2 and D3 are ROOM 1
closed P
1AM
1 ALTERNATE
/ PLAN -i
7
_ 7
ROOM3 ,\ ROOM 2
! l ALTERNATE

PLAN - iii

1
* 7
. G —
WY TS &/ ROOM 4
74N
N _>r::|7=
LY

4
ALTERNATE -
PLAN - i

~

e Plan A: D2: The most direct route
e Plan B: D1 — D3 {D2 is closed}, and
e Plan C: D1 — D4 — D5 {D2 and D3 are closed}.

Other plans can be envisaged for various combinations of door status values. Of
course, some combinations, for example, D1 and D2 closed, or D2, D3, and D4,
closed would pose an impossible task.

To produce this kind of planning system, a system architecture such that as shown
as Fig. 1.3 proved to be very effective and is still in use today.

1.1 Machine Intelligence 7

iii. Stanford Model

o Plannin
ii. Process Control g

i

i. Simple Control | Algorithms , Algorithms ‘
| ooc] L poc | DDC

< 1 O

[SYSTEM REAL WORLD INTERFACE |

~~

| sYSTEM INPUTS | | SYSTEM ACTUATORS |

-

Fig. 1.3 Evolution of the components of a three-tier architecture

The lower direct digital control (DDC) level handles motion and processes phys-
ical data such as driving the wheels, stopping for obstructions, and steering the robot
in response to real-world input data as it seeks to complete its task.

The algorithms section provides signal filtering, scaling, and conformance with
established control laws and limits so that no unreasonable or unsafe signals are
ever presented to the robot. This middle agent compares inputs from its control level
to positional maps, references safety mandates, and formulates prudent courses of
action which is passed according to some preset timing sequence to the lower level
as motion directives for actuation. The biggest issue in this type of system is having
an adaptive obstacle avoidance plan and hence the need for the third software level.

The planning level compares strategies and selects options using software that
reasons. During sample periods, the top layer of the system reasons how to best
enable the task to be performed and then selects what is the best options possible any
given sample time. When complete or when some event clock is about to expire, the
current best plan is sent to the middle layer for passage to the low level controllers.
The reader may recall a similar constraint that the timer imposes in the chess playing
system described in Sect. 1.1.1.

These three levels correspond in human terms to reactive (low level), skilled
(mid-level), and reflective (high level) responses to internal and external stimuli. Our
sensory capacities provide the external system triggers to which we respond at one
of the three levels. Of course, the same set of external stimuli can often provide
quite different responses in different people in differing circumstances. The notions
of mood and personality present a real challenge to the design of electronic learning
systems that interface with reality.

8 1 Introduction

Provided mechanisms can be devised to access what engineers call state vari-
ables that accurately encode the real-world problem and handle appropriate actua-
tion signals, and the SRI work demonstrated that it was possible to write programs
that could not only process control data but also execute planning, search, and deci-
sion algorithms. The framework of this software uses meta-rules and game theoretic
methodologies and essentially blends a scruffy task with neat planning and dynamic
supervisory agents.

1.1.4 Does the BOXES Algorithm Learn?

It will be shown that the BOXES algorithm is a set of software agents that function in
a similar manner to the Stanford system. Because learning is not just a rote process,
the refined BOXES method includes essential aspects of forgetfulness, ambition,
peer advising, and evolution all of which are present in human development.

The original BOXES experiments were used to control an inverted pendulum
which was implemented using a free-swinging pole atop a cart being driven back and
forth by a reversible motor while simultaneously keeping the pole from falling and the
cart away from the end of its track. In the Liverpool experiment to be described later,
the rig could be operated manually or in auto mode, so the progression of learning runs
could be measured for the system or for human operators of varying skill levels. That
the human operators were more intelligent is without a doubt, but it was obvious that
balancing the system needed many training runs before controlled runs of between 5
and 10 s could be attained. The BOXES automaton quickly outperformed the human
after quite short training periods. It became apparent that even expert human users,
acting upon their reflexes, tend to panic or lose concentration, whereas the automaton
had infinite dedication to the task, inside knowledge of the state space, and confidence
in how its decisions were being implemented. Without a doubt, the performance of
the system under BOXES control improved as it gained experience in its application
domain. It would appear that it most certainly learned the task.

1.1.5 Can Computers Think?

Scholars still ponder the more ethereal and existential aspects of learning, intelli-
gence, and consequence. That machines can learn how to do certain tasks using
meta-rules, or rules about rules, was discussed above, but are they thinking? This
begs the question: what is thought? And is it linked to being? Descartes is perhaps the
most famous philosopher who sought to define reality as the outcome of cognition
and introspection.

But if reality includes the faculty to mislead or lie, the well-known Turing Test
[10] may well become suspect or even flawed. If leading questions such as “are you
a computer?” or “I am human, are you?” are forbidden or able to be not answered

1.1 Machine Intelligence 9

truthfully, then the test is incomplete. It would seem that Turing’s contemporary Ada
Lovelace objected to the whole notion of machine perception by stating “... that
computers can only do as they are told and consequently cannot perform original
actions.”

Others disagree. In 2010, Versace and Chandler [11] published a thought
provoking article, in which they asserted that memristors [12] may one day provide
a means of creating wetware which is loosely defined as the elements of a non-
Von Neumann type of computer architecture that will blend hardware and software.
Furthermore, such systems will possess the innate ability to instantaneously recon-
figure their internal structures and communication paths. This is what is thought to be
similar to how the human brain behaves while recovering from accidental damage.
Their research is heading toward the use of memristors to “... simultaneously perform
afull set of logic operations at the same time as they function as nonvolatile memory.”

When such devices become commercially available, the authors describe how
memristors will be integrated to form a brain-inspired chip that is purported to
emulate behaviors similar to those found in human neuron axon synapse exchanges
which are currently thought to constitute brain activity. But there are many questions,
both technical and ethical, to be answered before such systems become commonplace
or even created in the laboratory.

Machine intelligence is controversial, and its proponents such as Donald Michie
often had to defend their research fiercely from the attacks of naysayers. A basic cause
for such rancor is the misconception that a smart machine, performing complex tasks
at incredible speed ... is in some way alive and capable of sympathetic or empathetic
decisions. If such is the case, then the whole issues of morality and legal culpability
arise.

1.1.6 Does the BOXES Algorithm Think?

The BOXES methodology does not claim to think, but it most certainly learns how
to solve difficult tasks and may provide a solution to the control of poorly defined
systems. Control decisions are found by accessing values in real time from a software
array called a signature table. The index to the signature table is computed in real
time from the system’s state variables to form a unique system integer. Using this
index, the signature table is accessed, and a control decision returned. Values in the
signature table are only updateable between samples or at the end of a run by blending
real-time data with historical statistics. Using a statistical rewards and punishment
algorithm, the system learns from its experiences. The values in the decision table
effect control and may drive the system into previously un-entered and uncharted
regions of the state space where conventional controllers may never have had cause
to explore. While adopting some of the metaphors ascribed to human cognition, the
BOXES method is certainly not thinking.

