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Preface

Dear colleagues, participants of the XXX Russian-Polish-Slovak Seminar
«Theoretical Foundation of Civil Engineering»!

This year, the Seminar is held within the framework of the «Year of Science and
Technology» in the Russian Federation and dedicated to the 100th anniversary of
Moscow State University of Civil Engineering.

Thirty years ago, a group of scientists from three neighbouring Slavic countries
(occasionally from other countries also) organized the first Seminar «Theoretical
Foundation of Civil Engineering». And for 30 years, scientists have been system-
atically meeting, alternately in Russia, Slovakia or Poland, on the occasion of the
exchange of information in the scientific field of civil engineering. Every year, this
Seminar becomes more and more popular.

This year, the organizers of the Seminar have become six universities: Moscow
State University of Civil Engineering (MGSU); Wrocław University of Technology
(WrUT); Don State Technical University (DSTU); University of Zilina (UNIZA);
Warsaw University of Technology (WUT); Samara State Technical University
(SamSTU).

Participants of the Seminar are not only representatives of universities–
organizers, but also scientists from other research and educational institutions.

This year, the Seminar is held at Moscow State University of Civil Engineering
(Moscow) and Samara State Technical University (Samara).

Seminar topics: Structural Mechanics; Building Structures; Geodesy and
Geotechnics; Building materials and Technologies in Construction; Transport and
Environmental Issues in Civil Engineering.

Special thanks should be given to our colleagues from the universities–co-
organizers, who provided timely control over the preparation of papers and to the
members of the international scientific committee, who promptly reviewed the
papers.

The Russian-Polish-Slovak Seminar «Theoretical Foundation of Civil
Engineering», which is being held for the thirtieth time, will once again confirm that
meetings of scientists from different countries will expand our scientific potential,
strengthen cooperation and friendship between us.

v



I wish all the participants of the Seminar successful presentations, further suc-
cess in scientific activities, health and further meetings.

Pavel Akimov
Chairman

vi Preface
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Dynamic Actions of a Two-Layer Freely
Supported Beam

O. V. Ratmanova(B) and M. A. Kalmova

Samara State Technical University, 244, Molodogvardeyskaya Street,
443100 Samara, Russian Federation

Abstract. The article deals with the issues of studying the stress-strain state of a
structure presented in the form of a multilayer system made of various materials.
A solution to the theory of elasticity and a classical solution based on Kirchhoff’s
hypotheses are presented. Formulas for determining the frequencies of free vibra-
tions of the plate are determined. The results obtained are used in the construction
of refined technical theories for the calculation of two-layer plates and shells.
However, the problem that lies in the classical theory is significantly important,
namely, this definition of the stress-strain state when a multilayer plate is investi-
gated. The results obtained do not give any more accurate values that are required
in the first place, but get an approximate solution, which significantly reduces the
quality of the produced process. Thus, the developed calculation methodology is
presented, whichmakes it possible to obtain accurate and high-quality calculations
applicable for any number of layers and plate sizes.

Keywords: Bimorph plate · Kirchhoff theory · Theory of elasticity · Applied
theory for thin plates

1 Introduction

In various multilayer structures, materials are used that differ in their physical and
mechanical properties. This solution allows you to create elements with high elasticity
and relatively low weight. However, the main advantage is high bending stiffness [1].
The problem is the study of the stress-strain state of elastic bimorph structures, which is
carried out using the applied theory for thin plates, since they allow obtaining approx-
imate results without delving into non-stationary processes. Thus, it is not possible to
obtain a description of work in real conditions, and to solve this problem, it is proposed
to use the theory of elasticity in a three-dimensional formulation [2–6].

For example, in [15], a calculationmodel is presented that gives an extended solution
to the problem, satisfying all boundary conditions.

2 Formulation of the Problem

Consider the vibrations of a freely supported two-layer plate, infinitely long in the
directional z-axis (Fig. 1). It is assumed that the layers of the plate are made of various
isotropic materials and are glued in such a way that there is no slippage between them.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Akimov and N. Vatin (Eds.): RSP 2021, LNCE 189, pp. 3–9, 2022.
https://doi.org/10.1007/978-3-030-86001-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86001-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-86001-1_1


4 O. V. Ratmanova and M. A. Kalmova

Fig. 1. Diagram of a two-layer plate.

In the general case, the differential equations of axisymmetric motion and boundary
conditions in a cylindrical coordinate system in dimensionless form have the form:

∂
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where U (r∗, z∗, t∗),W (r∗, z∗, t∗) - are the components of the displacement vector and
the potential of the electric field in dimensional form; ρ(s),C(s)

mk− bulk density and elastic
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z = h1, h2
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t = 0

U (r, z, 0) = U0(r, z), W (r, z, 0) = W0(r, z),

∂U (r, z, t)

∂t |t=0
= U̇0(r, z),

∂W (r, z, t)

∂t |t=0
= Ẇ0(r, z) (6)

3 General Solution Construction

The problems under consideration are solved by sequential use of the Hankel inte-
gral transforms with respect to the radial variable r and the generalized finite integral
transform (GFA) along the axial coordinate z:

In this case, at each stage of the solution, the boundary conditions are standardized,
that is, they are reduced to a form that allows the corresponding procedure for separating
variables to be performed.

For this, with rigid fastening of the structure, the condition of the absence of vertical
displacements of the cylindrical surface is replaced by the condition on this surface of
the presence of tangential stresses N1(z, t):

σrz|r=1 = N1(z, t) (7)

As a result, a new boundary value problem is formed, in which a known electrical
load and unknown shear stresses act on the bimorph plate.

The procedure for bringing inhomogeneous boundary conditions is performed using
the following expansion.

{U ,W } = {A1,A2} + {u,w} (8)

where A1, A2 – the reduction formulas.
As a result, the boundary conditions on the cylindrical surface of the plate are as

follows:

w(1, z, t) = 0, ∇u|r=1 = 0, φ(1, z, t) = 0. (9)

Applying successively theHankel integral transformations (10), (11) and generalized
finite integral transformations (12), (13) we obtain an expression for the components of
the vector of displacement transformations and the potential of the electric field [7–9].

uH (jn, z, t) =
1∫

0

U (r, z, t)rJ1(jnr)dr, wH (jn, z, t) =
1∫

0

w(r, z, t)rJ0(jnr)dr (10)
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U (r, z, t) = 2
∞∑
n=1

uH (jn, z, t)

S(jn)2
J1(jnr), w(r, z, t) = 2

∞∑
n=0

wH (jn, z, t)

S(jn)2
J0(jnr) (11)

G(λin, n, t) =
h∫

0

(UHK1in + WHK2in)dz (12)

{UH ,WH } =
∞∑
i=1

Gin{K1in,K2in}‖Kin‖−2, ‖Kin‖2 =
h∫

0

(
K2
1in + K2

2in

)
dz (13)

where λin −are parameters forming a countable set for each n = 0,∞.
Dimensional circular frequencies of axisymmetric vibrations of the plate are

determined by the formula:

(14)

Approximate Solution

Fig. 2. Scheme of a two-layer plate for a classic setting

Consider an approximate solution to the previous problem in the classical formulation
(based on Kirchhoff’s hypotheses). If we take the neutral layer [10] as the initial plane
and replace the transverse load with the amplitude value of inertial forces, then the
equation of free vibrations of the plate can be written in the form

Dnp
d4ω

dx4
− (ρ1h1 + ρ2h2)ω

2ω = 0 (15)

where Dnp- is the reduced stiffness in bending of a two-layer plate relative to the
neutral layer, equal to

Dnp = 4(D1 + D2) − (B1h1 − B2h2)2

4(B1 + B2)
(16)

Here Di,Bi-determined by the formulas

Di = Eih3i
12(1 − v2i )

; Bi = Eihi
1 − v2i

(i = 1, 2) (17)
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where Ei, vi-Young’s modulus and Poisson’s ratio of the material of the i-th layer of
the plate The boundary conditions of the problem for the edges x = 0, a; ω = σx = 0
will be satisfied if we accept

ω2 = A sin αx; α = nπ

a
(n = 1, 2, 3, ...) (18)

Introducing (18) into Eq. (16), we obtain the formula for determining the frequency
of free vibrations of the plate

ω2 = α4Dnp

ρ1h1 + ρ2h2
(19)

4 Conclusion

Calculations of the frequency of free vibrations were carried out for various elastic-
geometric parameters of two-layer plates used by the classical theory.

Take steel (E1 = 2 · 106 κ�/cm2 υ1 = 0, 3) and aluminum (E1 = 0, 69 ·
106 κ�/cm2 υ1 = 0, 34), and for the lower layer-foams with elastic characteristics
E2 υ2, equal to: E1 = 500; 2000; 3500; 600020000 κ�/cm2, υ1 = 0, 4; 0, 4; 0, 4; 0, 3
and plywood (with conditional isotropy) in which E2 = 1 · 105 κ�/cm2). A bimitallic
steel-aluminum plate is also considered and, for comparison, a homogeneous steel plate.

For each case, the frequencies were calculated at δ = h2
h1

and half-wavelengths
l = a

n = 20, 100, 200.
Total plate thickness h = h1 + h2 accepted 10 cm (Fig. 3).

Fig. 3. Curves of relative half-wavelengths
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Fig. 4. Graphs of change over time

The resulting graphs in the developed theory, carried out through the Hankel
transform, developed in the program MathCad (Fig. 4).

Thus, a method for calculating multilayer round bimorph plates has been developed,
which allows using basic design ratios to describe their work in the case of loads. The
problem is solved by the method of finite integral transformations, which, unlike the
classical theory, is used in dynamic problems for finite bodies in time, does not require
complex processing procedures.
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Abstract. Knowledge of the level of residual prestressing is a crucial basis for
determining the load-carrying capacity of prestressed concrete structures. The
value of prestressing force decreases over time because of expected but some-
times also unexpected factors. Expected factors include prestress losses according
to available standards. On the other hand, prestress losses that are not considered
in standards can be attributed to environmental distress or conceptual problems
of prestressed concrete structures. In Europe, we are challenging ageing infras-
tructure. Thus, we need to decide whether old bridges should be replaced, or their
structural state facilitates to preserve them in service. The level of prestressing can
be evaluated, e.g., using indirectmethods for determining the value of residual pre-
stressing force. These methods are based on the measurements of deflection, the
width of the crack, or stress (strain) and subsequently, it is possible to determine the
actual state of prestressing indirectly using obtained results. This paper introduces
the parametric study of Saw-cut method which is generally considered as a non-
destructive indirect method. A presented study is performed for the determination
of factors that could influence the application of Saw-cut methods in practice. The
studied factors include the value of prestressing force, depth and axial distance of
saw-cuts, and FEmesh. For numerical analysis, a 2D finite element model with the
assumption of nonlinear material behavior is performed in ATENA 2D Software.
Finally, the conclusions of the parametric study are discussed and summarized.

Keywords: Saw-cut method · Prestressed concrete · Parametric study ·
Assessment · Prestress losses

1 Introduction

In the early 1960s in former Czechoslovakia, precast and prestressing technologies have
started to be commonly used [1, 2]. As the first precast post-tensioned bridges in Slo-
vakia are now approaching 60 years of service life, it is necessary to assess their present
structural condition and residual life expectancy [3]. Furthermore, significant informa-
tion about the long-term behavior of structures should be collected for these reasons
[4]. In the case of prestressing steel, usage of magnetic Barkhausen noise (MBN) can
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offer an effective tool for its assessment [5–7] as insufficient inspection and neglected
maintenance can result in the need for intervention and the decision to close the bridge.
In these cases, the safety of the structure is endangered and demountable temporary
bridges must be installed what consequently leads to the additional cost for the operator
[8]. Existing bridges are structures that reflect not only the level of the society in which
they were built but also the cultural and economic power of present generations, as they
reflect the care for these inherited engineering works [9].

The value of the prestressing force decreases over time. Available standards for
the design of prestressed concrete structures offer an approach for the calculation of
expected short-term and long-term prestress losses. Standards take into account con-
struction stages, methods of prestressing, and expected service life of the prestressed
concrete structure. However, practice shows that sometimes the level of prestressing of
prestressed structures in service is lower than the theoretically determined value. Addi-
tional prestress losses above value determined according to standards can be attributed to
the degradation of materials caused by environmental distress, for example, corrosion of
prestressing steel or decrease of the bond between prestressing steel and concrete. Thus,
the need for reliable methods for determining the actual state of prestressing becomes
more important. A pivotal object of this paper is the stress (strain) release method called
Saw-cut method. This method is classified as the indirect non-destructive method, as it
has only a negligible impact on the investigated prestressed concrete structure and its
integrity is preserved. Stress release methods are based on intervention into the structure
which causes a change in stress in the monitored area. In addition to the already men-
tioned Saw-cut method, this group of methods include, for example, Drilling method
which is also called Stress-relief coring technique. On one hand, in the case of Saw-cut
method, the stress relief is caused by the application of two or more saw-cuts. On the
other hand, Drilling method is based on drilling a small hole into the concrete struc-
ture. Saw-cuts fully or partially isolate concrete block from the acting forces. Recorded
change in stress (strain) enables evaluation of the value of residual prestressing force
based on knowledge of load applied on investigated structure in the time of the test
[10–13]. This paper deals with the parametric study which should provide important
information about factors that could influence the application of Saw-cut method and
offer an important basis for its later experimental verification (Fig. 1).

Fig. 1. Saw-cut method.
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2 Numerical Analysis

The object of the presented parametric study is a post-tensioned concrete beam with a
length of 4.20 m and a rectangular cross-section of 0.20 × 0.40 m which is designed
from the concrete strength class of C30/37. An analyzed post-tensioned concrete beam
is shown in Fig. 2. The prestressing tendon consists of a 15.7 mm strand placed in a
duct with a diameter of 48 mm which is fully injected with cement grout. Consequently,
prestressing is transferred through both the build-in anchor and the bond between steel
and concrete. Conventional reinforcement of beam includes two B500B 10 mm bars at
the bottom and two at the top. Moreover, in the edges of the beam, U shape bars of 6 mm,
are placed longitudinally and transversally. Shear reinforcement of beam is provided by
6 mm two-legged stirrups with a maximum spacing of 0.20 m. Material properties used
in numerical analysis are listed in Table 1.

Fig. 2. Axonometric view on beam’s reinforcement.

Table 1. Material properties of macro-elements used in a 2D numerical model.

Description Material type E [GPa] Other properties

Post-tensioned beam SBeta 33.01 fcu = 37.0 MPa
fc = 31.45 MPa
ft = 2.665 MPa
ν = 0.20

Conventional reinforcement Reinforcement - Bilinear 200.0 fy = 500.0 MPa

Prestressing steel 195.0 fy = 1660.0 MPa

Steel plates Plane Stress Elastic Isotropic 210.0 ν = 0.30

Saw-cuts 1.0 × 10–6 ν = 0.30

A 2D numerical analysis with the assumption of nonlinear behavior was performed
in ATENA 2D Software (version ATENA 5.7.0n, Červenka Consulting, Prague, Czech
Republic) [14–17]. Saw-cut method was applied on the precast post-tensioned concrete
beam which was described above. The beam in question was loaded only by dead load
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and prestressing, while the analysis was provided using the Newton-Raphson method.
In the numerical model, the analyzed beam was supported by two steel plates with
dimensions 0.20 × 0.20 × 0.02 m. Consequently, the supports represented by steel
plates were located at the bottom at an axial distance of 4.0 m which also correspond to
the effective span of a simply supported beam. The numerical model is shown in Fig. 3.

Fig. 3. 2D Numerical model in ATENA Software.

In the 2D numerical analysis, the application of the saw-cuts was modelled using
“construction stages”. In the first stage, all macro-elements were assigned the properties
of the beam’s concrete. In the next stage, the modulus of elasticity of the macro-elements
that represented the saw-cuts was changed. Hence, considering the sawing of the beam.
The stress monitoring point was placed in the middle of the effective span and axial dis-
tance of saw-cuts at the bottom of the post-tensioned beam. The saw-cuts were modelled
with a width of 5 mm.

The SBeta constitutive model of concrete includes 20 material parameters. These
parameters were based on Eurocode 2 [19] and guidelines for FE analysis of concrete
structures in ATENA Software. The formulation of constitutive relations was considered
in the plane stress state. The concept of the material model SBeta includes the non-linear
behavior in compression; the fracture of concrete under tension, based on the non-
linear fracture mechanics biaxial strength failure criterion; a reduction in compressive
strength after cracking; the tension stiffening effect; a reduction in the shear stiffness after
cracking; and two crack models (the fixed crack direction and rotated crack direction)
[14–17].

2.1 Value of Prestressing Force

In the parametric study, the influence of two different values of prestressing force (P
= 61.7 and 145.0 kN) was studied. These values were determined based on the real
measured prestressing force in prestressed concrete specimens at the time of tensioning
of post-tensioned beams which are numerically analyzed, and in the future, they will be
experimentally tested. Subsequently, these values were reduced by expected prestress
losses according to Eurocode 2 [18] until the moment of expected experimental testing
(365 days). The calculated percentage values of stress change (�σc) at the monitored
point between saw-cuts can be seen in Fig. 4. In order to demonstrate observed relations,
only the results for an axial distance of saw-cuts (d) of 100 mm and FE Mesh 1 are
presented.

2.2 Finite Element Mesh

Undoubtedly, the choice of size and kind of FE mesh has a significant impact on the
obtained results from numerical models. For this reason, three different FE meshes were
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Fig. 4. Stress change for two different values of the prestressing force (d= 100 mm; FEMesh 1).

analyzed in this study. In all three cases, theFEmeshwas generated automatically accord-
ing to defined element size using quadrilateral CCQ10SBeta elements implemented in
ATENA 2D Software. First, the relatively large size of FE elements was defined, see
Fig. 5a. All macro-elements were composed of elements with a uniform size of 50 mm.
Second, in the middle area of the post-tensioned beams, at a width of 300 mm and height
of 70 mm (the area adjacent to the saw-cuts), the mesh was smoothed into elements with
a size of 5 mm. The rest of the modelled beams was composed of elements with a uni-
form size of 50 mm, the same as in the FE Mesh 1. FE Mesh 2 can be seen in Fig. 5b.
Third, in the middle area of the post-tensioned beam, at a width of 700 mm and height
of beam’s cross-Sect. (400 mm) the mesh was smoothed into elements with a size of
10 mm. The rest of the modelled beam was composed of elements with a uniform size
of 50 mm, see Fig. 5c. In the case of all analyzed FE meshes, saw-cuts’ macro-elements
were smoothed into elements with a size of 5 mm.

(a) 

(b) 

(c) 

Fig. 5. (a) FE Mesh 1; (b) FE Mesh 2; (c) FE Mesh 3.
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Results from the numerical analysis suggest that FEMesh 1 with relatively large size
of elements provide a large discrepancy in comparison with the other two analyzed FE
meshes. This fact is significant, especially for deeper saw-cuts. The stress relief (�σc)
differences between FE Mesh 2 and FE Mesh 3 for all depth of saw-cuts are negligible.
Results are presented in Fig. 6.

Fig. 6. Stress change for three different types of FE mesh (P = 61.7 mm; d = 100 mm).

2.3 Parameters of Saw-Cuts

In parametric study, saw-cuts’ depths (h) of 10; 20; 30; 40 and 50 mm were consid-
ered. The analysis of saw-cuts’ depth influence on stress relief in monitored point was
performed for six different axial distances from 100 to 150 mm. It appears that full
isolation of concrete block from the acting forces could be reached for saw-cuts in the

Fig. 7. Relation between stress change and saw-cuts’ depth – constant axial distance.
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axial distance of 120 mm or less. The relation between stress relief (�σc) and depth of
saw-cuts (h) is shown in Fig. 7.

In addition to analysis of the influence of depth of saw-cuts, axial distances (d) of
100; 110; 120; 130; 140 and 150 mmwere studied too. The relation between stress relief
(�σc) and the axial distance (d) of saw-cuts is presented in Fig. 8.

Fig. 8. Relation between stress change and saw-cuts’ axial distance – constant depth.

3 Discussion

It is evident that both, axial distance and depth of saw-cuts, significantly influence stress
relief and thus they are the only important factors in Saw-cut method. Presented relations
describe the change in stress in the monitored point for one variable parameter and
one constant parameter of saw-cuts. However, final stress relief (�σc) is influenced
simultaneously by both parameters. Therefore, the relation taking into account the effect
of depth and axial distance of saw-cuts was derived in Eq. 1. Regression analysis was
performed using so-called Surface Fitting.

�σc[%] = 18.634617× h [mm]− 0.149179× h [mm]2−6.303982× ln(d [mm]) × ln2(h [mm]) (1)

Figure 9a presents the results of regression analysis based on the numerical analysis.
The red surface represents the relation between stress change and saw-cuts’ parame-
ters according to Eq. 1. Moreover, it can be seen the comparison between regression
and numerical analysis (grey points). Percentage stress relief iso-areas are displayed in
Fig. 9b.
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(a) (b)

Fig. 9. Evaluation of parametric study – (a) Surface Fitting; (b) stress change for saw-cuts’
parameters according to the equation based on Surface Fitting.

4 Conclusions

Based on the performed numerical analysis, the following conclusions can be summa-
rized:

It can be stated that the initial value of the prestressing force (P) does not influence
percentage stress relief (�σc) after the application of saw-cuts. We reached the same
conclusions also in the case of all studied parameters (h and d) of saw-cuts and FE
meshes of the numerical model. Consequently, it is not necessary to consider the value
of the prestressing force (initial stress) as a factor that affects the rate of isolation of
concrete block from the acting forces.

A study of FEmesh influence suggests that for numerical analysis of Saw-cutmethod,
it is suitable to use at least locally smoothed FE mesh.

Deeper saw-cutswith shorter axial distance cause a higher rate of isolationof concrete
block from the acting forces. A full stress change of 100% can be expected for saw-cuts
in an axial distance of 120 mm or less simultaneously with a depth of 40 mm or more.
Saw-cuts with a depth of 30 mm in an axial distance of 100 mm could produce almost
100% of stress change, which should be a practically sufficient rate of stress relief too.

The relation between the depth of saw-cuts from 10 to 40 mm and stress change
seems to be approximately linear. Nevertheless, the discrepancies of stress relief for a
depth of 50 mm can be attributed to sufficient isolation of concrete block a thus the
percentage rate of stress change reaches its maximal value. Eventually, concrete cover
in the case of old prestressed concrete structures can be low in compliance with today
standards [18], hence such deep saw-cuts have only limited applicability in practice.

This parametric study offers an important basis for the application of Saw-cutmethod
in laboratory and in situ tests. Indirect stress release methods can grow to be a useful
and cheap tool for engineers in practice. In the coming decades, the determination of
the residual level of prestressing is likely to become a crucial aspect in the structural
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assessment of existing prestressed concrete structures in service. In practical application,
the saw-cuts’ parameters should be chosen with respect to the position of structures’
reinforcement (concrete cover) and used the length of the strain gauge’s measuring
grid. Future research should focus on the verification of conclusions introduced in this
parametric study. Given that the presented findings are based on a limited number of
performed FE simulations, the results from such a study should, therefore, be treated
with considerable caution and inevitably experimentally verified.
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