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Preface

The book attempts to update on the state of the art of the knowledge on
brassinosteroids signaling and crosstalk with phytohormones and their relationship
in plant adaptation to abiotic stresses involving physiological, biochemical, and
molecular processes. Due to progressively adverse environmental conditions and
scarce natural resources, high-efficient crops become more important than ever.
More importantly, sustainable agriculture and food security are a major concern,
especially for the areas prone to abiotic stress conditions. Abiotic stress such as cold,
drought, salt, and heavy metals largely influences plant development and crop
productivity. It is becoming a major threat to food security due to the constant
change of climate and the deterioration of the environment caused by human
activity. To cope with abiotic stress, plants can initiate a number of molecular,
cellular, and physiological changes to respond and adapt to such stresses. Better
understanding of plant responsiveness to abiotic stress will aid in both traditional and
modern breeding applications towards improving stress tolerance. For successful
development of stress-tolerant plants, it is important to understand precise signaling
mechanisms that plants use to tolerate stresses and how much these mechanisms are
induced by phytohormones. Moreover, it is debatable at which point plants could
have acquired brassinosteroids (BRs) signaling from an evolutionary perspective.
BRs are involved in modulating a large array of important functions throughout a
plant’s life cycle. BRs are considered as one of the most important plant steroidal
hormones that show varied role in observing a wide range of developmental
practices in plants. At cellular levels, BRs regulate cell elongation, division, and
differentiation. At whole plant levels, BRs regulate male fertility, flowering time,
root meristem size, and development of stomata and are involved in diverse abiotic
and biotic stress responses. Exogenously applied BRs have the ability to substan-
tially enhance plants yield and improve stress tolerance by inducing cellular changes
like stimulation of nucleic acid and protein synthesis, activation of ATPase pump,
antioxidant enzymes and accumulation of osmoprotectants, induce other hormone
responses, regulate expression of stress-responsive genes, and improve
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photosynthetic efficiency. Our grip of brassinosteroids signaling has rapidly
expanded over the past two decades, due in part to the isolation of the components
involved in the signal transduction pathway. The book offers a helpful guide for
plant scientists and graduate students in related areas.

Chapter 1 of this book (which represents a total of 16 chapters) talks about
molecular links between BR and several other signaling pathways under abiotic
stress. In this chapter, we provide a summary of the highly incorporated BR
signaling network and elucidate how this steroid hormone functions as a master
regulator of plant growth, development, and metabolism. Chapter 2 discusses the
specific role of BRs at different stages of seed germination, focuses on the signaling
factors, and categorizes the signaling mechanisms. However, all the details have
been provided with a special focus on proteins associated with BR. The chapter has
also enlisted the BR-sensitive proteins along with their specific roles in cell physi-
ology and metabolism. It describes the details of BR-sensitive proteins at three
stages of seed germination and differentiates BR signaling into two distinct path-
ways. A total number of 88 protein species have been found to be BR-sensitive, for
which the international identifiers and cellular activities have been described. Nitric
oxide and brassinosteroids positively influence plant responses to abiotic stresses,
such as temperature stress, heavy metal stress, water stress, oxidative stress, salt
stress, and UV radiation, which is discussed in Chap. 3. The intent of the chapter is to
explain how BRs and NO interact with each other and regulate various metabolic
processes in plants and improve growth, photosynthesis, antioxidative defense
system, and ROS homeostasis under normal and abiotic stress conditions.
Chapter 4 provides an overview of current understanding on the signaling of BRs
and H2O2 and their interplay in modulating plant growth and development, in
particular seed germination, root growth, stomatal movement, leaf senescence, and
fruit ripening, in addition to providing an overview of their interaction under diverse
abiotic stress factors. More importantly, gene expression by mitogen-activated
protein kinases, BZR1, BES1, SlNAC2, and other transcription factors which
modulate abiotic stresses in plants have also been sectioned. In Chap. 5, we provide
some insights on brassinosteroids and strigolactones signaling pathways and empha-
size on recent findings on the mechanisms and networks for BR and SL-regulated
gene expression and various transcriptional networks involved in the signaling
pathways. Chapter 6 describes brassinosteroids (BRs) and gibberellins (GAs),
which play their role to promote plant growth-related developmental processes.
Recent advancements in molecular tools have now provided a better understanding
of phytohormones biosynthesis, signaling, and degradation pathways. For the elab-
oration of signaling crosstalk between BRs and GAs, different studies have been
performed with the conclusion that, to control cell elongation in Arabidopsis,
signaling crosstalk between BRs and GAs is mediated by the interaction between
BZR1/BES1 and DELLA proteins which are the transcriptional regulators from BR
and GA signaling pathways. Chapter 7 examines the interrelation of ethylene and
BRs during different developmental stages. It also highlights the two hormones’ role
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during fruit ripening, stomatal closure, reproduction, abiotic stresses, and biotic
stresses. The BRs and ethylene possess an antagonistic influence on the expansin
gene AtEXPA5 expression. That antagonistic interrelation is responsible for the
hook formation during the gravitropic growth of hypocotyls. The ethylene and BRs
crosstalk comprises a complex network of signaling pathways, e.g., the ACC
synthase pathway. Chapter 8 is devoted to different groups of plant hormones
(Auxin and BRs), which regulate many processes from seed germination to fruit
development independently. But in recent years, several studies have revealed a
common link between these two hormones in regulation of plant developmental
processes. A recent advancement in molecular tools has made it possible to better
understand the mechanism of signal transduction of the interaction of BRs and
auxin. So, in this book chapter we discuss the physiological responses of plants
induced through the interplay of BRs and auxin and its detailed mechanism of signal
transduction pathway. In Chap. 9 we provide an overview of the role of BR in plant
growth and development and then discuss how BRs react under different environ-
mental stress conditions. We will also highlight how BRs function with ABA to
regulate plant growth and development. At the end, we review our understanding of
BRs crosstalk with ABA and elaborate its genetic basis to overcome the gap in our
knowledge related to BR crosstalk with ABA. Chapter 10 inspects the interrelation
of cytokinins and BRs throughout diverse developmental points. It also highlights
the physiological response of plants convinced through interaction of BRs and
cytokinins and its detailed mechanism of signal transduction pathway. Chapter 11
gives us an opportunity to improve the growth efficiency of plants and their
adaptation under heavy metal stress through modulation in BR signaling pathway,
hormone interactions, and crosstalk at organ, tissue, and cell levels to better under-
stand how plants respond to heavy metal stress. In Chap. 12 an attempt has been
made to give a comprehensive idea over the uptake, transportation, effect, and
detoxification mechanism of pesticides in plants. However, BRs strengthen the
plant’s defense potential by stimulating the enzymatic and nonenzymatic
antioxidative mechanisms which scavenge the generated ROS and activate the
pesticidal detoxifying transcripts. Therefore, understanding the BRs-mediated pes-
ticide degradation process in plants is vital for global food security. Chapter 13
specially debates the role of glyphosate and brassinosteroids applications in plants.
So, this chapter offers to reveal the function of BRs in the management of glypho-
sate, and current research illuminates the detoxification of BR-regulated glyphosate
in plants. Chapter 14 focuses on the basic information regarding distribution of
important SM and in vitro strategies involved for optimal metabolite production with
special reference to the use of BR as abiotic elicitor in improving metabolite yields in
hairy root cultures. Chapter 15 discusses how heat stress could function in protein
folding during BR action is poorly understood. This chapter focuses on the current
status of our understanding about the role of BRs in protein folding under high
temperature stress. In Chap. 16, we focus on representing the molecular mechanism,
genes, and cascades in plants (both Arabidopsis and crop plants) for controlling
growth-related factors. These techniques upon allocation in crops can set out

Preface ix



perceptible biological and cellular BR mechanism and its future application in
controlling traits that can serve as a potential tool for enhancing yield and quality.

Wuhan, China Mohd Tanveer Alam Khan
Al Ain, United Arab Emirates Mohammad Yusuf
Aligarh, Uttar Pradesh, India Fariduddin Qazi
Guangzhou, China Aqeel Ahmad
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Chapter 1
Signal Transduction of Brassinosteroids
Under Abiotic Stresses

Mohd Tanveer Alam Khan, Mohammad Yusuf, Waheed Akram,
and Fariduddin Qazi

Abstract Plants live in regularly fluctuating surroundings that are critical for
progression and enlargement. Divergent environmental circumstances comprise
biotic and abiotic stress. The opposing things of abiotic indications are impaired
by environmental variation, which has been forecast to outcome in an improved rate
of dangerous climate. However, brassinosteroids (BRs), a unique polyhydroxy
steroidal hormones in plants and capable for endogenous signals for the directive
of plant growth and enlargement. It plays an imperative function in plant like seed
sprouting, flowering and elongation of hypocotyl, etc. Moreover, BRs have capa-
bility to ameliorate the numerous abiotic difficulties like metal stress, temperature
stress, water stress, oxidative damage, and salt injury. Furthermore, BR signaling is
transduced by a receptor kinase-mediated signal transduction pathway, which is
distinct from animal steroid signaling systems. Newest studies entirely associated
with the signal pathway of BR have recognized numerous BR marker genes,
associating with BR signaling to several cellular practices. This chapter summarizes
the BR signaling system in wide detail and discusses how steroid hormone plays a
key role in controlling plant growth, size, and metabolism.
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Introduction

Plants live in regularly fluctuating surroundings that are critical for progression and
enlargement. These opposing environmental circumstances comprise biotic and
abiotic stress. The opposing things of abiotic practices are impaired by environmen-
tal alteration, which has been forecast to outcome in an improved rate of risky
climate (Fedoroff et al., 2010). Plants acclimate to opposing environments through
stress signals acting as biological queries. Plant stress encounter is dangerous for
farming and environmental sustainability due to the excessive consumption of water
and manure resources to load the environment. However, plant growth regulators
recover over all plant development and productivity (He & Zhu, 2008; Khan et al.,
2019). Wang et al. (2005) revealed that environmental stresses influence the endog-
enous concentration of many phytohormones, as a result alter numerous signaling
pathways. These modifications cause severe metabolic complaints most important to
embarrassment of overall plant growth performance in stress environments (Lerner
& Amzallag, 1994). A decent strategy to overcome abiotic stresses is the exogenous
use (either through the seed or soil management) of PGRs (Ashraf et al., 2008).
Brassinosteroids (BRs) show dynamic roles in improving growth and enlargement of
plants and can upgrade the opposing things of numerous abiotic stresses in a varied
range of plant species (Fariduddin et al., 2011; Jiang et al., 2013; Khan et al., 2015,
2019; Nazir et al., 2021). In this chapter, we deliver the summary of latest improve-
ments in revealing the signaling trails for BRs under abiotic stresses. Furthermore,
this chapter emphasizes on the possible mechanisms to decipher the molecular and
biochemical levels of BR signaling linked to upstream sensing and to downstream
alterations in gene expression, metabolic rate, physiology, growth, and expansion.

Physiological Roles of Brassinosteroids

Brassinosteroids are the steroidal growth controllers related to plant easiness. These
entities show essential roles in many biological practices like cell division, cell
elongation, xylem disparity, initiation of stem elongation, proton pump activation,
leaf epinasty, tissue disparity, morphogenesis, pollen tube progression, and photo-
synthesis (Clouse & Sasse, 1998; Xia et al., 2009; Clouse, 2011). BRs have been
used to upgrade the adversarial response of plants contrary to various stresses such as
metal stress (Yusuf et al., 2011), cold stress (Fariduddin et al., 2011), salinity stress
(Deng et al., 2012), and oxidative impairment (Cao et al., 2005). The foliar practice
of BRs can upregulate the manifestation of stress connected genes, resultant stimu-
lation of antioxidant enzymes, proline, repairs of photosynthesis activity, and some
other favorable retorts (Divi & Krishna, 2009; Fariduddin et al., 2015; Khan et al.,
2015, 2019; Nazir et al., 2020).
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Effect of Brassinosteroids on Seed Germination

Numerous studies have provided that BRs promote seed sprouting. It has been
renowned that BRs encourage seed propagation in tobacco (Leubner-Metzger,
2001), wheat (Hayat & Ahmad, 2003), tomato (Ahammed et al., 2012), Brassica
juncea (Sirhindi et al., 2009), and Arachis hypogaea (Vardhini & Rao, 1997). BRs
stimulated the sprouting of pre-chilled seeds of BRs-lacking biosynthesis det2-1
mutant and the BRs-unresponsive reply mutant bri1-1 exposed to light in
Arabidopsis thaliana (Zhang et al., 2009). Seed germination of det2-1 mutant and
bri1-1 is further powerfully repressed by ABA associated with their wild type.
Further, pre-treatment with BL encouraged growth and sprout appearance of old
rice grains. Hayat and Ahmad (2003) reported that seeds soaked in BRs had
increased activity of α-amylase in Lens culinaris. In Arabidopsis, BR-signal
reversed the ABA-convinced dormancy, therefore encouraging the sprouting (Steber
& McCourt, 2001). BRs promoted the break of endosperm in tobacco in dose
dependent method (Leubner-Metzger, 2001).

Effect of Brassinosteroids on Growth

BRs have imperative character in plant developmental courses comprising cell
division, cell elongation, pollen tube progression, xylem disparity, proton pump
activation, initiation of stem elongation, leaf epinasty, tissue disparity, morphogen-
esis, and photosynthesis (Xia et al., 2009; Clouse, 2011; Gudesblat & Russinova,
2011). Mussig et al. (2003) have reported that BRs deficient mutants of Arabidopsis
showed increased root elongation after exogenous applications of BRs and auxins.
Sun et al. (2010) revealed that improved plant growth could be recognized to the
BRs skill to control cell growth and central events over the upregulation of
xyloglucan endo-transglycosylase. It has also been stated that BRs improved the
growth of Raphanus sativus seedlings (Choudhary et al., 2012).

Brassinosteroids and Plant Abiotic Stress Tolerance

Various researches over the years have indicated the active involvement of BRs in
plants when showing to different abiotic practices such as low temperature (Khan
et al., 2015, 2019), high temperature, and chilling stresses (Janeczko et al., 2009,
2011). Some previous studies highlight the status of BRs and associated composites
in diverse plants under drought (Mahesh et al., 2013), light (Li et al., 2012a), salinity
(Abbas et al., 2013), heavy metal (Yusuf et al, 2011), submerging (Liang & liang,
2009), herbicide (Sharma et al., 2013a). Therefore, recent reports regarding the role
of BRs in the modulation of abiotic stresses in plants are appraised in Table 1.1.
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Table 1.1 Effect of brassinosteroids and abiotic stress tolerance in plants

BR
analogues

Abiotic
stress Plant species Responses References

BRs (EBL
or HBL)

Cd Raphanus
sativus

Activated antioxidant enzymes
like catalase, superoxide
dismutase, peroxidase, and gluta-
thione in the plantlets treated by
cd and BRs

Anuradha
and Rao
(2007)

BRs
(EBL/HBL)

Low
temperature

Lycopersicon
esculentum

BRs facilitated enhancement in
photosynthetic machinery and
proline content

Khan et al.
(2015)

BRs
(EBL/HBL)

Cd Lycopersicon
esculentum

BRs mediated upgradation in sto-
matal conductance, transpiration
rate, proline accumulation, and
antioxidant system

Hasan et al.
(2011)

BR Drought Glycine max Raised the activities of POX and
SOD, augmented the concentra-
tion of soluble sugars and proline
that eventually caused reduced
MDA concentration and electrical
conductivity

Zhang et al.
(2008)

EBL/HBL Water
stress

Raphanus
sativus

Mediated a decline in the delete-
rious outcome of water stress on
seed development and sprout
progression by enhancing the
antioxidant and free proline

Mahesh et al.
(2013)

EBL Mn Brassica
juncea

Enriched growth, water relations,
and photosynthesis and improved
several antioxidant enzymes like
CAT, POX, and SOD and proline

Fariduddin
et al. (2015)

EBL Salinity Cucumis
sativus

Better seedlings growth as out-
come upgraded activities of sev-
eral antioxidant enzymes

Lu and Yang
(2013)

EBL Drought Chorispora
bungeana

Deliberated tolerance to drought-
stress by reducing the lipid per-
oxidation, membrane permeabil-
ity as consequence of augmented
antioxidant enzymes and
non-enzymatic antioxidants like
ascorbate and GSH

Li et al.
(2012b)

EBL Cd Brassica
napus

EBL reduced the lethal result of
cadmium on photochemical prac-
tices by falling injury of photo-
chemical reaction centers also O2

developing centers as well as
retaining effective photosynthetic
electron transport

Janeczko
et al. (2005)

EBL Cd Raphanus
sativus

EBL minimized the harmful role
of cd on plant growth,

Anuradha
and Rao
(2007)

(continued)
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Table 1.1 (continued)

BR
analogues

Abiotic
stress Plant species Responses References

photosynthesis related attributes,
and enzymes activity

HBL Cu Vigna radiata Improved photosynthetic associ-
ated traits and carbonic anhydrase
activity

Fariduddin
et al. (2014)

EBL Ni Raphanus
sativus

Elevated activities of antioxidant
that ultimately caused in dropping
lipid peroxidation. Greater proline
and protein contents, and
upgraded the overall plant growth

Sharma et al.
(2011)

EBL Co Brassica
juncea

EBL improved the stress created
by co and suggestively improved
the activities of antioxidant
enzymes

Arora et al.
(2012)

EBL Zn Brassica
juncea

Augmented activities of superox-
ide dismutase, catalase, ascorbate
peroxidase, MDHAR, DHAR,
and the GSH contents

Arora et al.
(2010)

EBL Pb Raphanus
sativus

Decreased Pb harmfulness and
improved overall plant growth
and activities of antioxidant
enzymes and reducing peroxidase

Anuradha
and Rao
(2007)

HBL B Vigna radiata Upgraded the growth, water rela-
tionships, net photosynthesis,
stomatal conductance, and tran-
spiration rate by improving anti-
oxidant enzymes and level of
proline

Yusuf et al.
(2011)

HBL Zn Raphanus
sativus

Conferred tolerance to Zn harm-
fulness by improving antioxidant
enzymes, establishment of GSH
metabolic rate and redox grade,
and enlightening the contents of
non-enzymatic antioxidants

Ramakrishna
and Rao
(2013)

BR High
temperature

Oryza sativa Displayed significant improve-
ment in the expression of POX
and SOD; decreased level of
MDA and electrolytes leakage

Cao and Zhao
(2007)

EBL High
temperature

Lycopersicon
esculentum

Significantly improved high tem-
perature convinced reduction of
photosynthesis via improving the
antioxidant enzymes and decreas-
ing H2O2 and MDA contents

Ogweno et al.
(2008)

HBL Chilling Cucumis
sativus

Improved growth and photosyn-
thesis by improving proline
content

Fariduddin
et al. (2011)

(continued)
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Brassinosteroids and Low Temperature Stress

BRs have been successfully used to make plants resistant contrary to cold stress. BRs
could be exogenously functional either by seed soaked, root dipping, and foliar
application. However, foliar spray and seed soaking methods have been generally
adopted. Janeczko et al. (2009) stated that application of EBL earlier to cold stress
minimized the ion leakage in freezing showing rape plants, while it improved the
antioxidant system and proline in freezing worried young grapevines (Xi et al.,
2013). The characters of BRs in cold stress are concise in Table 1.2.

Table 1.1 (continued)

BR
analogues

Abiotic
stress Plant species Responses References

BR Cold Cucumis
sativus

Protected photosynthetic related
cold convinced harm by trigger-
ing the enzymes of Calvin cycle
and improving the antioxidant
capacity, alleviated the influence
of photo-oxidative stress and
impairment

Jiang et al.
(2013)

EBL Low
temperature

Brassica
juncea

Improved the lethal consequence
of H2O2 through improving the
activities of several enzymes
involved in antioxidant defense
systems such as CAT, APX, and
SOD

Kumar et al.
(2010)

EBL Low
temperature

Vitis vinifera Improved antioxidant defense and
osmoregulation

Xi et al.
(2013)

EBL Cd Phaseolus
vulgaris

Mediated improved activity of
antioxidant enzymes, proline
content, and later enhancement in
the membrane stability index and
relative water content

Rady (2011)

EBL Ni Brassica
juncea

Ameliorated Ni-stress by improv-
ing the movement of antioxidant
enzymes

Kanwar et al.
(2013)

EBL Cu and
NaCl

Cucumis
sativus

Greater the actions of several
antioxidant enzymes such as
CAT, POX, SOD that ultimately
enhanced growth, nitrate reduc-
tase activity, and photosynthetic
efficacy

Fariduddin
et al. (2013)

EBL Salinity Oryza sativa Displayed enhancement in
growth, levels of protein, proline
contents, and activities of antiox-
idant enzymes over the expression
of several BRs and salt responsive
genes

Sharma et al.
(2013b)
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Table 1.2 Effect of brassinosteroids and abiotic stress tolerance in plants

BR
analogues

Abiotic
stress Plant species Responses References

HBL Chilling Cucumis
sativus

Improved the growth photo-
synthesis and water relation by
improving antioxidant enzymes
such as CAT, POX, and SOD

Fariduddin et al.
(2011)

BR Cold Cucumis
sativus

Protected the photosynthetic
tool from cold convinced
impairment by triggering the
enzymes of Calvin cycle and
improving the antioxidant
ability

Jiang et al. (2013)

BL Chilling Maize Improved the growth and res-
cue of seedlings after freezing
treatment

He et al. (1991)

EBL Low
temperature

Brassica
juncea

Improved the lethal outcome of
H2O2 over improving the
accomplishments of several
enzymes intricate in antioxi-
dant defense arrangement such
as CAT, APX, and SOD

Kumar et al.
(2010)

EBL Low
temperature

Vitis vinifera Augmented antioxidant system
and osmoregulation

Xi et al. (2013)

BL Chilling Solanum
lycopersicum

Inhibited the events of phos-
pholipase D and lipoxygenase
in fruits, subjected to chilling
stress

Aghdam and
Mohammadkhani
(2014)

BL Chilling Campsicum
annum

Effectively reduced freezing
damage of Campsicum annum
fruit put in storing on 3 �C for
longer duration via decreasing
the ion leakage, MDA content;
aggregate the activities of anti-
oxidant enzymes like CAT,
POX, APX, and GR

Wang et al.
(2012b)

EBL Chilling Cucumis
sativus

Improved the chilling-
convinced embarrassment of
photosynthesis in Cucumis
sativus by minimizing ROS
generation and accumulation
over increased activities of
antioxidants

Hu et al. (2010)

EBL Chilling Chorispora
bungeana

Alleviated chilling-prompted
oxidative injury over the anti-
oxidant defense mechanism
and decreased the intensities of
ROS as well as lipid peroxida-
tion, thereby improved the
freezing tolerance

Liu et al. (2009)

(continued)
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