Build Your Own 2D Game
Engine and Create Great
\Web Games

Using HTMLS5, JavaScript, and WebGL 2
Second Edition

Kelvin Sung
Jebediah Pavleas
Matthew Munson
Jason Pace

Apress:

Build Your Own 2D Game
Engine and Create Great
Web Games

Kelvin Sung

Jebediah Pavleas

Matthew Munson

Jason Pace

With

Original Dye character designs by Nathan Evers

Other game character and art design by Kasey Quevedo
Figures and illustrations by Clover Wai

Apress’

Build Your Own 2D Game Engine and Create Great Web Games: Using HTMLS5,
JavaScript, and WebGL2

Kelvin Sung Jebediah Pavleas

Bothell, WA, USA Kenmore, WA, USA

Matthew Munson Jason Pace

Lake Forest Park, WA, USA Portland, OR, USA

ISBN-13 (pbk): 978-1-4842-7376-0 ISBN-13 (electronic): 978-1-4842-7377-7

https://doi.org/10.1007/978-1-4842-7377-7

Copyright © 2022 by Kelvin Sung, Jebediah Pavleas, Matthew Munson, and Jason Pace

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Spandana Chatterjee
Development Editor: Laura Berendson

Coordinating Editors: Shrikant Vishwakarma

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit www.
springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer Science
+ Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484273760. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7377-7

To my wife, Clover, and our girls, Jean and Ruth, for completing my life.
—Kelvin Sung

To my family, for their eternal support throughout my life.
—Jebediah Pavleas

To my mom, Linda, for showing me the value of having fun at work.
—Jason Pace

Table of Contents

About the AUtROrS........ccusmmismmmssnmmsasmssanmsnssssssasssass s sansssassssnsssansssansssansnas Xiii
About the Technical REVIEWErScccsssessssnssssssssassssnsssasssssssssnsssasssssssssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
L1 T LT (1 Xix
Chapter 1: Introducing 2D Game Engine Development with JavaScript..........cccuvuu. 1
THE TECRNOIOGIES ...vcueeeereerreerissesire st b e r e re e nra s 2
Setting Up Your Development ENVIrONMENTccoceevvirinienennsersense s s sssses e s ssesessessessens 4
Downloading and Installing JavaScript Syntax CheckKercccvvevrrrvrienennseniesenessensenaens 5
Downloading and InStalling LIVESEIVETccvcvverererinienese s sessesesessessessessessssessessessssessessens 5
Working in the VS Code Development ENVIFONMENT..........cccccvrerievrrenienesnsensessesesessesessessssessessens 5
Creating an HTIMLS Project in VS COUE........ccvvvrerererrerserieresessesessessssessessessessssessessesssssssessesaes 6

HOW 10 USE THiS BOOKccceiuerieirircresis s s s e s e st st ss s s srs s s nnes 10
How Do You Make a Great Video GAME?ccoveermrenerenrcrerenere s sens 12
RETBIBNCESve e e e e E e e R e nn 17
LT 0T 010 0 T TR 18
Chapter 2: Working with HTML5 and WebGLccccccennnnsmsssmmmnsmmmmmsssssssssssssssssnes 19
L (00 L1 T (0o OO 19
(0T 1T R (0 G] U o RS 20
The HTML5 Canvas ProJECL........ccucevererieriereressereressesessesseseesessessessessssessessessssessessesssssssensesaes 20
Separating HTML and JavaSCriPL........ccccvrrerererrnierensssessesesssssssessessesssssssessesssssssessessesssssssesseses 24
The JavaScript SOUrCe File PrOJECT.......cccvivrreriereresersere e s s ssssessessessssssesseseesesessesaes 24
ODSEIVALIONS......cecceccririreec iR 29

TABLE OF CONTENTS

Elementary Drawing With WEDGL..........ccccvvrevererrerene s sesse s e e sessessesssssssessesessessensesaes 29
The Draw One SQUAre PrOJECTcovververiererissirere s s e s sesse e s s e sse s e ssesessessessssssnessesees 30
ODSEIVALIONS......cecececcrirerreec e R s 41

Abstraction with JavaScript ClasSes........ccuurrinrininneninsern s st ssenes 41
The JavaScript ODjECtS ProjECt.........cocvvvverivrrirrere s s ses s ssssesse s ssssessessesesssssessesees 42
ODSEIVALIONS......cecucccreresreecre e 51

Separating GLSL from HTIML.......cccoiiirneir s sas s s se s sne s 51
The Shader Source File Project ... e 52
Source Code Organizationcoecvcnereinsnies s e 57

Changing the Shader and Controlling the Color............covcvrenrerernscrrese e 57
The Parameterized Fragment Shader Project...........c.oooreernennnenerese s 57

B30T 111 T OSSR 61

Chapter 3: Drawing Objects in the World...........cccccunsmmmmmnssnmnmnsssssnnmmssssssnmsssssssnnnns 63

INEFOTUCTION ...t 63

Encapsulating DraWingc.cceeiirinnieneninsense s s s s sse s ssessssssessessesssssaessessssssssaesaesnens 64
The Renderable ObJECtS PrOJECTcccvcvereverririereresssssesse e sss e s ssssessessesssssssessesesssssessesees 65
ODSEIVALIONS......cecucccrerereee e 73

Transforming a Renderable ODJECt...........ccvrrcnncr 73
Matrices as Transform OPEratOrSccvvrevrrerrerierererserererss s e sse s saessssessesaessssessesseses 74
B LT T LD o] S 77
The Matrix Transform Projectcccevevvrvrie e s 78
ODSEIVALIONS......cecucccrereeeec e pnn s 83

Encapsulating the Transform Operator ... 84
The Transform ODJects ProjECLcccvcvirivnsnrn s 84

The Camera Transform and VIEWPOITS ... sss e ssessens 89
Coordinate Systems and TranSfOrmations..........c.cocvverrrenresrnscse e 90
The Camera Transform and Viewport Project ... sessesesse s sessennes 93

THE CAMEIA.....ccvecererererresesree e e e e s se s e s se s s e e s e e s se e s e e e ne e e e nne e nre e nenne e nnnnnns 101
The Camera ODJECtS PrOjECT.........vccvererereserresere s 102

B30T 1117 o SR 110

TABLE OF CONTENTS

Chapter 4: Implementing Common Components of Video Gamescccurrrsssnnnnss 111
1070 1T 0 o 111
THE GAME LOOP ..cviriireriesiesire s st e bbb e e e e e s ne s 112

Typical Game Loop Implementations...........cccovninininnnnnnn s 113
The Game LOOP PrOJECL.......cccviirirre st 114
KeYDOArd INPUL ...t 123
The Keyboard SUPPOIT PrOJECL.........coveierererircrerese s sessssessenens 123
Resource Management and Asynchronous LOading..........cuoueverernsesessesmsnsssessesessesessesesensesenns 131
The Resource Map and Shader Loader Projectcccvveernnenerenesensesessesssesessssesessessssenens 133
Game Level from @ SCENE Filecovcevveeiriserne st 144
The SCeNe File ProJECT.......ccccvicerierireers e sn s 144
Scene Object: Client Interface to the Game ENGINE.........ccccvveveveriereneninsnienesss s sessessenees 156
The Scene ODJECES PrOJECL........cccvvriererirsirierere st re e a e e sa e enes 157
AUGIO ...t bbb e e Ean 170
The Audio SUPPOIE PrOJECT.......eircerererieserseresresessesessessesessessessesssses e ssesaesesessesaesssssssessesnes 171
31111117 OO S 183
Game Design ConSIderationS.........ccuvveerereererserieresesserseresss s ssesssssssessessessssessessesssssssessees 183

Chapter 5: Working with Textures, Sprites, and Fonts.........cccccmmmmmmrnnssssssssssnnnnnnas 185
111070 1T 0 o SR 185
Texture Mapping and Texture COOrdinates.........ccvevrrniniennnnnne e 187

The Texture Shaders ProjECt........c.ouvvverernsernsesrnesese s s s s s s ssssesesssssssenens 188
Drawing With SPrite SHEETSccvcvirirrrrr e 218
The Sprite ShAders ProjECL.........cccvirernirine e s 220
]G A AT L0 R 233
Overview of Animated SPrite SNEETScvvvvriererr s e 233
The Sprite ANIMaAtion ProjECt........ccvviivrrninierinnir s sese s se e se s ssssssessesnes 234
Fonts and Drawing Of TEXEc.civririec e sn e s se e ne s 245
Bitmap FONTSccveiiiircie st 245
The FONt SUPPOIE PrOJECT.......cieierierererirserrerere s e se s ssesessessessessssessessesasssssessessesssssssessesaes 247
£ 111117 OO 263
Game Design ConSiderations........c..ucvvevnirrininnesn s 263

TABLE OF CONTENTS

Chapter 6: Defining Behaviors and Detecting ColliSionsccccusseeerrssssnsnsssssssnnns 267
0L C (070 1T 0 o T 267
GAME ODJECTS.....ueiueriecircrer e e p e e b e e R e nnn 268

The Game ODJeCts Project ... s 269
Creating @ Chase BENAVIOrccoveerererencrrcsere s 280
VECTOIS RBVIBWcvecerecere et s nennenens 281
The Front and Chase PrOjECTcccovererenernsesneses s sesnenens 286
Collisions Between GAmMEODJECTSccveeeererernsernesere e 295
Axis-Aligned Bounding BoX (AABB)cccviurerrmsmnesesesesessssessssssssssessssssessesssssssssssesesssssssenens 295
The Bounding Box and ColliSionS Projectcccueeererernsesessesesssessssesesesesssessssesessessssenens 296
PEr-PiXel COIlISIONSccvecerreereresirsenesrese s se e srs e se e srs s sn s sr s ne s 304
The Per-Pixel ColliSions PrOJECT........cccueeerirernesinessss s e sss e sessesssnenens 305
Generalized Per-Pixel COllISIONS.........ccccoverminmnisinisssssse s s ssnsas 318
Vector Review: Components and DeCOmMPOSItioNcoovvrververenennnsessesesessessesessssessesenees 318
The General Pixel ColliSioNS PrOJECLccucrveriererrerserese s serese s ses e ssessesessesessessssessessesees 320
Per-Pixel ColliSioNS fOr SPIiteS.....ccuirerrrerrererrsserrereresessesessesessessessessesessessessssessessessesssssssesaens 326
The Sprite Pixel ColliSionS PrOJECT.........ccccvverererenierieresesessersesessssessessessesessessessesssssssessesses 326
£ 1134 7 331
Game Design ConSIderations.........ccuvvverererreriereresessersere s sesessesss s ssesaessssessessesssssssessees 332

Chapter 7: Manipulating the Camera.........ccccunemmmmmnssssnmmmsssssnmmsssssnmsssssssesssnn 335
11100 1T 0 o ST 335
Camera Manipulations ... s 337

The Camera Manipulations Project..........coccvmeinennnsnnsesssessss s sessessssenens 337
1 010 L0 OO 347
The Camera Interpolations ProJECL.........ccvvvierinnninine s s enes 349
Camera Shake and Object 0SCillation EffeCtS......ccvivvrrrierievnrerieneresessere s sesse e ssesessessesaes 357
The Camera Shake and Object Oscillate Projectccvvvvrvvierennsnsenesesessessesessssessessenes 358
MUIIPIE CAMEIAS ...veveveersersersesarersersessssessessessessssessesssssssessessesssssssessessessssessesssssssensessessensnsensens 369
The Multiple Cameras PrOjECTccvvevvrrreriereressereressssessesessessssessessessesssessessesssssssessesees 370

viil

TABLE OF CONTENTS

Mouse Input TArOUQGH CAMEIASceevveverrererrerrrsersesessessssessessessssessessesssssssessesssssssessessessssessessens 377
The MouSE INPUL PrOJECT........cocerererir et s s 379

£ 11T 1117 o OO RS 388
Game Design ConSiderations........c.ccvveirinrninnenn s s 389
Chapter 8: Implementing lllumination and Shadowc.ccccnrnsssnnnnrnsssssnsesssssnnns 397
0L ((0T 1T 0 o 397
Overview of lllumination and GLSL Implementation ... 398
AMDIENT LIGNT....ccivieccceeee e e 399
The Global Ambient Project ... s s ssssesesssssssenens 400
0 L ST o OO 410
GLSL Implementation and Integration into the Game Engine..........ccccveviernvninevnsensenen 411
The Simple Light Shader Project.........ccccvvrierinnninin s sessesessessssessessessssessessesees 412
Multiple Light Sources and Distance Attenuationcceevrevrrrreriesssensessesesessessesessssessesaens 428
The Multiple Lights ProjECL........ccvccvrerierrririerere s sese s s ses s ssesss s e s ssessssessessesssssssesaesnes 429
Diffuse Reflection and Normal Mappingcccceevvrreneriersensee s sserses e sesses e s s e s seessessessenns 441
The Normal Maps and lllumination Shaders Projectccccvverrevrrerrerierenensersersessssessesenees 446
Specular Reflection and Materials.........c.ccocvviririninnncni e 456
Integration of Material in the Game Engine and GLSL Shaders.............cccovrrrenerererernnnenenes 459
The Material and Specularity Projectccovvvrenrinrrncerne s ses e s sesesessenens 460
LigNt SOUICE TYPES ...viriircrerissir s st s st b e e s be st s e nne 473
The Directional and Spotlights Project ... 474
Shadow SIMUIALION ..o 486
The Shadow Simulation AlgOFTNM ..o 490
The Shadow Shaders ProjECt ..o 490
B30T 1117 o OSSO 513
Game Design ConSIderations..........cucvvererenernsmsesessse s s ssssesseses 514

ix

TABLE OF CONTENTS

Chapter 9: Simulating the World with RigidShapes........ccuusemmmnnsssnnnmnsssssnsssssssnnns 525
0L C (070 1T 0 o T 525
CRAPLET QVEIVIBW ...c.vecicir et e et ae s 527
Rigid Shapes and BOUNGSccccuriiiinininnsnse s ss s st snens 529
The Rigid Shapes and Bounds Project.........c.ccovvvninininnnsninsssnsesess e seseenes 529
(1T <] (T o] 548
Broad and Narrow Phase Methods..........ccovcirenrnnrnncsesesese s 549
Collision INFOrMEALION........ccoveeereer e 550
The Circle Collisions and CollisionInfo Project..........coocovvernnenerensssesesesesesesessesesesessenens 551
Separating AXiS THEOIEM.........coveiererer e 563
The Rectangle ColliSioNS PrOJECTccccoreecrrecrerere s snenens 569
Collision Between Rectangles and CirClEScooocorerrrrcnerenereserescsesesese e 576
The Rectangle and Circle ColliSions Projectcccvvvninsniniennsnsense s ssssessesse s sessessesnes 577
MOVEMENT ... e e ne e e 585
Explicit Euler INTEgration ..o s 586
Symplectic Euler INtegration ... s 587
The Rigid Shape Movements ProjecCt...........ccouvvrerrenernsesessesesesers s sessesessenens 587
Interpenetration of Colliding ODJECLS.........ccorererinrrnserree e 597
Collision PoSition COMECLION.........cccueerrrererreserssesese s s srases 599
The Collision Position Correction Project..........ccoveeresrnssnnessnesessse s sessesessenens 600
COlliSION RESOIULION.......civeeeereeriree s 606
The Impulse MEthod..........coeeecr s 607
The Collision ReSoIution ProjECtcccucererernsesnesesese s sesse s ssssesessessssenens 613
Angular Components of ColliSion RESPONSES........cvrrerrererererserseressssessessessessssessesessessssessessens 619
Collisions with Rotation ConSideration...........c.cuumenmnsimnnnsssnssess s 619
Relative Velocity with ROtationc.ccocevevninininnsrsere s se s enes 621
Impulse Method with ROtation..........cccvevrinininsn e 622
The Collision Angular Resolution Project........cccovvrvrievnnnininennnsensese e sessessesessssessessesees 626
ODSEIVALIONS......cuccccri i ——— 631
L1134 R 632
Game Design ConSiderations..........cuvvvererrnensererssessesse s sesse s se e ssssessessesssssssesaees 633

TABLE OF CONTENTS

Chapter 10: Creating Effects with Particle Systems........c.ccccernssenmnnnssssnnnsssssnnnns 639
1070 1T 0 o 639
Particles and PartiCle SYSTEMScccvrerrererercrr e 640

The Particles Project..........ciicir st 641
PartiCle COllISIONS.c.cocreeerereresesese e rese e e s se e ne s 656
The Particle ColliSioNS PrOJECT.........ccovererererreserese s snenens 656
Particle EMITIErSccvecerecceresrese e 663
The Particle EMItters ProjECT.........ccccvvereresernsesnese s sensssessenens 663
11T 111 1T o OSSOSO 669
Game Design ConSIiderations..........cucvvererinernsesnessese s ssess 670

Chapter 11: Supporting Camera Background............cuccussnmssassssnssssnssssssssnsssassssass 671
INEPOAUCTION.......ececcer e s 671
Tiling of the BaCKground..........ccocoinnniniess s s s 673

The Tiled ObJECtS PrOJECL.......ccovcerrerrc e e e 674
Simulating Motion Parallax with Parallax SCrollingcccccvvinvnininnnninisn s sesenns 681
The Parallax Objects ProjECt.........cccveriininire s 683
Layer Managementcovveerrenerese s 689
The Layer Manager PrOJECT.........ccovoorereresernsesere s s e ses e sensssessenens 690
B30T 111 T o OSSR 698
Game Design ConsSiderations..........cccvinnininenninsne e 698

Chapter 12: Building a Sample Game: From Design to Completion...........ccosueennns 703
Part 1: Refining the CONCEPLcccvieririrrerere e s sae s ae st enens 704
Part 2: Integrating @ SEttNGcccccviereririrere s e ene e 707

Contextual Images Bring the Setting 10 Lifec.ccccvvvvriernnnrenenssersense s ses s sessesesnens 707
Defining the Playable SPACE..........cuvrrrrerererrerrerensesessesesesessessessessssessessessssessessesasssssessesaes 708
Adding Layout to the Playable SPACEc.ccveererrrerrerieresersereresss s s e sesessessessssessessesaes 710
Tuning the Challenge and Adding FUN ... 71
Further Tuning: Introducing ENEMIES......c.ccvvrervererrnnensereresessessessessssessessesssssssessesssssssessesses 713
General CoNSIAEIatiONSc.coviieresersnrssssse s 714

xi

TABLE OF CONTENTS

Part 3: Integrating Additional Design EIements.........cccccvvrvrnnnninnnne s ssesenenns 715
LT F= L DT T | S 716
GAME AUGIO .o se s se R e 717
INTEraction MOGEL..........ccceinerircc e 718
Game Systems and Meta-gamecccvevvrerrerierenensersese s sse s s saesessessessessssessessees 718
User Interface (Ul) DESIGN......ccvereverreriererseserseressesessessessessssessessesssssssessessssssssssessesssssssesseses 720
GAME NAITALIVE......ceererireiie i 721

Bonus Content: Adding a Second Stage 10 the LEVEIcccvcvvvvrerevnsensennesesessesessessssesenaens 723

BT 1] 11012 OSSOSO 724

INO@X . ueeeiiienrsssnnnsssnnssssnnsssssnsssssnsssssnssssnnnssssnnaasannansnnnansnnnnnsannnnssnnnnssnnnnssnnnnssnnnnnsnnss 727

xii

About the Authors

Kelvin Sung is a Professor with the Computing and Software Systems Division at the
University of Washington Bothell (UWB). He received his Ph.D. in Computer Science
from the University of Illinois at Urbana-Champaign. Kelvin’s background is in computer
graphics, hardware, and machine architecture. He came to UWB from Alias|Wavefront
(now part of Autodesk), where he played a key role in designing and implementing the
Maya Renderer, an Academy Award-winning image generation system. At UWB, funded
by Microsoft Research and the National Science Foundation, Kelvin’s work focuses

on the intersection of video game mechanics, solutions to real-world problems, and
supports for remote collaboration. Together with his students and colleagues, Kelvin has
co-authored five books: one on computer graphics (Essentials of Interactive Computer
Graphics: Concepts and Implementation, A.K. Peters, 2008) and the others on 2D game
engines (Learn 2D Game Development with C#, Apress, 2013; Build Your Own 2D

Game Engine and Create Great Web Games, Apress, October 2015; Building a 2D Game
Physics Engine, Apress, 2016; and Basic Math for Game Development with Unity 3D,
Apress, 2019).

Jebediah Pavleas received his Master of Science Degree

in Computer Science and Software Engineering from the
University of Washington Bothell (UWB) in 2016. He also
received a Bachelor of Science Degree from UWB in 2012
and was the recipient of the Chancellor’s Medal for his
class. During his graduate program, Jebediah interned for
Microsoft Research’s Enable team where he contributed

to their Eye-Gaze Wheelchair project (a wheelchair driven
with only your eyes for those with ALS). He has co-authored

three books on 2D games and game engines (Learn 2D Game
Development with C#, Apress, 2013; Build Your Own 2D
Game Engine and Create Great Web Games, Apress, October
2015; Building a 2D Game Physics Engine, Apress, 2016). During his time at UWB, his
projects included an interactive math application that utilizes Microsoft’s Kinect sensor

xiii

ABOUT THE AUTHORS

to teach algebra called Kinect Math. Relating to this and other projects, he co-authored
publications in IEEE Computer and The Journal of Computing Sciences in Colleges
(CCSC). Jebediah enjoys designing, building, and playing games of all kinds as well as
adapting technology for improved accessibility for himself and others.

Matthew Munson is a graduate student in the Computer Science and Software
Engineering program at the University of Washington Bothell. He received
undergraduate degrees in Computer Science and Software Engineering and Mechanical
Engineering at the University of Washington Bothell in 2020. Matthew is interested in
operating system development, networking, and embedded systems. As a research
assistant, Matthew used cloud computing to analyze years of audio data recorded by
hydrophones off the Oregon coast. This data was used to study the effects of climate
change and shipping noise on marine mammals. Currently, Matthew is working on a
networked augmented reality library that focuses on allowing users to view the same

virtual scene from different perspectives.

Jason Pace contributed to a wide range of games as a producer, designer, and creative
director over 15 years in the interactive entertainment industry, from ultra-casual
puzzlers on mobile to Halo on Xbox. As a designer, Jason builds game mechanics and
systems that start from a simple palette of thoughtful interactions (known as the core
gameplay loop), progressively introducing variety and complexity to create interactive
experiences that engage and delight players while maintaining focus on what makes
each e-game uniquely fun.

Xiv

About the Technical Reviewers

Yusuf Pisan is an Associate Teaching Professor in the School
of Computing & Software Systems Division at the University
of Washington Bothell. Previously, he has worked at the
1 University of Technology, Sydney, and has been a visiting
professor at Harvey Mudd College, University of Southern
California, Worcester Polytechnic Institute (WPI), and IT
University of Copenhagen (ITU).

His research interests include enabling technologies

for computer games, the design of virtual environments

that support collaborative work, and computer science education. He founded the
Australasian Conference on Interactive Entertainment conference series and helped
foster the Australian games community. His list of publications can be found at Google
Scholar.

Yusuf has a Ph.D. in Artificial Intelligence from Northwestern University. Before moving
to Seattle in 2017, Yusuflived in the Chicago area for 10 years and Sydney for 20 years.

For more information, see https://pisanorg.github.io/yusuf/.

Yogendra Sharma is a developer with experience in the
architecture, design, and development of scalable and
distributed applications, with a core interest in Microservices
and Spring. He currently works as an IoT and Cloud Architect
at Intelizign Engineering Services Pvt. Ltd., Pune.

He also has hands-on experience in technologies such
as AWS, IoT, Python, J2SE, J2EE, NodeJS, Vue]Js, Angular,
MongoDB, and Docker.

He constantly explores technical novelties, and he is
open-minded and eager to learn about new technologies

and frameworks. He has reviewed several books and video
courses published by Packt.

https://urldefense.proofpoint.com/v2/url?u=https-3A__pisanorg.github.io_yusuf_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=hBSr1R__kjUcST0tpDOpn6t2rvV4kaPHSZvoArp2MFA&m=Q7BLQIDR71VMK39agJ8JYId5LP3ScKn3urdkpitASBA&s=kY6Q0oIBeSgfyNgjspL43-UUJbRadY9wVYIBVN73Gf4&e=

Acknowledgments

This book project was a direct result of the authors learning from building games for the
Game-Themed CS1/2: Empowering the Faculty project, funded by the Transforming
Undergraduate Education in Science, Technology, Engineering, and Mathematics
(TUES) Program, National Science Foundation (NSF) (award number DUE-1140410). We
would like to thank NSF officers Suzanne Westbrook for believing in our project and Jane
Prey, Valerie Bar, and Paul Tymann for their encouragements.

This second edition is encouraged by many students and collaborators. In particular,
students from CSS452: Game Engine Development (see https://myuwbclasses
.github.i0/CSS452/) at the University of Washington Bothell have been the most
critical, demanding, and yet supportive. Through the many games and API extension
projects (see https://html5gameenginegroup.github.io/GTCS-Engine-Student-
Projects/), it became clear that updates are required of the JavaScript and WebGL (Web
Graphics Library) versions, the bottom-line synchronization mechanism, and, most
significantly, the coverage of the physics engine. Fernando Arnez, our co-author from the
first edition, taught us JavaScript. Yaniv Schwartz pointed us toward JavaScript async/
await and promise. The discussions and collaborations with Huaming Chen and Michael
Tanaya contributed directly to the chapter on game engine physics. Akilas Mebrahtom
and Donald Hawkins constructed the extra example at the end of Chapter 9 illustrating
potential presets for commonly encountered physical materials. The audio volume
control was first investigated and integrated by Kyla NeSmith. Nicholas Carpenetti
and Kyla NeSmith developed a user interface API for the initial game engine, which
unfortunately did not make it into this edition. These and countless other feedbacks
have contributed to the quality and improvements of the book’s content.

The hero character Dye and many of the visual and audio assets used throughout
the example projects of the book are based on the Dye Hard game, designed for teaching
concepts of objects and object-oriented hierarchy. The original Dye Hard development
team members included Matthew Kipps, Rodelle Ladia, Chuan Wang, Brian Hecox,
Charles Chiou, John Louie, Emmett Scout, Daniel Ly, Elliott White, Christina Jugovic,
Rachel Harris, Nathan Evers, Kasey Quevedo, Kaylin Norman-Slack, David Madden,

Kyle Kraus, Suzi Zuber, Aina Braxton, Kelvin Sung, Jason Pace, and Rob Nash. Kyle Kraus

xvii

https://myuwbclasses.github.io/CSS452/
https://myuwbclasses.github.io/CSS452/
https://html5gameenginegroup.github.io/GTCS-Engine-Student-Projects/
https://html5gameenginegroup.github.io/GTCS-Engine-Student-Projects/

ACKNOWLEDGMENTS

composed the background music used in the Audio Support project from Chapter 4,
originally for the Linx game, which was designed to teach loops. The background audio
for the game in Chapter 12 was composed by David Madden and arranged by Aina
Braxton. Thanks to Clover Wai for the figures and illustrations.

We also want to thank Spandana Chatterjee for believing in our ideas, her patience,
and continual efficient and effective support. A heartfelt thank-you to Mark Powers, for
his diligence and lightning-fast email responses. Mark should learn about and consider
the option of sleeping some of the time. Nirmal Selvaraj organized everything and
ensured proper progress was ongoing.

Finally, we would like to thank Yusuf Pisan for his insightful, effective, and, above all,
quick turnaround for the technical review.

All opinions, findings, conclusions, and recommendations in this work are those of
the authors and do not necessarily reflect the views of the sponsors.

xviii

Introduction

Welcome to Build Your Own 2D Game Engine and Create Great Web Games. Because you
have picked up this book, you are likely interested in the details of a game engine and the
creation of your own games to be played over the Internet. This book teaches you how

to build a 2D game engine by covering the involved technical concepts, demonstrating
sample implementations, and showing you how to organize the large number of source
code and asset files to support game development. This book also discusses how each
covered technical topic area relates to elements of game design so that you can build,
play, analyze, and learn about the development of 2D game engines and games. The
sample implementations in this book are based on HTMLS5, JavaScript, and WebGL.2,
which are technologies that are freely available and supported by virtually all web
browsers. After reading this book, the game engine you develop and the associated
games will be playable through a web browser from anywhere on the Internet.

This book presents relevant concepts from software engineering, computer graphics,
mathematics, physics, game development, and game design—all in the context of
building a 2D game engine. The presentations are tightly integrated with the analysis
and development of source code; you'll spend much of the book building game-like
concept projects that demonstrate the functionality of game engine components.

By building on source code introduced early on, the book leads you on a journey
through which you will master the basic concepts behind a 2D game engine while
simultaneously gaining hands-on experience developing simple but working 2D games.
Beginning from Chapter 4, a “Design Considerations” section is included at the end of
each chapter to relate the covered technical concepts to elements of game design. By
the end of the book, you will be familiar with the concepts and technical details of 2D
game engines, feel competent in implementing functionality in a 2D game engine to
support commonly encountered 2D game requirements, and capable of considering
game engine technical topics in the context of game design elements in building fun and
engaging games.

Xix

INTRODUCTION

New in the Second Edition

The key additions to the second edition include JavaScript language and WebGL API update
and dedicated chapters with substantial details on physics and particle systems components.
All examples throughout the entire book are refined for the latest features of the
JavaScript language. While some updates are mundane, for example, prototype chain
syntax replacements, the latest syntax allows significant improvements in overall
presentation and code readability. The new and much cleaner asynchronous support
facilitated a completely new resource loading architecture with a single synchronization
point for the entire engine (Chapter 4). The WebGL context is updated to connect to
WebGL 2.0. The dedicated chapters allow more elaborate and gradual introduction
to the complex physics and particle systems components. Detailed mathematical
derivations are included where appropriate.

Who Should Read This Book

This book is targeted toward programmers who are familiar with basic object-oriented
programming concepts and have a basic to intermediate knowledge of an object-
oriented programming language such as Java or C#. For example, if you are a student
who has taken a few introductory programming courses, an experienced developer who
is new to games and graphics programming, or a self-taught programming enthusiast,
you will be able to follow the concepts and code presented in this book with little
trouble. If you're new to programming in general, it is suggested that you first become
comfortable with the JavaScript programming language and concepts in object-oriented
programming before tackling the content provided in this book.

Assumptions

You should be experienced with programming in an object-oriented programming
language, such as Java or C#. Knowledge and expertise in JavaScript would be a plus but
are not necessary. The examples in this book were created with the assumption that you
understand data encapsulation and inheritance. In addition, you should be familiar with
basic data structures such as linked lists and dictionaries and be comfortable working
with the fundamentals of algebra and geometry, particularly linear equations and
coordinate systems.

XX

INTRODUCTION

Who Should Not Read This Book

This book is not designed to teach readers how to program, nor does it attempt to
explain the intricate details of HTML5, JavaScript, or WebGL2. If you have no prior
experience developing software with an object-oriented programming language, you will
probably find the examples in this book difficult to follow.

On the other hand, if you have an extensive background in game engine
development based on other platforms, the content in this book will be too basic; this
is a book intended for developers without 2D game engine development experience.
However, you might still pick up a few useful tips about 2D game engine and 2D game
development for the platforms covered in this book.

Organization of This Book

This book teaches how to develop a game engine by describing the foundational
infrastructure, graphics system, game object behaviors, camera manipulations, and a
sample game creation based on the engine.

Chapters 2-4 construct the foundational infrastructure of the game engine.
Chapter 2 establishes the initial infrastructure by separating the source code system
into folders and files that contain the following: JavaScript-specific core engine logics,
WebGL2 GLSL-specific shader programs, and HTML5-specific web page contents. This
organization allows ongoing engine functionality expansion while maintaining localized
source code system changes. For example, only JavaScript source code files need to be
modified when introducing enhancements to game object behaviors. Chapter 3 builds
the drawing framework to encapsulate and hide the WebGL2 drawing specifics from
the rest of the engine. This drawing framework allows the development of game object
behaviors without being distracted by how they are drawn. Chapter 4 introduces and
integrates core game engine functional components including game loop, keyboard
input, efficient resource and game-level loading, and audio support.

Chapters 5-7 present the basic functionality of a game engine: drawing system,
behavior and interactions, and camera manipulation. Chapter 5 focuses on working
with texture mapping, including sprite sheets, animation with sprite sheets, and the
drawing of bitmap fonts. Chapter 6 puts forward abstractions for game objects and
their behaviors including per-pixel-accurate collision detection. Chapter 7 details the
manipulation and interactions with the camera including programming with multiple
cameras and supporting mouse input.

xxi

INTRODUCTION

Chapters 8-11 elevate the introduced functionality to more advanced levels.
Chapter 8 covers the simulation of 3D illumination effects in 2D game scenes.
Chapter 9 discusses physically based behavior simulations. Chapter 10 presents
the basics of particle systems that are suitable for modeling explosions. Chapter 11
examines more advanced camera functionality including infinite scrolling through
tiling and parallax.

Chapter 12 summarizes the book by leading you through the design of a complete
game based on the game engine you have developed.

Code Samples

Every chapter in this book includes examples that let you interactively experiment

with and learn the new materials. You can access the source code for all the projects,
including the associated assets (images, audio clips, or fonts), by clicking the Download
Source Code button located at www.apress.com/9781484273760. You should see a
folder structure that is organized by chapter numbers. Within each folder are subfolders
containing Visual Studio Code (VS Code) projects that correspond to sections of

this book.

xxii

http://www.apress.com/9781484273760

CHAPTER 1

Introducing 2D Game
Engine Development
with JavaScript

Video games are complex, interactive, multimedia software systems. They must, in

real time, process player input, simulate the interactions of semiautonomous objects,
and generate high-fidelity graphics and audio outputs, all while trying to keep players
engaged. Attempts at building a video game can quickly become overwhelming with the
need to be well versed in software development as well as in how to create appealing
player experiences. The first challenge can be alleviated with a software library, or game
engine, that contains a coherent collection of utilities and objects designed specifically
for developing video games. The player engagement goal is typically achieved through
careful gameplay design and fine-tuning throughout the video game development
process. This book is about the design and development of a game engine; it will focus
on implementing and hiding the mundane operations of the engine while supporting
many complex simulations. Through the projects in this book, you will build a practical
game engine for developing video games that are accessible across the Internet.

A game engine relieves game developers from having to implement simple routine
tasks such as decoding specific key presses on the keyboard, designing complex
algorithms for common operations such as mimicking shadows in a 2D world, and
understanding nuances in implementations such as enforcing accuracy tolerance of a
physics simulation. Commercial and well-established game engines such as Unity, Unreal
Engine, and Panda3D present their systems through a graphical user interface (GUI).

Not only does the friendly GUI simplify some of the tedious processes of game design
such as creating and placing objects in a level, but more importantly, it ensures that

© Kelvin Sung, Jebediah Pavleas, Matthew Munson, and Jason Pace 2022
K. Sung et al., Build Your Own 2D Game Engine and Create Great Web Games,
https://doi.org/10.1007/978-1-4842-7377-7_1

https://doi.org/10.1007/978-1-4842-7377-7_1#DOI

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

these game engines are accessible to creative designers with diverse backgrounds who
may find software development specifics distracting.

This book focuses on the core functionality of a game engine independent from
a GUI. While a comprehensive GUI system can improve the end-user experience, the
implementation requirements can also distract and complicate the fundamentals of
a game engine. For example, issues concerning the enforcement of compatible data
types in the user interface system, such as restricting objects from a specific class to be
assigned as shadow receivers, are important to GUI design but are irrelevant to the core
functionality of a game engine.

This book approaches game engine development from two important aspects:
programmability and maintainability. As a software library, the interface of the game
engine should facilitate programmability by game developers with well-abstracted utility
methods and objects that hide simple routine tasks and support complex yet common
operations. As a software system, the code base of the game engine should support
maintainability with a well-designed infrastructure and well-organized source code
systems that enable code reuse, ongoing system upkeep, improvement, and expansion.

This chapter describes the implementation technology and organization of this
book. The discussion leads you through the steps of downloading, installing, and setting
up the development environment, guides you to build your first HTML5 application,
and uses this first application development experience to explain the best approach to
reading and learning from this book.

The Technologies

The goal of building a game engine that allows games to be accessible across the World
Wide Web is enabled by freely available technologies.

JavaScript is supported by virtually all web browsers because an interpreter is
installed on almost every personal computer in the world. As a programming language,
JavaScript is dynamically typed, supports inheritance and functions as first-class objects,
and is easy to learn with well-established user and developer communities. With the
strategic choice of this technology, video games developed based on JavaScript can be
accessible by anyone over the Internet through appropriate web browsers. Therefore,
JavaScript is one of the best programming languages for developing video games for the
masses.

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

While JavaScript serves as an excellent tool for implementing the game logic and
algorithms, additional technologies in the form of software libraries, or application
programming interfaces (APIs), are necessary to support the user input and media
output requirements. With the goal of building games that are accessible across the
Internet through web browsers, HTML5 and WebGL provide the ideal complementary
input and output APIs.

HTMLS5 is designed to structure and present content across the Internet. It
includes detailed processing models and the associated APIs to handle user input
and multimedia outputs. These APIs are native to JavaScript and are perfect for
implementing browser-based video games. While HTMLS5 offers a basic Scalable
Vector Graphics (SVG) AP], it does not support the sophistication demanded by video
games for effects such as real-time lighting, explosions, or shadows. The Web Graphics
Library (WebGL) is a JavaScript API designed specifically for the generation of 2D and
3D computer graphics through web browsers. With its support for OpenGL Shading
Language (GLSL) and the ability to access the graphics processing unit (GPU) on client
machines, WebGL has the capability of producing highly complex graphical effects in
real time and is perfect as the graphics API for browser-based video games.

This book is about the concepts and development of a game engine where JavaScript,
HTMLS5, and WebGL are simply tools for the implementation. The discussion in this
book focuses on applying the technologies to realize the required implementations and
does not try to cover the details of the technologies. For example, in the game engine,
inheritance is implemented with the JavaScript class functionality which is based on
object prototype chain; however, the merits of prototype-based scripting languages are
not discussed. The engine audio cue and background music functionalities are based
on the HTML5 AudioContext interface, and yet its range of capabilities is not described.
The game engine objects are drawn based on WebGL texture maps, while the features of
the WebGL texture subsystem are not presented. The specifics of the technologies would
distract from the game engine discussion. The key learning outcomes of the book are the
concepts and implementation strategies for a game engine and not the details of any of
the technologies. In this way, after reading this book, you will be able to build a similar
game engine based on any comparable set of technologies such as C# and MonoGame,
Java and JOGL, C++ and Direct3D, and so on. If you want to learn more about or brush
up on JavaScript, HTML5, or WebGL, please refer to the references in the “Technologies”
section at the end of this chapter.

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

Setting Up Your Development Environment

The game engine you are going to build will be accessible through web browsers that
could be running on any operating system (OS). The development environment you are
about to set up is also OS agnostic. For simplicity, the following instructions are based
on a Windows 10 OS. You should be able to reproduce a similar environment with minor
modifications in a Unix-based environment like MacOS or Ubuntu.

Your development environment includes an integrated development environment (IDE)
and a runtime web browser that is capable of hosting the running game engine. The most
convenient systems we have found is the Visual Studio Code (VS Code) IDE with the Google
Chrome web browser as runtime environment. Here are the details:

o IDE: All projects in this book are based on VS Code IDE. You
can download and install the program from https://code.
visualstudio.com/.

¢ Runtime environment: You will execute your video game projects in
the Google Chrome web browser. You can download and install this
browser from www.google.com/chrome/browser/.

o glMatrix math library: This is a library that implements the
foundational mathematical operations. You can download this
library from http://glMatrix.net/. You will integrate this library
into your game engine in Chapter 3, so more details will be provided
there.

Notice that there are no specific system requirements to support the JavaScript
programming language, HTML5, or WebGL. All these technologies are embedded in the
web browser runtime environment.

Note As mentioned, we chose the VS Code—based development environment
because we found it to be the most convenient. There are many other alternatives
that are also free, including and not limited to NetBeans, IntelliJ IDEA, Eclipse, and
Sublime.

https://code.visualstudio.com/
https://code.visualstudio.com/
http://www.google.com/chrome/browser/
http://glmatrix.net/

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

Downloading and Installing JavaScript Syntax Checker

We have found ESLint to be an effective tool in detecting potential JavaScript source

code errors. You can integrate ESLint into VS Code with the following steps:

Go to https://marketplace.visualstudio.com/
items?itemName=dbaeumer.vscode-eslint and click install.

You will be prompted to open VS Code and may need to click install
again within the application.

The following are some useful references for working with ESLint:

For instructions on how to work with ESLint, see https://eslint.
org/docs/user-guide/.

For details on how ESLint works, see https://eslint.org/docs/
developer-guide/.

Downloading and Installing LiveServer

The LiveServer extension to the VS Code is required to run your game engine. It launches

aweb server locally on your computer through VS Code to host developed games. Much

like ESLint, you can install LiveServer with the following steps:

Go to https://marketplace.visualstudio.com/
items?itemName=ritwickdey.LiveServer and click install.

You will be prompted to open VS Code and may need to click install
again within the application.

Working in the VS Code Development Environment

The VS Code IDE is easy to work with, and the projects in this book require only the

editor. Relevant source code files organized under a parent folder are interpreted by VS

Code as a project. To open a project, select File » Open Folder and navigate and select

the parent folder that contains the source code files of the project. Once a project is

open, you need to become familiar with the basic windows of VS Code, as illustrated in

Figure 1-1.

https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint
https://eslint.org/docs/user-guide/
https://eslint.org/docs/user-guide/
https://eslint.org/docs/developer-guide/
https://eslint.org/docs/developer-guide/
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer
https://marketplace.visualstudio.com/items?itemName=ritwickdey.LiveServer

CHAPTER 1

INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

Explorer window: This window displays the source code files of the
project. If you accidentally close this window, you can recall it by
selecting View » Explorer.

Editor window: This window displays and allows you to edit the
source code of your project. You can select the source code file
to work with by clicking once the corresponding file name in the
Explorer window.

Output window: This window is not used in our projects; feel free to

u_n

close it by clicking the “x” icon on the top right of the window.

] File Edit Selection View Go Run Terminal Help indexhtmil - test_folder - Visual Studio Code = g x
= === - - - mm Em mm Em o e Em Em Em e Em Em Em Em e Em Em Em Em = E
0 N g 1o indexhumi u o -l
-~ I) OPEMN EDITORS I | » trr 1
l-' TEST FOLDER <!DOCTYPE html> I—
|

1
|
] ¢ indexhtml ul 2 «
I I 3 This is a comment!
4 -=»

] | 5 <html>

] s <head>
I 7 <title>TODO supply a title</title:

Editor window

I
|
|
I 8 </head> I
|
|
1

. 1
Explorer window | @ <body>
I 1@ <div>TODO write content</div>
I 1 11 </body>
I | 12 <htal>
e ey
I OUTPUT === Log (Window) = 6 D =~ 1
17 I
L
1 Output window |
1
________ - |
|

> DUTLINE 1
> TIMELINE

Col12 Spaces:d4 UTF-8 CRLF HIML @ Golive & 0O

Figure 1-1. The VS Code IDE

Creating an HTMLS5 Project in VS Code

You are now ready to create your first HTMLS5 project:

Using File Explorer, create a directory in the location where you
would like to keep your projects. This directory will contain all source
code files related to your projects. In VS Code, select File » Open
Folder and navigate to the directory you created.

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

] File Edit Selection View Go Run Termin. sl Help

Mew File

Figure 1-2. Opening a project folder
e VS Code will open the project folder. Your IDE should look similar
to Figure 1-3; notice that the Explorer window is empty when your

project folder is empty.

] File Edit Selection View Go Run Terminal Help
’G Welcome X

Start

MNew file
Open folder... or clone repository...

\Users\mr

test_folder C
one_square C

Figure 1-3. An empty VS Code project

e You can now create your first HTML file, index.html. Select File »
New File and name the file index.html. This will serve as the home

or landing page when your application is launched.

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

%) File Edit Selection View Go Run Terminal Help

MNew File Ctri+N ’a Welcome X
New Window Ctrl+Shift+N
) Start
Open File... Ctrl+O
MNew file
Open Folder... Ctrl+K Ctrl+0O

Open folder... or

Open Workspace..

Open Recent >

Figure 1-4. Creating the index. html file

o Inthe Editor window, enter the following text into your index.html:

<!DOCTYPE html>
<I--
This is a comment!
-->
<html>
<head>
<title>TODO supply a title</title>
</head>
<body>
<div>TODO write content</div>
</body>
</html>

The first line declares the file to be an HTML file. The block that follows within the
<!--and --> tags is a comment block. The complementary <html></html> tags contain
all the HTML code. In this case, the template defines the head and body sections. The
head sets the title of the web page, and the body is where all the content for the web page
will be located.

As illustrated in Figure 1-5, you can run this project by clicking the “Go Live” button
in the bottom-right corner of your VS Code or by pressing Alt+L Alt+O. There is a chance
that right after you entered the previous HTML code for the first time, the “Go Live”
button may not appear. In this case, simply right-click the index.html file in the Explorer
window, and click “Open with Live Server” menu item to launch the web page. After
the first time, the “Go Live” button will appear in the lower-right region of the IDE, as
illustrated in Figure 1-5.

CHAPTER 1 INTRODUCING 2D GAME ENGINE DEVELOPMENT WITH JAVASCRIPT

1|
(g}

c'a ~ %

PROBLEMS ~ OUTPUT +++ Log (Window) ¥

Ln12,Col8 Spaces:4 UTF-8 CRLF HTML @ Golive + ESLint & 0

Figure 1-5. Click the Go Live button to run a project

Note To run a project, the index.html file of that project must be opened in

the editor when the “Go Live” button is clicked or when the Alt+L Alt+0 keys are
typed. This will become important in the subsequent chapters when there are other
JavaScript source code files in the project.

Figure 1-6 shows an example of what the default project looks like when you run it.
Notice that after the project begins to run, the “Go Live” button updates its label to show
“Port:5500.” You can click this button again to disconnect the IDE from the web page
to observe the “Go Live” label again. Clicking the button one more time will rerun the

project.

