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Introduction

Welcome to Build Your Own 2D Game Engine and Create Great Web Games. Because you
have picked up this book, you are likely interested in the details of a game engine and the
creation of your own games to be played over the Internet. This book teaches you how

to build a 2D game engine by covering the involved technical concepts, demonstrating
sample implementations, and showing you how to organize the large number of source
code and asset files to support game development. This book also discusses how each
covered technical topic area relates to elements of game design so that you can build,
play, analyze, and learn about the development of 2D game engines and games. The
sample implementations in this book are based on HTMLS5, JavaScript, and WebGL.2,
which are technologies that are freely available and supported by virtually all web
browsers. After reading this book, the game engine you develop and the associated
games will be playable through a web browser from anywhere on the Internet.

This book presents relevant concepts from software engineering, computer graphics,
mathematics, physics, game development, and game design—all in the context of
building a 2D game engine. The presentations are tightly integrated with the analysis
and development of source code; you'll spend much of the book building game-like
concept projects that demonstrate the functionality of game engine components.

By building on source code introduced early on, the book leads you on a journey
through which you will master the basic concepts behind a 2D game engine while
simultaneously gaining hands-on experience developing simple but working 2D games.
Beginning from Chapter 4, a “Design Considerations” section is included at the end of
each chapter to relate the covered technical concepts to elements of game design. By
the end of the book, you will be familiar with the concepts and technical details of 2D
game engines, feel competent in implementing functionality in a 2D game engine to
support commonly encountered 2D game requirements, and capable of considering
game engine technical topics in the context of game design elements in building fun and
engaging games.
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New in the Second Edition

The key additions to the second edition include JavaScript language and WebGL API update
and dedicated chapters with substantial details on physics and particle systems components.
All examples throughout the entire book are refined for the latest features of the
JavaScript language. While some updates are mundane, for example, prototype chain
syntax replacements, the latest syntax allows significant improvements in overall
presentation and code readability. The new and much cleaner asynchronous support
facilitated a completely new resource loading architecture with a single synchronization
point for the entire engine (Chapter 4). The WebGL context is updated to connect to
WebGL 2.0. The dedicated chapters allow more elaborate and gradual introduction
to the complex physics and particle systems components. Detailed mathematical
derivations are included where appropriate.

Who Should Read This Book

This book is targeted toward programmers who are familiar with basic object-oriented
programming concepts and have a basic to intermediate knowledge of an object-
oriented programming language such as Java or C#. For example, if you are a student
who has taken a few introductory programming courses, an experienced developer who
is new to games and graphics programming, or a self-taught programming enthusiast,
you will be able to follow the concepts and code presented in this book with little
trouble. If you're new to programming in general, it is suggested that you first become
comfortable with the JavaScript programming language and concepts in object-oriented
programming before tackling the content provided in this book.

Assumptions

You should be experienced with programming in an object-oriented programming
language, such as Java or C#. Knowledge and expertise in JavaScript would be a plus but
are not necessary. The examples in this book were created with the assumption that you
understand data encapsulation and inheritance. In addition, you should be familiar with
basic data structures such as linked lists and dictionaries and be comfortable working
with the fundamentals of algebra and geometry, particularly linear equations and
coordinate systems.

XX
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Who Should Not Read This Book

This book is not designed to teach readers how to program, nor does it attempt to
explain the intricate details of HTML5, JavaScript, or WebGL2. If you have no prior
experience developing software with an object-oriented programming language, you will
probably find the examples in this book difficult to follow.

On the other hand, if you have an extensive background in game engine
development based on other platforms, the content in this book will be too basic; this
is a book intended for developers without 2D game engine development experience.
However, you might still pick up a few useful tips about 2D game engine and 2D game
development for the platforms covered in this book.

Organization of This Book

This book teaches how to develop a game engine by describing the foundational
infrastructure, graphics system, game object behaviors, camera manipulations, and a
sample game creation based on the engine.

Chapters 2-4 construct the foundational infrastructure of the game engine.
Chapter 2 establishes the initial infrastructure by separating the source code system
into folders and files that contain the following: JavaScript-specific core engine logics,
WebGL2 GLSL-specific shader programs, and HTML5-specific web page contents. This
organization allows ongoing engine functionality expansion while maintaining localized
source code system changes. For example, only JavaScript source code files need to be
modified when introducing enhancements to game object behaviors. Chapter 3 builds
the drawing framework to encapsulate and hide the WebGL2 drawing specifics from
the rest of the engine. This drawing framework allows the development of game object
behaviors without being distracted by how they are drawn. Chapter 4 introduces and
integrates core game engine functional components including game loop, keyboard
input, efficient resource and game-level loading, and audio support.

Chapters 5-7 present the basic functionality of a game engine: drawing system,
behavior and interactions, and camera manipulation. Chapter 5 focuses on working
with texture mapping, including sprite sheets, animation with sprite sheets, and the
drawing of bitmap fonts. Chapter 6 puts forward abstractions for game objects and
their behaviors including per-pixel-accurate collision detection. Chapter 7 details the
manipulation and interactions with the camera including programming with multiple
cameras and supporting mouse input.
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Chapters 8-11 elevate the introduced functionality to more advanced levels.
Chapter 8 covers the simulation of 3D illumination effects in 2D game scenes.
Chapter 9 discusses physically based behavior simulations. Chapter 10 presents
the basics of particle systems that are suitable for modeling explosions. Chapter 11
examines more advanced camera functionality including infinite scrolling through
tiling and parallax.

Chapter 12 summarizes the book by leading you through the design of a complete
game based on the game engine you have developed.

Code Samples

Every chapter in this book includes examples that let you interactively experiment

with and learn the new materials. You can access the source code for all the projects,
including the associated assets (images, audio clips, or fonts), by clicking the Download
Source Code button located at www.apress.com/9781484273760. You should see a
folder structure that is organized by chapter numbers. Within each folder are subfolders
containing Visual Studio Code (VS Code) projects that correspond to sections of

this book.
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CHAPTER 1

Introducing 2D Game
Engine Development
with JavaScript

Video games are complex, interactive, multimedia software systems. They must, in

real time, process player input, simulate the interactions of semiautonomous objects,
and generate high-fidelity graphics and audio outputs, all while trying to keep players
engaged. Attempts at building a video game can quickly become overwhelming with the
need to be well versed in software development as well as in how to create appealing
player experiences. The first challenge can be alleviated with a software library, or game
engine, that contains a coherent collection of utilities and objects designed specifically
for developing video games. The player engagement goal is typically achieved through
careful gameplay design and fine-tuning throughout the video game development
process. This book is about the design and development of a game engine; it will focus
on implementing and hiding the mundane operations of the engine while supporting
many complex simulations. Through the projects in this book, you will build a practical
game engine for developing video games that are accessible across the Internet.

A game engine relieves game developers from having to implement simple routine
tasks such as decoding specific key presses on the keyboard, designing complex
algorithms for common operations such as mimicking shadows in a 2D world, and
understanding nuances in implementations such as enforcing accuracy tolerance of a
physics simulation. Commercial and well-established game engines such as Unity, Unreal
Engine, and Panda3D present their systems through a graphical user interface (GUI).

Not only does the friendly GUI simplify some of the tedious processes of game design
such as creating and placing objects in a level, but more importantly, it ensures that

© Kelvin Sung, Jebediah Pavleas, Matthew Munson, and Jason Pace 2022
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these game engines are accessible to creative designers with diverse backgrounds who
may find software development specifics distracting.

This book focuses on the core functionality of a game engine independent from
a GUI. While a comprehensive GUI system can improve the end-user experience, the
implementation requirements can also distract and complicate the fundamentals of
a game engine. For example, issues concerning the enforcement of compatible data
types in the user interface system, such as restricting objects from a specific class to be
assigned as shadow receivers, are important to GUI design but are irrelevant to the core
functionality of a game engine.

This book approaches game engine development from two important aspects:
programmability and maintainability. As a software library, the interface of the game
engine should facilitate programmability by game developers with well-abstracted utility
methods and objects that hide simple routine tasks and support complex yet common
operations. As a software system, the code base of the game engine should support
maintainability with a well-designed infrastructure and well-organized source code
systems that enable code reuse, ongoing system upkeep, improvement, and expansion.

This chapter describes the implementation technology and organization of this
book. The discussion leads you through the steps of downloading, installing, and setting
up the development environment, guides you to build your first HTML5 application,
and uses this first application development experience to explain the best approach to
reading and learning from this book.

The Technologies

The goal of building a game engine that allows games to be accessible across the World
Wide Web is enabled by freely available technologies.

JavaScript is supported by virtually all web browsers because an interpreter is
installed on almost every personal computer in the world. As a programming language,
JavaScript is dynamically typed, supports inheritance and functions as first-class objects,
and is easy to learn with well-established user and developer communities. With the
strategic choice of this technology, video games developed based on JavaScript can be
accessible by anyone over the Internet through appropriate web browsers. Therefore,
JavaScript is one of the best programming languages for developing video games for the
masses.
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While JavaScript serves as an excellent tool for implementing the game logic and
algorithms, additional technologies in the form of software libraries, or application
programming interfaces (APIs), are necessary to support the user input and media
output requirements. With the goal of building games that are accessible across the
Internet through web browsers, HTML5 and WebGL provide the ideal complementary
input and output APIs.

HTMLS5 is designed to structure and present content across the Internet. It
includes detailed processing models and the associated APIs to handle user input
and multimedia outputs. These APIs are native to JavaScript and are perfect for
implementing browser-based video games. While HTMLS5 offers a basic Scalable
Vector Graphics (SVG) AP], it does not support the sophistication demanded by video
games for effects such as real-time lighting, explosions, or shadows. The Web Graphics
Library (WebGL) is a JavaScript API designed specifically for the generation of 2D and
3D computer graphics through web browsers. With its support for OpenGL Shading
Language (GLSL) and the ability to access the graphics processing unit (GPU) on client
machines, WebGL has the capability of producing highly complex graphical effects in
real time and is perfect as the graphics API for browser-based video games.

This book is about the concepts and development of a game engine where JavaScript,
HTMLS5, and WebGL are simply tools for the implementation. The discussion in this
book focuses on applying the technologies to realize the required implementations and
does not try to cover the details of the technologies. For example, in the game engine,
inheritance is implemented with the JavaScript class functionality which is based on
object prototype chain; however, the merits of prototype-based scripting languages are
not discussed. The engine audio cue and background music functionalities are based
on the HTML5 AudioContext interface, and yet its range of capabilities is not described.
The game engine objects are drawn based on WebGL texture maps, while the features of
the WebGL texture subsystem are not presented. The specifics of the technologies would
distract from the game engine discussion. The key learning outcomes of the book are the
concepts and implementation strategies for a game engine and not the details of any of
the technologies. In this way, after reading this book, you will be able to build a similar
game engine based on any comparable set of technologies such as C# and MonoGame,
Java and JOGL, C++ and Direct3D, and so on. If you want to learn more about or brush
up on JavaScript, HTML5, or WebGL, please refer to the references in the “Technologies”
section at the end of this chapter.
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Setting Up Your Development Environment

The game engine you are going to build will be accessible through web browsers that
could be running on any operating system (OS). The development environment you are
about to set up is also OS agnostic. For simplicity, the following instructions are based
on a Windows 10 OS. You should be able to reproduce a similar environment with minor
modifications in a Unix-based environment like MacOS or Ubuntu.

Your development environment includes an integrated development environment (IDE)
and a runtime web browser that is capable of hosting the running game engine. The most
convenient systems we have found is the Visual Studio Code (VS Code) IDE with the Google
Chrome web browser as runtime environment. Here are the details:

o IDE: All projects in this book are based on VS Code IDE. You
can download and install the program from https://code.
visualstudio.com/.

¢ Runtime environment: You will execute your video game projects in
the Google Chrome web browser. You can download and install this
browser from www.google.com/chrome/browser/.

o glMatrix math library: This is a library that implements the
foundational mathematical operations. You can download this
library from http://glMatrix.net/. You will integrate this library
into your game engine in Chapter 3, so more details will be provided
there.

Notice that there are no specific system requirements to support the JavaScript
programming language, HTML5, or WebGL. All these technologies are embedded in the
web browser runtime environment.

Note As mentioned, we chose the VS Code—based development environment
because we found it to be the most convenient. There are many other alternatives
that are also free, including and not limited to NetBeans, IntelliJ IDEA, Eclipse, and
Sublime.
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Downloading and Installing JavaScript Syntax Checker

We have found ESLint to be an effective tool in detecting potential JavaScript source

code errors. You can integrate ESLint into VS Code with the following steps:

Go to https://marketplace.visualstudio.com/
items?itemName=dbaeumer.vscode-eslint and click install.

You will be prompted to open VS Code and may need to click install
again within the application.

The following are some useful references for working with ESLint:

For instructions on how to work with ESLint, see https://eslint.
org/docs/user-guide/.

For details on how ESLint works, see https://eslint.org/docs/
developer-guide/.

Downloading and Installing LiveServer

The LiveServer extension to the VS Code is required to run your game engine. It launches

aweb server locally on your computer through VS Code to host developed games. Much

like ESLint, you can install LiveServer with the following steps:

Go to https://marketplace.visualstudio.com/
items?itemName=ritwickdey.LiveServer and click install.

You will be prompted to open VS Code and may need to click install
again within the application.

Working in the VS Code Development Environment

The VS Code IDE is easy to work with, and the projects in this book require only the

editor. Relevant source code files organized under a parent folder are interpreted by VS

Code as a project. To open a project, select File » Open Folder and navigate and select

the parent folder that contains the source code files of the project. Once a project is

open, you need to become familiar with the basic windows of VS Code, as illustrated in

Figure 1-1.
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Explorer window: This window displays the source code files of the
project. If you accidentally close this window, you can recall it by
selecting View » Explorer.

Editor window: This window displays and allows you to edit the
source code of your project. You can select the source code file
to work with by clicking once the corresponding file name in the
Explorer window.

Output window: This window is not used in our projects; feel free to

u_n

close it by clicking the “x” icon on the top right of the window.
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Figure 1-1. The VS Code IDE

Creating an HTMLS5 Project in VS Code

You are now ready to create your first HTMLS5 project:

Using File Explorer, create a directory in the location where you
would like to keep your projects. This directory will contain all source
code files related to your projects. In VS Code, select File » Open
Folder and navigate to the directory you created.
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] File Edit Selection View Go Run  Termin. sl Help
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Figure 1-2. Opening a project folder
e VS Code will open the project folder. Your IDE should look similar
to Figure 1-3; notice that the Explorer window is empty when your

project folder is empty.
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Figure 1-3. An empty VS Code project

e You can now create your first HTML file, index.html. Select File »
New File and name the file index.html. This will serve as the home

or landing page when your application is launched.
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Figure 1-4. Creating the index. html file

o Inthe Editor window, enter the following text into your index.html:

<!DOCTYPE html>
<I--
This is a comment!
-->
<html>
<head>
<title>TODO supply a title</title>
</head>
<body>
<div>TODO write content</div>
</body>
</html>

The first line declares the file to be an HTML file. The block that follows within the
<!--and --> tags is a comment block. The complementary <html></html> tags contain
all the HTML code. In this case, the template defines the head and body sections. The
head sets the title of the web page, and the body is where all the content for the web page
will be located.

As illustrated in Figure 1-5, you can run this project by clicking the “Go Live” button
in the bottom-right corner of your VS Code or by pressing Alt+L Alt+O. There is a chance
that right after you entered the previous HTML code for the first time, the “Go Live”
button may not appear. In this case, simply right-click the index.html file in the Explorer
window, and click “Open with Live Server” menu item to launch the web page. After
the first time, the “Go Live” button will appear in the lower-right region of the IDE, as
illustrated in Figure 1-5.
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Figure 1-5. Click the Go Live button to run a project

Note To run a project, the index.html file of that project must be opened in

the editor when the “Go Live” button is clicked or when the Alt+L Alt+0 keys are
typed. This will become important in the subsequent chapters when there are other
JavaScript source code files in the project.

Figure 1-6 shows an example of what the default project looks like when you run it.
Notice that after the project begins to run, the “Go Live” button updates its label to show
“Port:5500.” You can click this button again to disconnect the IDE from the web page
to observe the “Go Live” label again. Clicking the button one more time will rerun the

project.



