Emerging Technologies for Healthcare Internet of Things and Deep Learning Models

Edited By

Monika Mangla Nonita Sharma Poonam Mittal Vaishali Mehta Wadhwa Thirunavukkarasu K Shahnawaz Khan

Emerging Technologies for Healthcare

Scrivener Publishing

100 Cummings Center, Suite 541J Beverly, MA 01915-6106

Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com)

Emerging Technologies for Healthcare

Internet of Things and Deep Learning Models

Edited by

Monika Mangla, Nonita Sharma, Poonam Mittal, Vaishali Mehta Wadhwa, Thirunavukkarasu K. and Shahnawaz Khan

This edition first published 2021 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA © 2021 Scrivener Publishing LLC

For more information about Scrivener publications please visit www.scrivenerpublishing.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

Wiley Global Headquarters

111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read.

Library of Congress Cataloging-in-Publication Data

ISBN 978-1-119-79172-0

Cover image: Pixabay.Com Cover design by Russell Richardson

Set in size of 11pt and Minion Pro by Manila Typesetting Company, Makati, Philippines

Printed in the USA

10 9 8 7 6 5 4 3 2 1

Con	tents
-----	-------

reface	e		xvii
art I	: Basi	cs of Smart Healthcare	1
An Overview of IoT in Health Sectors			
She	eba P. S	S.	
1.1	Intro	duction	3
1.2	Influe	ence of IoT in Healthcare Systems	6
	1.2.1	Health Monitoring	6
	1.2.2	Smart Hospitals	7
			7
			8
	1.2.5	Healthier Cities	8
	1.2.6	Research in Health Sector	8
1.3			9
	1.3.1	Hearables	9
	1.3.2	Moodables	9
	1.3.3	Ingestible Sensors	9
	1.3.4	Computer Vision	10
		0	10
1.4	Benef	fits of IoT	10
	1.4.1	Reduction in Cost	10
	1.4.2	Quick Diagnosis and Improved Treatment	10
		0 1 1	11
	1.4.4	Error Reduction	11
	1.4.5	Data Assortment and Analysis	11
			11
	1.4.7	Remote Medical Assistance	11
1.5	Chall	enges of IoT	12
	1.5.1	Privacy and Data Security	12
	1.5.2	Multiple Devices and Protocols Integration	12
	Art I An She 1.1 1.2 1.3 1.4	An OverviSheeba P. S1.1Intro1.2Influe1.2.11.2.21.2.31.2.41.2.51.2.61.3Popu1.3.11.3.21.3.31.3.41.3.51.41.41.4.21.4.11.4.21.4.31.4.41.4.51.4.61.4.71.51.5Chall	Art I: Basics of Smart Healthcare An Overview of IoT in Health Sectors Sheeba P. S. 1.1 Introduction 1.2 Influence of IoT in Healthcare Systems 1.2.1 Health Monitoring 1.2.2 Smart Hospitals 1.2.3 Tracking Patients 1.2.4 Transparent Insurance Claims 1.2.5 Healthier Cities 1.2.6 Research in Health Sector 1.3 Popular IoT Healthcare Devices 1.3.1 Hearables 1.3.2 Moodables 1.3.3 Ingestible Sensors 1.3.4 Computer Vision 1.3.5 Charting in Healthcare 1.4 Benefits of IoT 1.4.1 Reduction in Cost 1.4.2 Quick Diagnosis and Improved Treatment 1.4.3 Management of Equipment and Medicines 1.4.4 Error Reduction 1.4.5 Data Assortment and Analysis 1.4.6 Tracking and Alerts 1.4.7 Remote Medical Assistance 1.5 Challenges of IoT 1.5.1 Privacy and Data Security

vi Contents

		1.5.3	Huge Data and Accuracy	12
		1.5.4	Underdeveloped	12
		1.5.5	Updating the Software Regularly	12
		1.5.6	Global Healthcare Regulations	13
		1.5.7	•	13
	1.6	Disady	vantages of IoT	13
			Privacy	13
		1.6.2	Access by Unauthorized Persons	13
	1.7	Applic	cations of IoT	13
		1.7.1	Monitoring of Patients Remotely	13
		1.7.2	Management of Hospital Operations	14
		1.7.3	Monitoring of Glucose	14
		1.7.4	Sensor Connected Inhaler	15
		1.7.5	Interoperability	15
		1.7.6	Connected Contact Lens	15
		1.7.7	Hearing Aid	16
		1.7.8	Coagulation of Blood	16
		1.7.9	Depression Detection	16
		1.7.10	Detection of Cancer	17
		1.7.11	Monitoring Parkinson Patient	17
		1.7.12	Ingestible Sensors	18
		1.7.13	Surgery by Robotic Devices	18
		1.7.14	Hand Sanitizing	18
		1.7.15	Efficient Drug Management	19
		1.7.16	Smart Sole	19
		1.7.17	Body Scanning	19
		1.7.18	Medical Waste Management	20
		1.7.19	Monitoring the Heart Rate	20
		1.7.20	Robot Nurse	20
	1.8	Global	l Smart Healthcare Market	21
	1.9	Recent	t Trends and Discussions	22
	1.10	Conclu	usion	23
		Refere	ences	23
2	IoT-	Based S	Solutions for Smart Healthcare	25
			ı, Sonia F Panesar, Bableen Flora Talwar	
			h Kumar Sah	
	2.1	Introd	luction	26
		2.1.1	Process Flow of Smart Healthcare System	26
			2.1.1.1 Data Source	26
			2.1.1.2 Data Acquisition	27

		2.1.1.3	Data Pre-Processing	27
		2.1.1.4	Data Segmentation	28
		2.1.1.5	Feature Extraction	28
		2.1.1.6	Data Analytics	28
2.2	IoT S	mart Hea	lthcare System	29
	2.2.1	System 2	Architecture	30
		2.2.1.1	Stage 1: Perception Layer	30
			Stage 2: Network Layer	32
		2.2.1.3	Stage 3: Data Processing Layer	32
			Stage 4: Application Layer	33
2.3	Local	ly and Clo	oud-Based IoT Architecture	33
	2.3.1		Architecture	33
		2.3.1.1	Body Area Network (BAN)	34
		2.3.1.2		34
		2.3.1.3		35
2.4		l Comput		35
			ucture as a Service (IaaS)	37
			n as a Service (PaaS)	37
			e as a Service (SaaS)	37
	2.4.4		f Cloud Computing	37
			Public Cloud	37
		2.4.4.2	Private Cloud Hybrid Cloud	38
		2.4.4.3	Hybrid Cloud	38
			Community Cloud	38
			rduino Board	38
2.6			f Smart Healthcare System	39
			Diagnosis and Treatment	41
			Risk Monitoring	42
		Voice A		42
	2.6.4		1	42
~ -			Research and Development	43
			es and Apps	43
2.8	-	0	in Biomedical	44
		Deep Le		46
	2.8.2		eural Network Architecture	47
	2.8.3	1	earning in Bioinformatic	49
	2.8.4	-	earning in Bioimaging	49
		-	earning in Medical Imaging	50
		-	earning in Human-Machine Interface	53
	2.8.7	Deep Le	arning in Health Service Management	53

	2.9	Conc Refer	lusion ences		55 55
3	Pers	spectiv	e Toward	ent and Feyn QGraph Models—A New l Deep Learning	69
		/	haradi		
	3.1		duction		70
		3.1.1		e Learning Models	70
	3.2			ning Model Lifecycle	71
		3.2.1	-	Machine Learning Lifecycle	71
				Data Preparation	72
				Building the Machine Learning Model	72
				Model Training	72
				Parameter Selection	72
				Transfer Learning	73
				Model Verification	73
				Model Deployment	74
				Monitoring	74
	3.3		1	oyment in Keras	75
				idian Diabetes Dataset	75
				ayered Perceptron Implementation in Keras	76
		3.3.3		ayered Perceptron Implementation	
				ropout and Added Noise	77 80
	3.4	-			
		3.4.1	1		80
				Semantic Types	82
				Interactions	83
				Generating QLattice	83
		3.4.2		e Workflow	83
				Preparing the Data	84
				Connecting to QLattice	84
			3.4.2.3	Generating QGraphs	84
				Fitting, Sorting, and Updating QGraphs	85
				Model Evaluation	86
	3.5		·	e Environment and QGraph	
				VID-19 Impact Prediction	87
		Refer	ences		91

4	Sen	sitive H	Iealthcare Data: Privacy and Security Issues	
	and	Propo	sed Solutions	93
	Abh	ishek V	/yas, Satheesh Abimannan and Ren-Hung Hwang	
	4.1	Intro	duction	94
		4.1.1		94
		4.1.2	Technical Differences Between Security and Privacy	95
		4.1.3	HIPAA Compliance	95
	4.2	Medie	cal Sensor Networks/Medical Internet	
		of Thi	ings/Body Area Networks/WBANs	97
		4.2.1	Security and Privacy Issues in WBANs/WMSNs/	
			WMIOTs	101
	4.3	Cloud	l Storage and Computing on Sensitive Healthcare Data	112
		4.3.1		
			and Storage for Sensitive Healthcare Data	114
	4.4	Block	chain for Security and Privacy Enhancement	
		in Ser	nsitive Healthcare Data	119
	4.5	Artifi	cial Intelligence, Machine Learning, and Big Data	
		in He	althcare and Its Efficacy in Security and Privacy	
		of Ser	nsitive Healthcare Data	122
		4.5.1	Differential Privacy for Preserving Privacy of	
			Big Medical Healthcare Data and for Its Analytics	124
	4.6	Conc	lusion	124
		Refer	ences	125
Pa	art I	I: Em	ployment of Machine Learning	
			se Detection	129
_				
5			rediction Model Based on Machine Learning	131
			nar Gupta, Sourabh Yadav, Priyanka Bhartiya	
			ı Gupta	
			duction	131
			ture Review	133
	5.3	1	osed Methodology	135
		5.3.1	Data Accommodation	135
			5.3.1.1 Data Collection	135
			5.3.1.2 Data Preparation	136
		5.3.2	Model Training	138
			5.3.2.1 K Nearest Neighbor Classification Technique	139

			5.3.2.2	Support Vector Machine	140
				Random Forest Algorithm	142
			5.3.2.4	Logistic Regression	144
		5.3.3		Evaluation	145
		5.3.4	User Int	teraction	145
			5.3.4.1	User Inputs	146
			5.3.4.2	Validation Using Classifier Model	146
			5.3.4.3		146
	5.4	Syster	n Implen	nentation	147
	5.5	Conc	lusion		153
		Refer	ences		153
6	Lun	g Cano	er Detec	tion Using 3D CNN Based	
Ū		-	earning		157
		-	U	asudha Chhetri, Vikas Kumar Jaiswal	
			bh Yadav		
	6.1	Intro	duction		157
	6.2	Litera	ture Revi	iew	159
	6.3	.3 Proposed Methodology			
		6.3.1	Data Ha	andling	161
			6.3.1.1	Data Gathering	161
			6.3.1.2	Data Pre-Processing	162
		6.3.2		sualization and Data Split	162
				Data Visualization	162
			6.3.2.2	Data Split	162
		6.3.3	Model 7	Fraining	163
			6.3.3.1	Training Neural Network	163
			6.3.3.2	Model Optimization	166
	6.4	Resul	ts and Di	scussion	168
		6.4.1	Gatheri	ng and Pre-Processing of Data	169
			6.4.1.1	Gathering and Handling Data	169
			6.4.1.2	Pre-Processing of Data	170
		6.4.2		sualization	171
				Resampling	173
				3D Plotting Scan	173
				Lung Segmentation	173
		6.4.3		g and Testing of Data in 3D Architecture	175
	6.5		lusion		178
		Refer	ences		178

7	Pne	umoni	a Detecti	on Using CNN and ANN Based	
				Approach	181
	Priyanka Bhartiya, Sourabh Yadav, Ayush Gupta				
	and	Divesl	i Gupta	, <u> </u>	
	7.1		duction		182
	7.2	Litera	ture Revi	ew	183
	7.3	Prope	osed Meth	nodology	185
		7.3.1		61	185
			7.3.1.1	Data Collection	185
			7.3.1.2	Data Pre-Processing	186
				Data Split	186
		7.3.2			187
			7.3.2.1	Training of Convolutional Neural Network	189
			7.3.2.2	Training of Artificial Neural Network	191
		7.3.3	Model F	Fitting	193
			7.3.3.1	Fit Generator	193
			7.3.3.2	Validation of Accuracy and Loss Plot	193
			7.3.3.3	Testing and Prediction	193
	7.4	System	n Implen	nentation	194
		7.4.1	Data Ga	thering, Pre-Processing, and Split	194
			7.4.1.1	Data Gathering	194
			7.4.1.2	Data Pre-Processing	195
			7.4.1.3	Data Split	196
		7.4.2	Model I	Building	196
		7.4.3	Model F	Fitting	197
				Fit Generator	197
				Validation of Accuracy and Loss Plot	197
			7.4.3.3	Testing and Prediction	198
	7.5		lusion		199
		Refer	ences		199
8	Pers	sonalit	v Predict	ion and Handwriting Recognition	
U			hine Lea	U U	203
		0		rsh Mathur	
	8.1			o the System	204
	0.1	8.1.1		tions and Limitations	201
			8.1.1.1		206
				Limitations	206
		8.1.2	Practica		206

	8.1.3	Non-Functional Needs	206
	8.1.4	Specifications for Hardware	207
	8.1.5	Specifications for Applications	207
	8.1.6	Targets	207
	8.1.7	Outcomes	207
8.2	Litera	iture Survey	208
	8.2.1	Computerized Human Behavior Identification	
		Through Handwriting Samples	208
	8.2.2	Behavior Prediction Through Handwriting	
		Analysis	209
	8.2.3	Handwriting Sample Analysis for a Finding	
		of Personality Using Machine Learning Algorithms	209
	8.2.4	Personality Detection Using Handwriting	
		Analysis	210
	8.2.5	Automatic Predict Personality Based	
		on Structure of Handwriting	210
	8.2.6	Personality Identification Through	
		Handwriting Analysis: A Review	210
	8.2.7	Text Independent Writer Identification Using	
		Convolutional Neural Network	210
	8.2.8	Writer Identification Using Machine Learning	
		Approaches	211
	8.2.9	Writer Identification from Handwritten	
		Text Lines	211
8.3	Theor	•	212
		Pre-Processing	212
		Personality Analysis	215
	8.3.3	Personality Characteristics	216
		Writer Identification	217
		Features Used	219
8.4		ithm To Be Used	220
8.5	Propo	osed Methodology	224
	8.5.1	System Flow	225
8.6	•	rithms vs. Accuracy	226
		Implementation	228
8.7		rimental Results	231
8.8		lusion	232
8.9		lusion and Future Scope	232
	Ackn	owledgment	232
	Refer	ences	233

9	Risk	Mitigat	ion in Chil	dren With Autism Spectrum			
	Disc	order Usi	ng Brain S	Source Localization	237		
	Joy l	Karan Si	ngh, Deept	i Kakkar and Tanu Wadhera			
	9.1	Introdu	ction		238		
	9.2	Risk Fac	ctors Relate	ed to Autism	239		
		9.2.1 A	Assistive Te	chnologies for Autism	240		
		9.2.2 F	Functional	Connectivity as a Biomarker for Autism	241		
		9.2.3 E	Early Interv	rention and Diagnosis	242		
	9.3	Materia	ls and Met	hodology	243		
		9.3.1 S	Subjects		243		
		9.3.2 N	Methods		243		
		9.3.3 I	Data Acquis	sition and Processing	243		
		9.3.4 s	LORETA a	s a Diagnostic Tool	244		
	9.4	Results	and Discus	ssion	245		
	9.5	Conclus	sion and Fu	iture Scope	247		
		Referen	ces		247		
10	Pred	licting C	hronic Kie	Iney Disease Using Machine Learning	251		
	Mon	ika Gup	ta and Par	ul Gupta			
	10.1 Introduction 25						
	10.2 Machine Learning Techniques for Prediction						
		of Kid	ney Failure		253		
		10.2.1	Analysis	and Empirical Learning	254		
		10.2.2	Supervise	ed Learning	255		
		10.2.3	Unsuper	vised Learning	256		
			10.2.3.1	Understanding and Visualization	257		
			10.2.3.2	Odd Detection	257		
			10.2.3.3	Object Completion	258		
			10.2.3.4	Information Acquisition	258		
			10.2.3.5	Data Compression	258		
			10.2.3.6	Capital Market	258		
		10.2.4	Classifica	ation	259		
			10.2.4.1	Training Process	260		
			10.2.4.2	Testing Process	260		
		10.2.5	Decision	Tree	261		
		10.2.6	•	on Analysis	263		
			10.2.6.1	Logistic Regression	263		
			10.2.6.2	Ordinal Logistic Regression	265		
			10.2.6.3	Estimating Parameters	266		
			10.2.6.4	Multivariate Regression	268		
	10.3	Data S	ources		269		

		Data Analysis	272
	10.5	Conclusion	274
	10.6	Future Scope	274
		References	274
Pa	rt II	I: Advanced Applications of Machine	
	Lea	rning in Healthcare	279
11	Beha	wioral Modeling Using Deep Neural Network	
	Fram	nework for ASD Diagnosis and Prognosis	281
	Tanu	ı Wadhera, Deepti Kakkar and Rajneesh Rani	
	11.1	Introduction	282
	11.2	Automated Diagnosis of ASD	284
		11.2.1 Deep Learning	289
		11.2.2 Deep Learning in ASD	290
		11.2.3 Transfer Learning Approach	290
	11.3	Purpose of the Chapter	292
		Proposed Diagnosis System	293
	11.5	Conclusion	294
		References	295
12	Rand	dom Forest Application of Twitter Data Sentiment	
	Anal	ysis in Online Social Network Prediction	299
	Arna	w Munshi, M. Arvindhan and Thirunavukkarasu K.	
	12.1	Introduction	300
		12.1.1 Motivation	300
		12.1.2 Domain Introduction	300
	12.2	Literature Survey	302
	12.3	Proposed Methodology	304
		Implementation	311
	12.5	Conclusion	311
		References	311
13		edy to COVID-19: Social Distancing Analyzer	315
		abh Yadav	
		Introduction	315
		Literature Review	318
	13.3	Proposed Methodology	321
		13.3.1 Person Detection	321
		13.3.1.1 Frame Creation	324
		13.3.1.2 Contour Detection	325

			13.3.1.3 Matching with COCC) Model	326
		13.3.2	Distance Calculation		326
			13.3.2.1 Calculation of Centro	oid	326
			13.3.2.2 Distance Among Adja	acent Centroids	327
	13.4	System	Implementation		328
	13.5	Ċonclu	sion		333
		Referen	ces		334
14	IoT-F	Enabled	Vehicle Assistance System of Hi	ghway	
	Reso	urcing fo	or Smart Healthcare and Sustair	nability	337
	Shub	ham Josi	ii and Radha Krishna Rambola		
	14.1	Introdu	ction		338
	14.2	Related	Work		340
		14.2.1	Adoption of IoT in Vehicle to En	sure Driver Safety	341
		14.2.2	IoT in Healthcare System		341
		14.2.3	The Technology Used in Assista	nce Systems	343
			14.2.3.1 Adaptive Cruise Cont	trol (ACC)	343
			14.2.3.2 Lane Departure Warr	ning	343
			14.2.3.3 Parking Assistance		343
			14.2.3.4 Collision Avoidance S	System	343
			14.2.3.5 Driver Drowsiness De	etection	344
			14.2.3.6 Automotive Night Vis	sion	344
	14.3	Objecti	ves, Context, and Ethical Approv	al	344
	14.4	Techni	cal Background		345
			IoT With Health		345
		14.4.2	Machine-to-Machine (M2M) C	ommunication	345
		14.4.3	Device-to-Device (D2D) Comm	nunication	345
		14.4.4	Wireless Sensor Network		346
		14.4.5	Crowdsensing		346
	14.5	IoT Inf	rastructural Components for Veh	nicle	
			nce System		346
			Communication Technology		346
			Sensor Network		347
		14.5.3	Infrastructural Component		348
		14.5.4	Human Health Detection by Ser	nsors	348
	14.6	IoT-En	abled Vehicle Assistance System	of Highway	
		Resour	cing for Smart Healthcare and Su	stainability	349
	14.7		ges in Implementation		353
	14.8	Conclu	sion		353
		Referen	ces		354

15	Aids of Machine Learning for Additively Manufactured					
	Bone Scaffold				359	
	Nimisha Rahul Shirbhate and Sanjay Bokade					
	15.1 Introduction				360	
		15.1.1	1 Bone Scaffold			
		15.1.2	1.2 Bone Grafting			
		15.1.3	5.1.3 Comparison Bone Grafting and Bone Scaffold			
	15.2	.2 Research Background			364	
	15.3	5.3 Statement of Problem			364	
	15.4	4 Research Gap			365	
	15.5	Significance of Research			366	
	15.6	5.6 Outline of Research Methodology			366	
		15.6.1	Customiz	mized Design of Bone Scaffold facturing Methods and		
		15.6.2	Manufac			
		Biocompatible Material		atible Material	367	
			15.6.2.1	Conventional Scaffold Fabrication	368	
			15.6.2.2	Additive Manufacturing	369	
			15.6.2.3	Application of Additive Manufacturing/		
				3D Printing in Healthcare	370	
			15.6.2.4	Automated Process Monitoring		
				in 3D Printing Using Supervised		
				Machine Learning	376	
	15.7 Conclusion				377	
		References			377	
Index					381	

Preface

The use of computing technologies in the healthcare domain has been creating new avenues for facilitating the work of healthcare professionals. Several computing technologies, such as machine learning and virtual reality, have been flourishing and in turn creating new possibilities. Computing algorithms, methodologies and approaches are being used to provide accurate, stable and prompt results. Moreover, deep learning, an advanced learning technique, is striving to enable computing models to mimic the behavior of the human brain; and the Internet-of-Things (IoT), the computer network consisting of "things" or physical objects in addition to sensors, software or methods, is connecting to and exchanging data with other devices. Therefore, the primary focus of this book, *Emerging Technologies for Healthcare*, is to discuss the use and applications of these IoT and deep learning approaches for providing automated healthcare solutions.

Our motivation behind writing this book was to provide insight gained by analyzing data and information, and in the end provide feasible solutions through various machine learning approaches and apply them to disease analysis and prediction. An example of this is employing a threedimensional matrix approach for treating chronic kidney disease, the diagnosis and prognostication of acquired demyelinating syndrome (ADS) and autism spectrum disorder, and the detection of pneumonia. In addition to this, providing healthcare solutions for post COVID-19 outbreaks through various suitable approaches is also highlighted. Furthermore, a detailed detection mechanism is discussed which is used to come up with solutions for predicting personality through handwriting recognition; and novel approaches for sentiment analysis are also discussed with sufficient data and its dimensions.

This book not only covers theoretical approaches and algorithms, but also contains the sequence of steps used to analyze problems with data, processes, reports, and optimization techniques. It will serve as a single source for solving various problems via machine learning algorithms. In brief, this book starts with an IoT-based solution for the automated healthcare sector and extends to providing solutions with advanced deep learning techniques.

Here, we would like to take the opportunity to acknowledge the assistance and contributions of all those engaged in this project. We especially would like to thank our authors for contributing their valuable work, without which it would have been impossible to complete this book. We express our special and most sincere thanks to the reviewers involved in the review process who contributed their time and expertise to improving the quality, consistency, and arrangement of the chapters. We also would like to take the opportunity to express our thanks to the team at Scrivener Publishing for giving the book its final shape and introducing it to the public.

> Editors Monika Mangla, Nonita Sharma, Poonam Mittal, Vaishali Mehta Wadhwa, Thirunavukkarasu K. and Shahnawaz Khan

Part I BASICS OF SMART HEALTHCARE

An Overview of IoT in Health Sectors

Sheeba P. S.

1

Department of Electronics Engineering, Lokmanya Tilak College of Engineering, Navi Mumbai, India

Abstract

In the recent past, several technological developments have happened owing to the growing demand for connected devices. Applications of Internet of Things (IoT) are vast, and it is used in several fields including home-automation, automated machines, agriculture, finance sectors, and smart cities. Life style diseases are increasing among urban population and lot of money is spent for the diagnosis and treatment of diseases. Adaption of IoTs in health sectors enables real-time monitoring of the patients and alerts the patients for health checkups whenever required and communicate the information from time to time. During pandemic situations like Covid-19 which we are facing today, the need for IoT-enabled services in health sector is essential as the doctors have to treat the patients from remote locations. The connected devices can help in surveillance and disease control, keep track of nutritional needs, mental health, stress management, emergency services, etc., which will lead to an efficient health management system. This article gives an overview of applications of IoT in health sectors and how it can be used for sustainable development and also addresses various challenges involved in it. Efficient use of IoT in health sectors can benefit healthcare professionals, patients, insurance companies, etc.

Keywords: IoT, healthcare, smart gadgets, health monitoring

1.1 Introduction

Due to the increase in awareness of a healthy life style, the number of people depending on smart devices for monitoring their health is increasing day

Email: sheebaps@gmail.com

Monika Mangla, Nonita Sharma, Poonam Mittal, Vaishali Mehta Wadhwa, Thirunavukkarasu K. and Shahnawaz Khan (eds.) Emerging Technologies for Healthcare: Internet of Things and Deep Learning Models, (3–24) © 2021 Scrivener Publishing LLC

by day. IoT devices have become very essential to be the part of daily life in this technological advanced world. Various advancements are happening in the healthcare sectors from the recent past. With the advancement in technology in the use of IoTs integrated with Artificial Intelligence, a major digital transformation is happening in the healthcare sector. Various research is going on in this area which will add new dimensions to the healthcare system.

Wireless Body Area Networks (WBANs) have also been used extensively in healthcare services due to the advancement in technology. A survey on healthcare application based on WBAN is discussed in [1]. The paper also analyses the privacy and security features that arises by the use of IoTs in healthcare systems.

Use of RFID has become very common owing to the extensive applications of IoTs. A survey on RFID applications for gathering information about the living environment and body centric systems is discussed in [2]. The challenges and open research opportunities are also discussed in the article.

Various research is ongoing on to find the methods to improve the monitoring and tracking of the patients in an efficient manner. In [3], a novel IoT-aware smart architecture is proposed to monitor and track the patients. A smart hospital system is proposed which can collect real-time data and environmental factors by making use of ultra-low power hybrid sensing network.

A secure IoT-based healthcare system which operates with body sensor network architecture is introduced in [4]. Two communication mechanisms for authenticity and secured communication is addressed. The proposed method was implemented and tested using a Raspberry Pi platform.

In [5], authors address a survey paper on the IoT research and the discusses about the challenges, strengths and suitability of IoT healthcare devices and mentions about the future research directions.

One of the challenges faced by the IoT systems is regarding the security and privacy of data. In [6], the authors proposed a hybrid model for securing the medical images data. This model aims to hide the confidential patient data from the image while transmitting it.

Wireless body networks are becoming popular with the increased use of IoT smart devices. In [7], a solar energy powered wearable sensor node is addressed. At various positions of the body multiple sensors are deployed and a web-based application is used for displaying sensor data. Experiment results achieved good results for autonomous operation for 24 hours.

Body sensor networks is the one of the significant technologies used to monitor the patients by means of tiny wireless sensor nodes in the body. Security of such IoT devices poses a major issue in privacy of the patients. A secure system for healthcare called BSN-care is addressed in [8].

Securing the privacy of patients is of utmost importance for IoT-based healthcare systems. Various research is going on this area. In [9], a big data storage system to secure the privacy of the patients is addressed. The medical data generated is encrypted before it is transferred to the data storage. This system is designed as a self-adaptive one where it can operate on emergency and normal conditions.

Various systems are developed to take care of the personal needs while traveling which can aid in travel and tourism. An intelligent travel recommender system called ProTrip is developed in [10]. This system helps travelers who are on strict diet and having long-term diseases in getting proper nutritional value foods according to the climatic conditions. This system supports the IoT healthcare system for food recommendation.

The issues in the security and privacy of IoT-based healthcare system are a major concern. Most of the system is based on cloud computing for IoT solutions which has certain limitations based on economic aspects, storage of data, geographical architecture, etc. To overcome this limitation, a Fog computing approach is addressed in [11] and authors explores the integration of traditional cloud-based structure and Cloud Fog services in interoperable healthcare solutions.

For IoT-based healthcare system efficient authorization and authentication is required for securing the data. Such a system is addressed in [12]. It was found that the proposed model is more secure than the centralized delegation-based architecture as it uses a secure key management between the smart gateway and sensor nodes.

Recent security attacks for the private data and integrity of data is a matter of concern for the IoT healthcare systems. Conventional methods of security solutions are for the protection of data during patient communication but it does not offer the security protection during the data conversion into the cipher. A secure data collection scheme for IoT healthcare system called SecureData scheme is proposed in [13], and the experimental results showed that this scheme is efficient in protecting security risks.

Life style diseases like diabetes are common nowadays. It is very important for such patients to follow a strict diet and most of the time it

6 Emerging Technologies for Healthcare

is difficult for the healthcare professionals to get the precise physiological parameter of the patients. Without the knowledge of the current condition of the patients, it is difficult for the ontologies to recommend a proper diet for such patients. A fuzzy-based ontology recommendation system is proposed in [14] which can determine patient's conditions and risk factors by means of wearable sensors and accordingly can suggest the diet. The experimental results proved that the system is efficient for diabetes patients.

The data generated through IoT devices are prone to security threats. Maintaining the privacy of the patient data is of utmost importance. Traditional encryption schemes cannot be applied on healthcare data due to the limitations in the properties of digital data. A chaos-based encryption cryptosystem to preserve the privacy of patients is proposed in [15]. Random images are generated by the cryptosystem which ensures highest security level for the patient data. The performance of this model was found to be better than other encryption schemes.

The trends of IoT in healthcare sectors and the future scope for research is discussed in [16]. A sensor-based communication architecture and authentication scheme for IoT-based healthcare systems is addressed in [17]. Various research articles on big data analytics, and IoT in healthcare is addressed in [18].

With the enormous research happening in the field of IoT applications in healthcare sectors, new dimensions to the healthcare treatments and hospital services can be expected in the coming years.

1.2 Influence of IoT in Healthcare Systems

Due to the awareness about the importance of healthy life, people have become more health conscious nowadays. Humans are finding new ways to improve and track their health. Due to the implementation of emerging technologies like IoTs and Artificial Intelligence (AI), the healthcare systems have evolved as an entirely new system replacing the old system. Various stages of IoT system is shown in Figure 1.1.

Various developments have occurred in the healthcare systems in the recent past. Some of the advancements are discussed in this section.

1.2.1 Health Monitoring

Health monitoring on real-time basis became possible due to the invention of wearable smart gadgets. These devices continuously monitor various

OVERVIEW OF IOT IN HEALTH SECTORS 7

parameters like blood pressure, heart rate, oxygen level, and calories burnt. Fitness bands helps individuals to maintain their body healthy and fit by regularly alerting them about the steps taken per day and how much calories needs to be burnt to stay healthy.

These devices can be interconnected by IoT devices so that the healthcare workers and immediate family members can monitor the parameters and they will be alerted for any emergency situation. Such devices are very helpful for elderly persons who are living alone as they get immediate medical attention if there are variations in their body parameters.

1.2.2 Smart Hospitals

Smart hospitals mean all the equipment in the hospitals are connected through IoTs in addition to real-time monitoring system for the patients. Managing the assets in the hospitals can be made in a smarter way by means of IoTs. The equipment like oxygen cylinders, wheelchairs, and nebulizers can be tracked on real-time basis and made available when in need.

Now, in the current Covid-19 scenario, we have observed how the hospitals were managing the resources in a smarter way. The number of occupied beds and available bed status is updated on real-time basis, and the data is made available in various digital platforms.

Cleanliness and hygiene also can be maintained in an efficient manner. Environmental conditions like humidity and temperature can be monitored continuously and the spread of diseases can be prevented efficiently.

1.2.3 Tracking Patients

Due to the advancement of technology, hospitals have become more patient friendly. The duration of hospital stay can be reduced due to the online real-time monitoring of the patient data through IoT devices. It is

8 Emerging Technologies for Healthcare

easier for doctors to track the patient data at the comfort of sitting at a remote location. As the IoT devices are attached to the patients, continuous monitoring of the vital parameters is possible, and the doctors will be alerted for any variations in the parameters.

These smart devices not only track the patient's health parameters but also alert the patients for their consultation schedules. It also keeps the records of previous medications or medical history which aids the doctors in right diagnosis and treatments.

The availability of patient's data on IoT devices helps the hospitals to track the patients and provide quick medical attention in an efficient manner.

1.2.4 Transparent Insurance Claims

Healthcare insurance policy holders are increasing on a yearly basis. Due to the large number of policy holders who aims to get maximum profits by claiming the insurance, false claims are also increasing. Due to the presence of IoT devices which tracks the patient data, insurance companies can easily detect any fraud in the claims.

These devices not only help the patients to manage their insurance policies but also help the insurance companies to track the health of patients, underwriting, risk assessments, etc. Due to the IoT-enabled devices, the insurance claims became transparent and benefitting the genuine policy claims.

1.2.5 Healthier Cities

Population in cities are more compared to the rural areas as people prefer to have better quality and standards of living in cities with better facilities and infrastructures. Most of the cities are crowded and majority of the population use public and private transport for commuting. Vehicle densities in cities are more compared to villages which lead to more air pollution which, in turn, affect the health of the individuals and the environment.

Due to the advancement in technology in terms of usage of IoT devices, continuous real-time monitoring of the air quality is possible. The tracking of the air quality patterns helps the authorities to take appropriate actions to improve the air quality which, in turn, help to maintain a healthier city.

1.2.6 Research in Health Sector

Research in medical field is a continuous process which requires lot of time in gathering the patient data and analyzing it. Connected devices through IoTs generate large amount of real-time data which can be used for research purposes in an efficient manner as data collection becomes much easier with less amount of time and money. Statistical and comparative study analysis is possible as these devices can be connected anywhere in the world and data can be generated which will aid in medical research.

Innovative methods of treatments can be introduced by doing proper research in an efficient and quick manner due to the presence of IoT devices. This also helps to improve the healthcare services.

Smart monitoring devices will monitor all the parameters inside a medical laboratory and alerts if there is an abnormality so that immediate action can be taken. Based on the data available, various research studies can be done with much ease.

1.3 Popular IoT Healthcare Devices

New devices are invented to match with the technological advancements. These new devices aim to make the life easier for humans. Some of the popular IoT devices for healthcare are as follows:

1.3.1 Hearables

Hearables are one of the popular IoT devices which are used by the people for hearing aid. With these devices, people who have difficulty in hearing or those who are hearing impaired can interact with the outside world. This device can be connected with other smart devices like mobile phones and data can be synchronized. Various types of filters and equalizers are used for better user experience to match with the real sounds.

1.3.2 Moodables

Moodables are devices which enhances the mood of a person by sending triggering signals to the brain. These devices must be worn on head which has inbuilt sensors to elevate the mood.

1.3.3 Ingestible Sensors

These are like small pills which can be ingested to monitor our body from inside and can give warning signals to the doctors in case of any abnormalities. This device is made up with sensors of pill size which can give warning for any underlying diseases. These sensors can detect whether the prescribed medicines are taken properly and also can help in drug management.

1.3.4 Computer Vision

Computer vision technology mimics the human vision by making use of Artificial Intelligence. This technology has been implemented in drones which help them to navigate and detect obstacles. Visually impaired people can make use of this technology to navigate easily.

1.3.5 Charting in Healthcare

IoT devices helps doctors to maintain the patient data in an efficient manner. Doctors can easily get the charting of various parameters like blood pressure and sugar level from the connected devices and it can be immediately reviewed and shared with the patient's devices. This saves huge amount of time that doctors spend in creating manual charts for individual patients.

1.4 Benefits of IoT

Various benefits of IoTs are discussed in this section.

1.4.1 Reduction in Cost

As the doctors can remotely monitor the patients using IoT-enabled devices, the cost in visiting the healthcare facilities and consultation can be drastically reduced. Since the real-time monitoring of the patients is possible with IoT devices, hospital admissions can also be reduced by providing timely treatments.

1.4.2 Quick Diagnosis and Improved Treatment

Doctors can easily diagnose the diseases as real-time monitoring is possible with IoT devices and can give appropriate treatment on time at an early stage. Patients can also be fully aware about their health conditions and the treatments provided. Hence, the transparency in treatment can also be maintained. Doctors can provide proactive treatment to the patients based on the real-time data collected.

The continuous monitoring of patients helps to save many lives during emergency medical situations which arise due to heart attacks, asthma attacks, high blood pressure, etc.