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1
Introduction: Why This Book

1.1 Earthquakes – An Underrated
Hazard
Earthquakes have been a threat to human habitation
throughout history, but until relatively recently, their
causes were poorly understood. In the pre‐scientific era,
they were commonly ascribed to divine intervention. By the
time of the Lisbon earthquake in 1755, there were many
who understood that earthquakes had natural causes, but
the mechanism remained unexplained, and the
supernatural explanation was widely proclaimed, especially
from church pulpits (Udias and Lopez Arroyo 2009). And
over 150 years later, according to observer Axel Munthe
(1929), the inhabitants of Messina, destroyed by a massive
M7 earthquake in 1908, cried ‘Castigo di Dio’ (‘punishment
from God’).
Only with the development of plate tectonics in the
twentieth century has it become understood that
earthquakes are associated with active faults in the earth's
crust, with most of the largest occurring at the boundaries
of the tectonic plates as they interact with each other (as
explained in Chapter 4). We can now identify with some
precision whereabouts on the earth's surface large
earthquakes will occur. From measurements of the
movements at plate boundaries, and from the historical
record, we can make estimates of the largest magnitude
event which can occur on a fault section, and
approximately, the frequency with which events of different
magnitude will occur. But the largest events commonly



have return periods of several centuries or more (Bilham
2009), and science is still unable to predict, even to within
a few decades, when the next large earthquake on any fault
section will occur.
There is some evidence that the global earthquake
mortality rate (deaths per 100  000 of the world's
population) has been rather gradually reducing over the
last century or so. But it is a very slow rate of
improvement, and the variation from decade to decade is
very large. The first decade of the twenty‐first century was
a bad one, with several earthquakes resulting in more than
50  000 deaths. Yet, over the same timescale, death rates
from many other causes, such as infectious diseases and
road accidents, have been very significantly reduced
(ourworldindata.org/causes‐of‐death 2020). This has been
made possible with the introduction of public health
programmes and protection measures, backed by
government legislation and action programmes, but
supported and implemented by the general public. Such
programmes could similarly be applied to reduce
earthquake risk, but in many countries most at risk, this
has not so far happened. Why is this?
The greatest impact from earthquakes is nearly always the
damage to buildings (and other built artefacts – roads,
buildings, dams) from the ground shaking caused by the
propagation of the earthquakes' waves through the earth's
crust, which can result in destruction over a wide area.
Over the twentieth century, understanding the nature of
ground motion and the way in which this is transmitted
through structures has enabled engineers to develop ways
to build buildings which are able to withstand the expected
ground shaking with limited damage. This understanding,
gradually increasing through the development of structural
engineering theory and practice, combined with detailed
field investigation of the effects of successive earthquakes
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has enabled codes of practice for building design to be
developed, and these are nowadays mandatory for new
construction in most cities of the world.
But, as the world's population grows, and urbanisation
increases in pace, there are many places where new
buildings are being constructed without any reference to
good engineering practice for earthquake resistance.
This is partly because those responsible for constructing
the new buildings are unaware or possibly unconcerned
that a large earthquake may occur any time soon, and
building controls are lax. It is also due to lack of education,
information, skill and sense of urgency on the part of
builders and building owners (Bilham 2009; Moullier and
Krimgold 2015).
In rural areas of many poor countries, buildings are largely
constructed using highly vulnerable materials such as
adobe and unreinforced masonry. Poverty and lack of
understanding, combined with a vast demand for new
dwelling places, are thus fuelling the creation of a series of
future disaster scenarios (Musson 2012).
In order to understand why buildings collapse in
earthquakes and to find out what we can do about it, we
must look at each of the three ingredients of the problem:
earthquakes, buildings and people.

1.2 Earthquakes, Buildings, People
One of the reasons why earthquake risk does not get acted
on is because it is not well understood by the public.
Although the likely locations of large earthquakes are now
known, the timescale of their recurrence is very long, and
for most people at risk the last occurrence of ‘the big one’
for which they need to be prepared is many centuries ago,
often before the present cities existed. People may be



aware that they are living in an earthquake zone but fail to
appreciate the possibility of events much larger than recent
experience. In 2008, a modelling exercise, the California
Shakeout, was done to support earthquake protection
action for Southern California, which is threatened by a
large earthquake on the San Andreas Fault (Jones and
Benthian 2011). Lucy Jones, who led the modelling team
speaks of the ‘normalisation bias, the human inability to
see beyond ourselves, so that what we experience now or in
our recent memory becomes our definition of what is
possible’. Seismologists had identified much greater
earthquakes in the past than those in recent memory, but
the last great earthquake on that section of the San
Andreas Fault was in 1688. The modelling exercise, based
on a plausible, but by no means worst‐case scenario
magnitude 7.8 earthquake on the southern section of the
San Andreas Fault, showed that around 1500 buildings
would collapse, and 300  000 would be severely damaged,
causing around 1800 deaths and $213 billion losses. Fires
would break out and could become uncontrollable. And the
disruption caused to roads and pipelines would cause
massive disruption to business, lasting for months. This
modelling exercise led to a huge public awareness and
preparation programme which has resulted in much
reduced risks in California over the past decade.
But considerably more devastating consequences face
many of the growing cities in other earthquake zones,
particularly in Asia. The southern edge of the Eurasian
Plate, stretching from the Mediterranean to China, and
including Myanmar and Indonesia, is responsible for 85%
of the world's historic earthquake deaths. And this is a
region in which cities are today growing rapidly both in
size and in number, fuelled by global population rise and
urbanisation. Seismologist Roger Musson points to the risk
in Tehran, today a city of 12 million people. The last major



earthquake on the North Tehran Fault, passing close to the
city centre, was in 1834 at a time when Tehran was a small
town: an earthquake of M  >  7 hitting Tehran today could
cause as many as 1.4 million deaths. And seismologist
Roger Bilham (2009) has estimated that a direct hit on a
megacity (>10 million population) somewhere in the world
once a century is now statistically probable, with a possible
death toll exceeding one million, because of the
combination of hazardous locations and structural
vulnerability. The World Bank estimates that three billion
people will live in substandard housing by 2030. By 2050,
the UN projects that two‐thirds of the world's population,
around 7 billion people, will live in urban areas.
Unfortunately, because the threat to each city is seen as
remote, protection from earthquakes is given a lower
priority than other issues. Few households prioritise
spending on safety from future earthquakes above pressing
immediate concerns, like providing extra space or better
comfort, unless required to do so by regulation. And
elected governments tend to look for expenditure
programmes and new regulations which will give returns
within their current tenure of office, despite evidence that
money spent on disaster mitigation often avoids much
greater losses over time. For this reason, general
development expenditure is given priority over disaster risk
mitigation. And even within that part of government
budgets devoted to natural disasters, those from other
natural hazards are often given priority. Windstorm and
flood damage are more immediate risks, particularly as
these are becoming worse as a result of climate change.
Optimistically and opportunistically, the climate change
agenda has provided a global focus on resilience of
communities to natural threats. It is recognised that
especially in developing countries, cycles of disasters have
depleted decades of progress made in development. The



deaths and destruction from earthquakes are preventable.
Whilst the hazard itself is natural, the disasters are largely
man‐made, and completely preventable with proactive
interventions.

1.3 The Authors' Experience of
Earthquake Risk Assessment
The overall aim of our work over four decades at the
University of Cambridge's Department of Architecture and
at Cambridge Architectural Research Ltd has been to
understand the vulnerability of buildings to earthquakes
globally, in order to estimate the damage which is likely to
occur from future earthquakes. This knowledge can be
used to provide a sound basis to improve the building
stock, and reduce damage, loss of life and disruption from
future earthquakes. We have developed our knowledge of
building vulnerability through a series of collaborative
research projects, supported by the European Union and
the UK Government and Research Councils, and through
work for individual cities, companies managing portfolios of
buildings and insurance companies. But the primary source
of our knowledge and experience of buildings’ behaviour in
earthquakes has been post‐earthquake field missions. We
have been involved in EEFIT, the UK's Earthquake
Engineering Field Investigation team, since it was founded
in 1982, and have between us participated in field missions
in Japan, Italy, Turkey, India, Pakistan, Peru, Indonesia,
China, New Zealand and the South Pacific. The detailed
nature and aims of these field missions are discussed in
Chapter 2: but an essential element in all cases is to
describe and document the types of building affected and
the types of damage observed.
Successive projects have examined in detail the problems
of particular regions. In the 1980s, we examined the



traditional stone‐masonry construction of rural Eastern
Turkey and conducted shake‐table tests in Ankara to
investigate simple ways to reduce their vulnerability, the
cause of many deaths in earthquakes of the previous
decade. In the 1990s, we investigated the options for
protecting historic European cities such as Lisbon and
Naples from likely future earthquake damage, and we
looked at the performance of buildings which had been
strengthened following previous earthquake damage. We
also developed a method for assessing human casualties
from earthquakes based on the level of building damage,
and with colleagues in New Zealand applied this to the city
of Wellington.
Since 2000 we have worked with others to develop loss
modelling approaches to estimating damage and casualties,
on a city‐scale (in EU collaborative projects), for insurance
companies, or with the US Geological Survey, for rapid
post‐disaster damage assessment. And we have applied our
knowledge to assist organisations with large portfolios of
buildings to identify those which should be upgraded.
We have also worked with teams developing new ways to
assess earthquake damage using remote sensing, and led
the team developing the Earthquake Consequences
Database (So et al. 2012) for the Global Earthquake Model
(GEM). And we have applied similar approaches to
assessing vulnerability and damage to buildings from other
natural hazards such as windstorms and volcanic eruptions.
All this work is described in detail in technical project
reports and published papers, referred to in the chapters
which follow.

1.4 Aims of This Book
The title of this book asks a question: Why do buildings
collapse in earthquakes? In exploring the many layers of



the answer to this question, and the many answers in
differing contexts across the world, we want to
demonstrate that this is not just, not even primarily, a
technical question, but also a social, organisational and
even political question. In this book, we look at buildings
not only as assemblages of materials and components put
together to achieve certain functional ends, but also as
products of a society and a culture. We aim to explain the
physical reasons why buildings fail to withstand
earthquakes, but also to attempt to understand the social,
economic and political reasons why earthquake disasters
continue to happen. And through this combined
understanding, we want to point to the actions that can be
taken to improve seismic safety, and identify who should be
taking them.
With this aim, we hope to reach a wider audience than
those interested in the purely technical aspects of
earthquake protection, who would prefer a non‐
mathematical approach to the subject, with limited
technical detail. Thus, the book is designed to be read by
all those interested in the consequences of earthquakes, or
concerned for their own safety as occupants of buildings in
earthquake areas. It is also intended for those who have
responsibility for ensuring the safety of others in
earthquakes, whether as government officials, political
representatives, building owners or managers of
businesses. The book is written for a non‐technical
readership, but will also be of interest to all those
professionally involved in disaster preparedness and
earthquake engineering, as well as to students and
practitioners of architecture and engineering seeking a
broad overview of the consequences of earthquakes for
buildings.
Some readers of the book will live in an earthquake zone, in
which case they will want to know if their homes or


