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Preface
In the 21st century, the world is facing many challenges
and developments. People moving into urban areas are
keen to experience the new changes in cities, where
facilities are more user-friendly and comfortable. It has led
to the existence of next-generation antennas, and
researchers in this field are working towards developing
these antennas for industrial applications. Keeping this in
view, the present book is aimed at exploring the various
aspect of next-generation antennas, and their advances,
along with their challenges, in detail.
Antenna design and wireless communication have recently
witnessed their fastest growth period ever in history, and
this trend is likely to continue for the foreseeable future.
Due to recent advances in industrial applications as well as
antenna, wireless communication and 5G, we are
witnessing a variety of new technologies being developed.
Compact and Low-cost antennas are increasing the demand
for ultra-wide bandwidth in next-generation (5G) wireless
communication systems and the Internet of Things (IoT).
Enabling the next generation of high-frequency
communication, various methods have been introduced to
achieve reliable high data rate communication links and
enhance the directivity of planar antennas. 5G technology
can be used in many applications such as smart city and
smartphones, and many other areas as well. This
technology can also satisfy the fast rise in user and traffic
capacity in mobile broadband communications.
Therefore, different planar antennas with intelligent
beamforming capability play an important role in these
areas. The purpose of this book is to present the advanced
technology, developments, and challenges in antennas for



next-generation antenna communication systems. This book
is concerned with the advances in next-generation antenna
design and application domain in all related areas. It
includes a detailed overview of the cutting age
developments and other emerging topics, and their
applications in all engineering areas that have achieved
great accuracy and performance with the help of the
advances and challenges in next-generation antennas.
Readers
This book is useful for the Researchers, Academicians,
R&D Organizations, and healthcare professionals working
in the area of Antenna, 5G Communication, Wireless
Communication, Digital hospital, and Intelligent Medicine.
The main features of the book are:

• It has covered all the latest developments and future
aspects of antenna communication.
• Very useful for the new researchers and practitioners
working in the field to quickly know the best
performing methods.
• Provides knowledge on advanced technique,
monitoring of the existing technologies and utilizing the
spectrum in an efficient manner.
• Concisely written, lucid, comprehensive, application-
based, graphical, schematics, and covers all aspects of
antenna engineering.

Chapter Organization Chapter 1 gives an overview of
Microstrip filters for UWB communication. It also describes
the Multiband Microwave filter, Ultra-Wideband (UWB)
bandpass filter, and ultra-wideband filter with notch band
characteristic. Chapter 2 describes the introduction of



2×2 MIMO antenna configuration, and their diversity
performance analysis.
Chapter 3 explains the Scilab open-source software and
antenna array design.
Chapter 4 gives an overview of conformal antenna,
explains characteristics of conformal antenna, wearable
technology, cloth fabric wearable antennas, and simulated
radiation pattern.
Chapter 5 gives an overview of On-Body wearable antenna
for ISM band applications, explains design of star-shape
with AMC backed structure, characterization of AMC unit
cell, bending analysis of star-shaped antenna with AMC
backed structure, and on-body placement analysis of the
antenna with AMC structure.
Chapter 6 gives an overview of antenna miniaturization for
IoT applications, issues in antenna miniaturization, antenna
for IoT applications, and miniaturize reconfigurable
antenna for IoT.
Chapter 7 gives an overview of wireless communication,
Microstrip patch antenna, design & implementation of
projected antenna, and observe the effect of different
substrate materials.
Chapter 8 provides understanding of reconfigurable
antenna for cognitive radio system, uses and drawbacks of
reconfigurable antenna, and spectrum access and cognitive
radio.
Chapter 9 describes the Ultra-Wideband filtering antenna,
and Ultra-Wideband filtering antenna with notch band
characteristic.
Chapter 10 describes the UWB and multiband
reconfigurable antennas, need for reconfigurable antennas,



triple notched band reconfigurable antenna, and tri-band
reconfigurable monopole antenna.
Chapter 11 highlighted the IoT world communication
through antenna propagation with emerging design
analysis features, design and parameter analysis of multi-
input multi-output antennas, measurement analysis in 3D
pattern with IoT module.
Chapter 12 gives an overview of reconfigurable antennas,
polarization reconfigurable antenna, compound
reconfigurable antennas, and reconfigurable leaky wave
antennas.
Chapter 13 gives an overview of design of compact Ultra-
Wideband (UWB) antennas for microwave imaging
applications, design of a UWB-based compact rectangular
antenna, and validaed the miniaturized UWB antenna with
the human breast model developed.
Chapter 14 gives an overview of joint transmit and receive
MIMO beam-forming in multiuser MIMO communications,
and system modeling for MIMO beamforming architecture
based on generalized least mean algorithm.
Chapter 15 describes the adaptive stochastic gradient
equalizer design for multiuser MIMO system, and design of
adaptive equalizer by minimizing BER.



1
Different Types of Microstrip Filters
for UWB Communication

Prashant Ranjan1*, Krishna Kumar2, Sachin Kumar
Pal3 and Rachna Shah4
1Department of ECE, University of Engineering and
Management, Jaipur, India
2UJVN Ltd., Uttarakhand, India
3Bharat Sanchar Nigam Ltd., Guwahati, India
4National Informatics Centre, Dehradun, India

Abstract
Many filters such as triple-band filter, multiband filter, UWB
filter, and notch band filters have been investigated in
recent decades [1]. Bandpass filters with the features of
good performance, micro-package, ease of use, and low
cost have been the focus of device miniaturization.
However, most of these UWB filters with band-notched
have been designed by using various slots either in the
ground plane or radiating patch, slit on feeding line, or
integration of filter in feed line of the antenna. Slotted
methods can be used for frequency rejection but it may
distort the radiation patterns because of the
electromagnetic leakage of these slots. In this chapter, a
survey of multiband filter, UWB filter, and UWB with notch
band filter are presented.
Keywords: Ultra-wideband, bandpass filter, microstrip
patch, multiband, multiple-mode resonator, and
transmission zeros

1.1 Introduction



The system can be streamlined and the physical dimension
of the circuit minimized by triple-band microwave filters,
thereby increasing the demand for triple-band microwave
filters in modern communication systems. Recently, in
many research papers, triple and multiband microwave
filters have been widely studied. The use of alternately
cascaded multiband resonators is one way of designing a
triple-band filter. Coupling systems are used to achieve two
and three frequency bands with Quasi-elliptic and
Chebyshev frequency responses [2].

1.2 Previous Work
Various researchers have worked on the Microstrip filters
for UWB communication.

1.2.1 Multiband Microwave Filter for a Wireless
Communication System
Hao Di et al. [3] presented a technique to achieve a triple
passband filter. In this method, a frequency transformation
from the normalized frequency domain to the actual
frequency domain is used. Applying this transformation,
filter circuits with cross-coupling having triple-passband
have been constructed. Cross coupled tri-band filter
topology is presented, which consists of parallel resonators
and admittance inverters. By using expressions, the
external quality factors and coupling coefficients can be
calculated. Three passbands 3.3–3.4, 3.5–3.6, and 3.7–3.8
GHz, with more than 20 dB return loss have been reported
in this paper.
Hsu et al. [4] proposed asymmetric resonator-based one
wideband and two tri-band BPFs. The resonator contains
microstrip sections with different electrical lengths. Three
resonant modes can be shifted to the desired center



frequencies by varying the stub length of the first filter. In
the second filter, asymmetrical resonators are used to
achieve a wide stopband. For the third filter, wideband BPF
is designed using multi-mode resonances and transmission
zeros (TZs) of the asymmetrical resonator. It suppressed
the higher-order harmonics. The three passbands 1.5, 2.5,
and 3.5 GHz are achieved using four resonators.
Liou et al. [5], proposed a Marchandbalun filter with the
shorted coupled line to achieve triple passbands. The filter
is constructed with a triple-band resonator to exhibit the
triple-band admittance inverter characteristic. The
compensation techniques for phase–angle and impedance
matching are used to improve the phase and amplitude
responses of the existing three passbands. The defected
ground structure stubs and microstrip coupled–line
sections is used to realize the filter. Jing et al. [6] proposed
a single multimode resonator-based filter with six
passbands. The proposed MMR is a SIR (stepped
impedance resonator) with two symmetrical open-circuited
stubs positioned at two sides and one shorted stub
connected in the middle. The electrical lengths of two open
stubs are increased to excited the transmission zeros (TZs)
and transmission poles (TPs). The TZs are separated from
TPs by introducing open stubs; therefore, a six-band BPF is
designed. Two input-output tapped branches and radical
stub-loaded shorted lines are adjusted to improve filter
performance.
Hong et al. [7] proposed a cross-coupled microstrip filter by
using square open-loop resonators. In this paper coupling
coefficients calculation of the three coupling structures of
filters is developed. Empirical models are presented to
estimate the coupling coefficients. A four-pole elliptic
function type filter is designed. Three types of coupling
characteristics,the electric, magnetic, and mixed couplings,
have been reported. Kuo et al. [8] presented a microstrip



filter with two frequency passband response based on SIR.
SIR is in parallel-coupled and vertical–stacked
configuration. Resonance characteristics of the second
resonant frequency can be tuned over a wide range by
adjusting its structure parameters. Tapped input/output
couplings are used to match–band response for the two
designated passbands. Both coupling length and gap are
adjusted together to meet the required coupling
coefficients of two bands. Fractional bandwidth design
graphs are used to determine geometric parameters. Two
passband resonant frequencies are 2.45 and 5.8 GHz with a
fractional bandwidth of 12% and 7%, respectively. The
measured insertion loss for the first passband is 1.8 dB and
for the second passband is 3.0 dB. Higher-order filters are
also designed using this design procedure.
Guan et al. [9] proposed a triple-band filter using two pairs
of SIRs having single transmission zero. The first and the
third frequency bands are realized by using Parallel
coupled microstrip lines and the second frequency band is
realized by using an end-coupled microstrip line. Single TZ
is generated due to the antiparallel structure of the
microstrip line. 2.4 GHz and 5.7 GHz are generated by
longer resonators and 3.8 GHz is generated by the shorter
resonators. By changing the impedance ratio of the
resonator, the passband position of the filter can be
adjusted. The filter bandwidths can be adjusted by
adjusting the distance between resonators.
Ko et al. [10] presented two coupled line structures with
open stubs to design a triple-band filter but insertion losses
and bandwidths are poor. The third resonance frequency is
shifted from 8.9 GHz to 6.5 GHz by variation in the lengths
of two open stubs. A gap between transmission lines is
used to adjust the second resonance frequency at 4.2 GHz.
The first resonance frequency (2.4 GHz) can be adjusted
using the coupled line length.



Lin et al. [11] proposed a triple-band BPF based on SIR.
Hairpin type structure is used to reduce the size of the
filter. Three passbands are 1.0, 2.4, and 3.6 GHz with an
insertion loss of 2.2, 1.8, and 1.7 dB, respectively.
Wibisonoet et al. [12] proposed a triple band BPF using
cascaded three SIR. Filter passband frequencies are 900
MHz, 1800 MHz, and 2600 MHz simultaneously. Riana et
al. [13] proposed a split-ring resonator to create three
passband frequencies having two TZs. The filter coupling
model approach is used to design filter and control
passbands. Additional transmission zeros can be introduced
by adjusting the position of the coupled resonators. Using
triple-mode SRRs two filter topologies have been described.
Using the lumped-element model to design the mainline
and cross-couplings topology is presented in this paper.
Two independent extraction methods, a de-tuning method,
and a parameter-extraction method are used to determine
coupling coefficients. Three passbands are 1.7, 2.4, and 3
GHz.
Liu et al. [14] proposed a triple band HTS (high
temperature superconducting) filter using stub–loaded
multimode resonator. The odd-even mode method is used to
investigate the characteristics of the multimode resonator.
A nonresonant node with a source-load coupling
configuration is used to create TZs. Three passband
resonant frequencies of the HTS filter, 2.45, 3.5, and 5.2
GHz, are presented. Insertion losses of the first, second,
and third passbands are 0.16 dB, 0.55 dB, and 0.22 dB,
respectively. The overall size of the filter is 8.3 mm × 8.6
mm. Qiang et al. [15] proposed a design of a wideband 90°
phase shifter, which consists of open stub-based stepped
impedance and a coupled–line to achieve wideband. The
impedance ratio of the SIOS is used to analyze the
bandwidths of return loss and the coupling strength of the
coupled–line is used to analyze the phase deviation. The



bandwidth of the phase shifter is 105% (0.75 to 2.4 GHz)
with an insertion loss of 1.1dB.
Haiwen et al. [16] presented a triple band HTS filter by
using a multimode stepped impedance split ring resonator
(SI–SRR) to achieve the wide stopband property. Even and
odd mode analysis is used to analyze the equivalent circuit
model. This filter can be operated at 2 GHz, 3.8 GHz, and
5.5 GHz. The measured insertion losses can be obtained as
approximately 0.19 dB, 0.17 dB, and 0.3 dB respectively at
the center frequency of each passband. Zheng et al. [17]
proposed a UWB BPF by creating triple notch-bands to
make the multiband filter. SIR and four shorted stubs
having a length of λ/4 are used to design the basic UWB
filter. Open load stubs and E–shaped resonator are used to
achieve triple band-notched performance. Three notched
bands are at 4.8 GHz, 6.6 GHz, and 9.4 GHz. The minimum
insertion loss of 0.6dB and a maximum ripple of 0.88 dB
are reported.
Guan et al. [18] proposed a triple band HTS filter based on
a coupled line SIR (C-SIR) to control transmission zeros.
Three harmonic peaks are generated using C–SIR. Even–
odd analysis method is applied to analyze the filter. An
interdigital structure between the feed lines and C–SIR is
used to increase the selectivity of the filter. Spiral-shaped
lines are used for better coupling of the second-order
resonator. Three frequency bands 1.57 GHz for GPS, 3.5
GHz for WiMAX, and 5.5 GHz for WLAN are achieved.
Insertion losses are found to be 0.10, 0.20, and 0.66 dB at
each passband, respectively.
Chen et al. [19] proposed multiband microstrip bandpass
filters with circuit miniaturization. Five compact triple
modes stub-load SIRs (SL–SIRs) are used to achieve five
bands filter. The coupling scheme presented in this paper
provides multiple paths for different frequency bands which


