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Preface

The present volume contains contributions of the XV Latin American Congress of
Probability and Mathematical Statistics (CLAPEM, by its acronym in Spanish), held
at Merida, Mexico during December 2–6, 2019.

Endorsed by the Bernoulli Society, this event is the official meeting of the
Sociedad Latinoamericana de Probabilidad y Estadística Matemática (SLAPEM)
and it is the major event in probability and statistics in the region. It gathers an
important number of researchers and students, predominantly from Latin America,
serving as an ideal forum to discuss and to disseminate recent advances in the field,
as well as to reveal the future of our profession.

Over nearly 40 years, the CLAPEMs have greatly contributed to the development
of probability and statistics by promoting collaborations in the region as well as
with the rest of the world. Previous editions were held in Caracas (1980, 1985,
2009), Montevideo (1988), Ciudad de México (1990), San Pablo (1993), Viña del
Mar (1995, 2012), Córdoba (1998), La Habana (2001), Punta del Este (2004), Lima
(2007), Cartagena (2014), and San José (2016).

On this occasion, the congress gathered scholars from over 20 countries and
included a wide set of topics on probability and statistics. The scientific program
included four plenary talks delivered by Gerard Ben Arous, Sourav Chatterjee,
Thomas Mountdford, and Judith Rousseau. The event also benefited from eight
semi-plenary talks given by Pablo Ferrari, Michele Guindani, Chris Holmes, Jean
Michel Marin, Lea Popovic, and Fernando Quintana. The program also included two
courses: “ Hierarchical Bayesian Modeling and Analysis for Spatial BIG Data ” by
Sudipto Banerjee and “ Sharpness of the phase transition in percolation ” by Vincent
Tassion, 10 thematic sessions, 21 contributed sessions, and several contributed talks
and poster presentations.

The volume begins with the chapter by Andrade, Calvillo, Manrique, and
Treviño where the authors present a probabilistic analysis of random interval graphs
associated with randomly generated instances of the data delivery on a line problem
(or DDLP). Angel and Spinka consider the infinite random geometric graph on
a circle of circumference L, which is a random graph whose vertex set is given
by a dense countable set in such circle, and find a dependency behavior on the
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rationality of L. The asymptotic behavior of four binary classification methods,
when the dimension of the data increases and the sample sizes of the classes are
fixed, are studied by Bolivar-Cime. A class of transport distances based on the
Wassertein distances for random vectors of measures is considered by Catalano,
Lijoi, and Prünster. The latter leads to a new measure of dependence for completely
random vectors, and the quantification of the impact of hyperparameters in notable
models for exchangeable time-to-event data. Gil-Leyva studies the construction of
random discrete distributions, taking values in the infinite dimensional simplex, by
means of latent random subsets of the natural numbers, which are then applied
to construct Bayesian non-parametric priors. The connection between generalized
entropies based on a certain family of α-divergences and the class of some predictive
distributions is studied by Gutiérrez-Peña and Mendoza. A class of discrete-time
stochastic controlled systems composed by a large population of N interacting
individuals is considered by Higuera-Chan. The problem is studied by means of the
so-called mean field model. Kouarfate, Kouritzin, and Mackay provide an explicit
weak solution for the 3/2 stochastic volatility model which is used to develop a
simulation algorithm for option pricing purposes. Finally, León and Rouault revisit
Wschebor’s theorems on the a.s. convergence of small increments for processes with
scaling and stationarity properties and then apply such results to deduce that large
deviation principles are satisfied by occupation measures.

In summary, the high quality and variety of these chapters illustrate the rich
academic program at the XV CLAPEM. It is worth noting that all papers were
subject to a strict refereeing process with high international standards. We are very
grateful to the referees, many leading experts in their own fields, for their careful and
useful reports. Their comments were addressed by the authors, allowing to improve
the material in this volume.

We would also like to extend our gratitude to all the authors whose original
contributions appear published here as well as to all the speakers of the XV
CLAPEM for their stimulating talks and support. Their valuable contributions
encourage the interest and activity in the area of probability and statistics in Latin
America.

We hold in high regard the editors of the series Progress in Probability: Davar
Khoshnevisan, Andreas E. Kyprianou, and Sidney I. Resnick for giving us the
opportunity to publish the symposium volume in this prestigious series.

Special thanks go to the Universidad Autónoma de Yucatán and its staff for its
great hospitality and for providing excellent conference facilities. We are indebted to
Rosy Dávalos, whose outstanding organizational work permitted us to concentrate
mainly in the academic aspects of the conference.

The XV CLAPEM as well as the publication of this volume would not have been
possible without the generous support of our sponsors and the organizing institu-
tions: Bernoulli Society; Centro de Investigación en Matemáticas; Consejo Nacional
de Ciencia y Tecnología; Facultad de Ciencias–UNAM; Gobierno de Yucatán;
Google; Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas–UNAM;
Instituto de Matemáticas–UNAM; Universidad Autónoma de Chapingo; Universi-
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dad Autónoma Metropolitana; Universidad Autónoma de Yucatán; and Universidad
Juárez Autónoma de Tabasco.

Finally, we hope the reader of this volume enjoys learning about the various
topics treated as much as we did editing it.

Guanajuato, Mexico Daniel Hernández-Hernández
São Paulo, Brazil Florencia Leonardi
Mexico City, Mexico Ramsés H. Mena
Guanajuato, Mexico Juan Carlos Pardo Millán
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Asymptotic Connectedness of Random
Interval Graphs in a One Dimensional
Data Delivery Problem

Caleb Erubiel Andrade Sernas, Gilberto Calvillo Vives,
Paulo Cesar Manrique Mirón, and Erick Treviño Aguilar

Abstract In this work we present a probabilistic analysis of random interval
graphs associated with randomly generated instances of the Data Delivery on
a Line Problem (DDLP) (Chalopin et al., Data delivery by energy-constrained
mobile agents on a line. In Automata, languages, and programming, pp. 423–434.
Springer, Berlin, 2014). Random Interval Graphs have been previously studied by
Scheinermann (Discrete Math 82:287–302, 1990). However, his model and ours
provide different ways to generate the graphs. Our model is defined by how the
agents in the DDLP may move, thus its importance goes beyond the intrinsic
interest of random graphs and has to do with the complexity of a combinatorial
optimization problem which has been proven to be NP-complete (Chalopin et
al., Data delivery by energy-constrained mobile agents on a line. In Automata,
languages, and programming, pp. 423–434. Springer, Berlin, 2014). We study the
relationship between solvability of a random instance of the DDLP with respect to
its associated interval graph connectedness. This relationship is important because
through probabilistic analysis we prove that despite the NP-completeness of DDLP,
there are classes of instances that can be solved polynomially.

Keywords Connectedness analysis · Data delivery problem · Mobile agents ·
Random interval graph

1 Introduction

The research presented in this work is in the intersection of several disciplines,
Probability Theory, Computer Science, Operations Research, and Graph Theory.
So, in this introduction we define the problem, and provide the basic concepts of
computational complexity and random graphs that are needed to make the work
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self-contained. We also include several references for those that may want to go
deeper in the study of these subjects.

1.1 The Data Delivery on a Line Problem

The production of inexpensive, simple-built, mobile robots has become a reality
nowadays, to the point that a swarm of mobile agents can be used for different
tasks. A practical application would be, for instance, to use a swarm of drones to
explore a cave and produce a map of it by collecting and sharing geospatial data
whenever two drones meet. Or the use of a network of drones to deliver packages
to customers from retail stores or courier services. The Data Delivery Problem is
a mathematical abstraction of such scenarios and has been studied a lot lately, see
e.g., [1, 3, 4, 8, 9, 12]. Here we deal with a specific Data Delivery Linear Problem
(DDLP), namely where agents (robots) are constrained to move in a line. In this
version, a set of n energy-constrained mobile agents are placed on positions 0 ≤
xi ≤ 1, i = 1, . . . , n on the unit interval and have ranges ρi > 0 (denoting the
maximum length of a walk for each agent), the question is whether there is an order
in which the mobile agents should be deployed to pick up the data at a point s called
the source, and collectively move it to a predetermined destination called the target
t > s. The first agent, in the order found, moves to the source, picks up the data
and move it to the right according to its capacity. The second agent moves to the
point where the first agent is, takes the data and move further to the right where
a third agent comes to take over and so on until the data arrives, if possible, at its
destination t . Observe that there are two cases for the movement of an agent. If the
agent is to the left of the position d where the data is, it moves always to the right.
First to pick up the data and then to move it further to the right. If it is to the right of
d , then it has to move first to the left to reach d and then to the right as far as it can.
In both cases, the agent covers the range [xi − aρi, xi + (1 − 2a)ρi] where a = 0
for the first case and a = (xi − d)/ρi for the second. This observation is key to
define graphs associated to the problem. Observe also that the DDLP is a decision
problem; that is to say, the answer is yes or no. In this framework now we can talk
about the computational complexity of the problem.

This problem was introduced by Chalopin et al. [9], and it was shown to be
NP-complete, although for instances where all input values are integers they gave
a quasi-pseudo-polynomial time algorithm. In Sect. 2 we show how this problem is
equivalent to a graph theoretical problem which in turn is analyzed using random
graphs in Sect. 3. So let us first briefly recall some computational complexity and
graph theoretical concepts.
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1.2 Computational Complexity

This field has several roots: The seminal ideas of Jack Edmonds [13] about good
algorithms and good characterizations; the foundational work of Stephen Cook [11]
and Dick Karp [17], to name a few. The field is now represented by one of the
millennium problems: Is P=NP?. A systematic treatment of the subject can be found
in [15], [2].

A decision problem is a collection of instances (propositions) each of which is
true or false. The DDLP is one such decision problems. Each instance is of the
form: The set of agentsQ = {(xi, ρi), i = 1, . . . , n} can move the data from s to t .
This proposition is true or false. The problem is to decide for each instance which
is the correct answer. A decision problem is said to belong to the class P if there
is an algorithm (Turing Machine) that decides correctly which is the answer and
runs in polynomial time, which means that the number of steps the corresponding
Turing Machine has to perform is bounded by a polynomial in the size of the
instance (usually measured in bits). For the DDLP, the size of an instance is the
number of bits required to store Q, s and t . A famous Decision Problem in the
class P is to decide if a given set of linear inequalities has a solution. A decision
problem belongs to the class NP if for every instance with answer YES, there is a
polynomial algorithm to verify that the answer is correct. The DDLP is NP since
for an affirmative answer it suffices to show the sequence in which the agents are
used and check that effectively they move the data from s to t . This, of course can
be done very efficiently. A decision problem S belongs to the class NP-complete
if it is NP and any other NP problem can be reduced polynomially to S. Cook
provided the first NP-complete problem (satisfiability) and then Karp [17] added
a bunch of combinatorial problems to that class. Chalopin showed that DDLP is a
NP-complete problem. While question is P=NP? is open, we do not know if the
NP complete problems can be solved by polynomial time algorithms. At present,
the generalized belief is that P �= NP . If this is so, NP problems will remain as
difficult problems, including the DDLP. One of the drawbacks of this theory is that
it does not recognize clearly that a large amount of an NP-complete problem can be
solved efficiently. The recognition of that fact has motivated the use of probability
to asses fringes of “easy” instances and thus isolate the really hard instances of a
problem. A good example of this methodology is in [6]. Our work follows that path.
In Sect. 5 we interpret the results presented in Sect. 3 in this sense.

1.3 Graphs

For the purpose of this work it is sufficient to deal with simple graphs and so
we omit the adjective. A graph consists of a set V whose elements are called
vertices and a collection of subsets of V of cardinality 2 which we denote by
E and call them edges. If a vertex v belongs to an edge e we say that v is an
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extreme of e. Clearly every edge has two extremes. If u and v are the two extremes
of an edge we say that they are adjacent. A simple path (or path) is a sequence
v0, e1, v1, e2, v2, . . . , vn+1, en, vn in which all vertices vi, i = 1, . . . , n are different
and vi and vi+1 are the extremes of edge ei . Such path is said to connect vertices v0
and vn; when v0 = vk , the graph is a cycle, denoted by Ck . A graph is connected if
for every pair of vertices u and v of the graph, there exists a path connecting them.
Given a set V of real closed intervals in the real line we can construct a graph in the
following way: The set of vertices is V and two vertices are adjacent (form an edge)
if they intersect as intervals. A graph constructed in this way is called an interval
graph. The graphs that can be constructed in this way are a small part of all possible
graphs. For example, any cycle Ck with k > 3 is not an interval graph. However
they are nice graphs to work with because they have remarkable properties. There
are several ways in which a collection of intervals can be defined. We are interested
in two of them.

Definition 1 The symmetric model of a interval graph is generated by intervals Ii
defined by its center xi and its radius ρi in the form Ii = [xi − ρi, xi + ρi ]. The
interval graph associated to the symmetric model will be denoted by GS(Q) where
Q = {(xi, ρi), i = 1, . . . n}.

The asymmetric model is obtained from instances of DDLP considering Ii =
[xi − aiρi , xi + (1 − 2ai)ρi ] defined in Sect. 1.1. It will be denoted by GA(Q, a),
where againQ = {(xi, ρi), i = 1, . . . n} and a is a vector in the unit box of Rn.

A standard reference in graph theory is [7].

1.4 Random Interval Graphs

Random graphs were firstly introduced by Gilbert [16], but the work of Erdős and
Rényi [14] set the basis for the study of their evolution (a comprehensive study
on random graphs can be found in [6]). Later on, Cohen studied the asymptotic
probability that a random graph is a unit interval graph [10], and Scheinermann
replicated the ideas of Erdős and Rényi to study the evolution of random interval
graphs [18].

To continue our discussion, we introduce a probabilistic framework, so let
(Ω,F ,P) be a probability space with F a σ -algebra on the set of scenarios Ω
and P a probability measure on F . All random variables and our asymmetric model
will be defined there.

Scheinerman [18] obtained random interval graphs, using the symmetric model,
by defining two random variables for each interval, the centers {xi}ni=1 and the
radii of the intervals {ρi}ni=1, the centers with uniform distribution in [0,1] and the
radii also uniform in the interval [0, r] with r < 1, so intervals are constructed as
[xi − ρi, xi + ρi ]. We use the asymmetric model fixing the parameters {ai}ni=1, ai ∈
[0, 1] and considering 2n independent random variables, the locations {xi}ni=1 (all
identically distributed uniformly in [0, 1]), and the ranges {ρi}ni=1 (all identically
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distributed uniformly in [0, r]). The intervals are [xi − aiρi, xi + (1 − 2ai) ρi],
which are substantially different to the intervals of the symmetric model. First they
are asymmetric, second they are shorter as specified by the parameter ai which
represents the percentage of a mobile agent’s energy used to move backwards to
pick up the load before going forward with it, thus it determines the behavior of
the agent. The asymptotic analysis presented in this work is analogous to the one of
Scheinermann’s, but here we consider an asymmetric model which is more general.
Moreover, it is related to a NP-complete combinatorial problem which makes the
new model interesting from the point of view of computational complexity, a fact
that we show in this work.

2 Graph Theoretical Formulation of the Data Delivery on a
Line Problem

In this section we show how the DDLP is equivalent to an existence problem
for interval graphs. The transformation from one another is completely general
and does not assume that the data have been randomly generated. The equivalent
graph theoretical decision problem is the following: Given a finite collection
Q = {(xi, ρi), i = 1, . . . n} of points in R

2 decide if there exists a vector
a = (a1, . . . , an) such that the interval graph GA(Q, a) defined by the asymmetric
model is connected. This problem will be called the Existential Connectedness
Problem (ECP).

We say that two decision problems are equivalent if for every instance of one
there is an instance of the other such that both have an affirmative answer or both
have a negative answer.

Theorem 1 DDLP and ECP are equivalent.

Proof First we will show that for every instance (Q, s, t) of DDLP there exists
an instance of ECP whose solution conforms with the one of the DDLP instance.
First, discard all points of Q such that either xi + ρi < s or xi − ρi > t then add
two new points (s, 0) and (t, 0). Call this new set of points Q′ which defines an
instance of the ECP. A positive answer to this instance comes with a vector a∗ such
that GA(Q′, a∗) is a connected graph. So there exists a path T in GA(Q′, a∗) from
the vertex defined by (s, 0) to the vertex defined by (t, 0). The interior vertices of
T correspond to points of Q and so to agents in the DDLP instance. The order in
which the vertices of T are traversed from s to t define the order in which the agents
have to be deployed. The adjacency of consecutive vertices of T guarantee that the
corresponding agents can get in touch to pass the data from one to the next. So the
existence of an affirmative solution of ECP translates into a solution of DDLP.

It remains to be proven that if the solution to the ECP instance is negative so is
the answer to the DDLP. The contrapositive of this is that any YES answer to an
instance of DDLP translates into an affirmative answer of ECP. To prove this let
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(Q, s, t) be an instance of DDLP with a true answer and a sequence ri1 , . . . , rik of
agents that carry the data from s to t . This behaviour of the agents in the sequence
define a set of parameters ai1, . . . , aik . For the rest of the agents, which do not play
any role in the transportation of the data, let ai = 0 if xi < t and ai = 1 if xi ≥ t . We
claim that the graphGA(Q, a) is connected. The parameters ai1, . . . , aik define a set
of intervals, a path T ′ in GA(Q, a), that cover the segment [s, t]. We will show that
every other interval intersects T ′. For an agent ri such that xi < t the corresponding
interval is [xi, xi+ρi], if xi ≥ s, then xi is in [s, t] and so it intersects some interval
of T ′; if xi < s, then since irrelevant agents have been removed xi + ρi ≥ s and
therefore the interval intersects T ′ too. The case xi ≥ t is resolved similarly. �	

The next result is a direct consequence to Theorem 1. We omit the details of the
proof.

Corollary 1 ECP is NP-complete

Theorem 1 shows that DDLP, which is NP-complete, is reducible to ECP.
Moreover the reduction is polynomial since to transform a DDLP given by (Q, s, t)
to a ECP given by Q′ it is only needed to compute which robots (xi, ρi) satisfy
xi − ρi < s or xi + ρi > t; and to include the points (s, 0), (t, 0). This can be done
in linear time assuming arithmetic operations are performed in constant time. The
equivalence between DDLP and ECP allow us to deal with the graph theoretical
formulation and use the results and ideas of Random Graphs in order to obtain
some asymptotic results in the ECP and therefore the DDLP problems. Specifically,
parameters’ domain can be partitioned into regions, one in which the problems can
efficiently be solved. The relevance of the connectedness of an interval graph in
relation to the solvability of its associated DDLP instance cannot be overstated.
That is, if for any DDLP instance (Q, s, t) there exists a vector a in the unit box
such thatGA

(
Q′, a

)
is connected, then the DDLP instance is solvable, the converse

is certainly not true, as shown in the counterexamples of Fig. 1. On the other hand,
given a DDLP instance (Q, s, t), if for all possible vectors a in the unit box none
of the associated interval graphsGA

(
Q′, a

)
is connected, it is then assured that the

instance is not solvable. This last statement is summarized in the following corollary.

Corollary 2 Given a DDLP instance (Q, s, t) if its associated symmetric interval
graphGS

(
Q′) is disconnected, the instance is not solvable.

Proof For every vector a in the unit box we have that

[xi − ayi, xi + (1 − 2a) yi] ⊂ [xi − yi, xi + yi] .

Now, recall that Q′ = Q ∪ {(s, 0) , (t, 0)}, so if GS
(
Q′) is disconnected, it means

that for every vector a in the unit box GA
(
Q′, a

)
is disconnected as well. This

means that ECP is not solvable, so by Theorem 1 DDLP is not solvable. �	
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Fig. 1 For this example we take Q =
{(

1
4 ,

3
4

)
,
(

1
2 ,

1
2

)}
. In panel (a) we have a =

(
1
3 ,

1
3

)
, in

(b) a = (0, 0), and in (c) a =
(

1
3 , 0

)
. In the first two cases GA

(
Q′, a

)
is disconnected, but in the

third case it is connected and therefore solvable

3 Probabilistic Analysis of GA(Q, a)

We denote as usual the degree of a vertex vi by d(i). We write vi �∼ vj when there
is no edge joining the vertices vi and vj . We denote by v+i = xi + (1 − 2a)ρi (resp.
v−i = xi − aρi) the right (resp. left) boundary of vi . In this section we analyze
the connectedness of random interval graphs of the form GA(Q, a). The approach
that we follow is to fix a and analyze the asymptotic behavior of the connected
components of GA(Q, a). In order to do so, we first introduce random variables
that count the connected components of a random graph GA(Q, a). In this section
and the sequel we will specialize to the case in which a is a scalar, that is ai = a

for all i. Furthermore, we assume a ∈ [0, 1/2]. Estimations with this specification
will already yield lower bounds for the probability of solvability due to Theorem 1
which is our main goal.

For each i, i = 1, . . . , n let

Xi :=
{

1 if the right end point of vi is contained in no other interval vj , j �= i,
0 otherwise.

The family of random variablesX1, . . . , Xn indicates where a connected component
ends. For example, assume that X1 = X2 = 1 and Xi = 0 for i > 2. Assume
without loss of generality that the interval v1 is on the left of the right end point
of v2. Since X1 = 1 the right end point of v1 is not included in any other interval,
implying that all the intervals on the left of v+1 are disjoint from all other intervals
on its right. Thus, there are at least two components. In order to see that there are
exactly two components, assume that there is one more. For this component denote
by vj the interval such that v+j attains the supremum over all right ends of intervals
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in the components. Then, necessarily Xj = 1 with j > 2. This is a contradiction.
Then, there exists exactly two components.

We also define

X(n) :=
n∑

i=1

Xi

is the random variable that counts the number of connected components of
GA(Q, a). Note that P (X(n) = 0) = 0. The distribution of X(n) depends on
the parameter r . However, we do not write this explicitly in order not to overload
notation. In our first asymptotic result, we let the numbers of vertices n goes to
infinite while at the same time shrinking the range of the intervals (the parameter
r). The theorem gives the right trade-off for those processes in order to have
connectedness with high probability.

Theorem 2 Let β := 2
1−a and r(n) := β 1

n
(log(n)+ c). Then,

lim inf
n→∞ P (X(n) = 1) ≥ 1 − e−c. (1)

Proof Denote by v+i = xi + (1 − 2a)ρi the right point of the interval vi . Let

B(i) := {ω | v+i (ω) ∈ ∪k �=ivk}

be the event in which the right boundary of the interval vi is included in at least one
of the other intervals. The event {X(n) = 1} satisfies

{X(n) = 1} =
n⋃

k=1

⋂

i �=k
B(i).

Hence

P (X(n) = 1) = P

⎛

⎜⎜
⎝

n⋃

k=1

n⋂

i=1
i �=k

B(i)

⎞

⎟⎟
⎠ ≥ P

(
n⋂

i=2

B(i)

)

.

Moreover

1 − P

⎛

⎝
n⋂

j=2

B(j)

⎞

⎠ = P

⎛

⎝

⎧
⎨

⎩

n⋂

j=2

B(j)

⎫
⎬

⎭

c⎞

⎠ ≤
n∑

j=2

P
(
Bc(j)

) = (n− 1)P
(
Bc(2)

)
.
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Hence:

P (X(n) = 1) ≥ 1 − (n− 1)P
(
Bc(2)

)
. (2)

So now we estimate P (Bc(2)). The right end point v+i is a random variable and we
denote by μ it probability distribution function under P . Note that the distribution
does not depend on i. Then,

P
(
Bc(2)

) =
∫ 1+(1−2a)r

0
(1 − P (t ∈ v2)))

n−1 μ(dt),

due to the independency of the intervals. For a < 1
2 the random variable v+i is the

sum of two independent uniform distributions and then, we can easily see that μ is
a distribution concentrated on [0, 1 + r(1 − 2a)] with density

f (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x
r(1−2a) [0, r(1 − 2a)]
1 [r(1 − 2a), 1]
−x+1+r(1−2a)

r(1−2a) [1, 1 + r(1 − 2a)]
0 otherwise.

For t ∈ [0, 1 + r(1 − 2a)] let h(t, x, ρ) be the indicator function of {x − aρ ≤
t} ∩ {x + (1 − 2a)ρ ≥ t} and g(t, ρ) := {

(t + aρ) ∧ 1 − (t − (1 − 2a)ρ)+ ∧ 1
}
.

We have

P (t ∈ v2) = 1

r

∫ r

0

∫ 1

0
h(t, x, ρ)μ(dx)dρ

= 1

r

∫ r

0
g(t, ρ)dρ.

For t ∈ [0, (1 − 2a)r] the function g simplifies to g(t, ρ) = t + aρ − (t − (1 −
2a)ρ)1{t>(1−2a)ρ}. Hence

P (t ∈ v2) = t + 1

2
ar − 1

r

[
tρ − 1

2
(1 − 2a)ρ2

] t
1−2a

0

= t + 1

2
ar − 1

2r(1 − 2a)
t2.


