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Foreword by Otto Jager

For Everyone on This Planet

President John F. Kennedy in 1961 proclaimed that the United States would place
a man on the moon by the end of the decade. In 1969, Neil Armstrong took his
‘one small step’ on July 20th—the Americans made it with five-and-a-half months
to spare. After a devastating flood in 1953 that took 1836 lives, the Dutch decided
to mostly close the North Sea delta and build a storm surge barrier. Twelve building
projects and 43 years later, the coastline is reduced from 700 km to only 80 km.

The energy transition is often compared to the man on the moon-mission or to
the Delta works—mostly to emphasize the vastness of the challenge we are now
working on. Exceptional and impressive as those achievements forever will be, the
energy transition surpasses themby far. The change to a renewable energy systemwill
have serious impact on every economical sector and on the life of every individual
in our society. Armstrong’s ‘small step for a man’ needs an upgrade: ‘The energy
transition will be an upswing for everyone on this planet’.

It is exactly that aspect that makes this transition such an immense challenge:
it depends on the cooperation of all people. More than ever before, decisions on
remodelling the energy systemwill be affected by social, technological and economic
trends. The world of energy will be more dynamic, changes will be more drastic and
people will be more involved in renewable solutions. Extra challenging, but also an
open door for new chances—illustrated by the success and potential of green bonds
in financial markets.

Of course, the energy sector is used to looking forward for at least a decade and
anticipate on substantial changes. In this process, we need all the information and
analyses available to make the right decisions. These studies on Applied Operations
Research and Financial Modelling in Energy contribute to a better understanding of
policy implications of the proposed or applied methodologies. They also show the
value of using the right models and methods for decision making. I’m convinced that

v



vi Foreword by Otto Jager

these perspectives from Operations Research and Finance will have a positive effect
on the quality of our decisions—strategic, tactical, and operational.

Otto Jager
Chief Financial Officer

TenneT TSO B.V.
Arnhem, The Netherlands



Contents

Introduction: Applied Operations Research and Financial
Modeling in Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
André B. Dorsman, Kazim Baris Atici, Aydin Ulucan,
and Mehmet Baha Karan

OptimizationMethods on Electricity Generation and Transmission
Expansion Planning Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Mahdi Noorizadegan and Alireza Shokri

Demand-Driven Electricity Supply Options of Electric Vehicles:
Modelling, Simulation, and Management Strategy of Public
Charging Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Elvin Coban and Gokturk Poyrazoglu

A Review on Smart Energy Management Systems in Microgrids
Based on Power Generating and Environmental Costs . . . . . . . . . . . . . . . . 51
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Introduction: Applied Operations
Research and Financial Modeling
in Energy

André B. Dorsman, Kazim Baris Atici, Aydin Ulucan,
and Mehmet Baha Karan

1 Introduction

Decisions in the energy sector are generally complex with multiple conflicting objec-
tives. Accumulating demand, increasing competition, rising awareness on environ-
mental issues, together with evolving rules and regulations are all binding the energy
sector with environmental, social, and financial pressure to keep the production and
distribution processes under control. The planning in the sector usually involves
many sources of uncertainty and risk, varying time frames, and a large number
of stakeholders with different views, which makes the application of Operations
Research (OR) methods particularly suitable. There exists a vast literature on energy
sector applications of OR methodologies. This is due to fact that optimization and
rational decision-making are vital to building up more sustainable energy manage-
ment systems in such a dynamic and competitive business environment. In this vein,
financial decisions are one of the main legs to be handled since energy investments
are usually capital intensive.

Financial Modelling (FM) is a scientific approach for decision making and its
methods are capable of supporting financial decision making at different levels of
various sectors as well as the energy sector. It is possible to identify a wide spectrum
of application areas in energy finance that may include but not limited to pricing
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2 A. B. Dorsman et al.

and hedging decisions, understanding the market dynamics and managing demand,
measuring the effectiveness of regulations, assessing the feasibility and efficiency of
investments, supervising cash flows, capital budgeting, allocating resources and eval-
uating risk. This is achieved by the employment of an extensive range of quantitative
tools such as deterministic and stochastic optimization, multiple criteria, multiple
objective and fuzzy decision-making methods, simulation, econometric modeling,
statistical inference, and contemporarily by application of learning algorithms.

Applied Operations Research and Financial Modelling in Energy (AORFME)
aims to contribute to the both academic and practitioner sides of the energy sector by
offering several modeling applications followed by policy implications to aid various
decisions faced in the sector. The chapters of the book mainly aim to focus on a
variety of energy decisions, to present a quantitative perspective on these decisions,
and to provide policy implications of the proposed or applied methodologies. For
this purpose, we bring a group of OR and Finance researchers together and present
a collection of chapters that contribute to the applications in the field of Energy.

2 Operations Research and Financial Modelling in Energy

The volume comprises twelve chapters on the application ofOperationsResearch and
Financial Modelling in the energy sector grouped into three main parts. Within the
scope of the book, a vast array of problems devoted to energy markets is addressed
such as electricity generation & transmission planning, location and price deci-
sions, smart energy management systems, efficiency evaluation, price & volatility
forecasting, power plant pricing, the potential of renewable investments, valuation
issues, consumer decisions, and financial risk analysis. The book presents research
on both macro and micro levels as well as research focus on market dynamics,
renewable energy, pricing, and capacity decisions.

The above problem areas have been undertaken by the authors of the chapters
with a variety of methods. Methods implemented involve a range of techniques
of Operations Research and Financial Modelling from optimization to forecasting
and from conventional statistical methods to machine learning methods. Examples
include Mixed Integer Programming, Simulation-based Optimization, Data Envel-
opment Analysis, Time Series Forecasting, Malmquist Productivity Indices, Arith-
metic Brownian Motion, Principal Component Analysis, Logistic regression, Deep
Learning Methods, Support Vector Regression, and Random Forest.

Regarding the areas of application/industries, the volume presents research
devoted to different types of energy problems. The application areas also involve
variety with respect to means of production and networks. The chapters include
research on integrated natural gas & power networks, hydroelectricity power plants,
electricity distribution companies, electric vehicles,wind-hydro energy technologies,
and smart energy management systems in microgrids. There also exist chapters on
energy options, electricity markets, attitudes of industrial consumers, and valuation
of clean innovation.
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3 Issues Covered in This Book

The book is divided into three main parts listed below, each presenting a number
of chapters that focus on the abovementioned problem instances, methods, and
application areas of research:

Part A. Applied OR I: Optimization Approaches.
Part B. Applied OR II: Forecasting Approaches.
Part C. Financial Modelling: Impacts of Energy Policies and Developments in

Energy Markets.

Part A of the book consists of four chapters in which several optimization related
applications on energy are addressed: (i) electricity generation and transmission
expansion planning, (ii) demand-driven electricity supply options of electric vehicles,
(iii) smart energymanagement systems inmicrogrids, (iv) efficiency and productivity
change in the electricity distribution sectors. The methods vary from optimization to
simulation as well as their integrated use.

The book starts with the research of Mahdi Noorizadegan and Alireza Shokri
(Chap. “Optimization Methods on Electricity Generation and Transmission Expan-
sion Planning Problem”) on energy generation and transmission line expansion plan-
ning. After carefully reviewing the expansion problem domain in terms of problem
setting&modeling, types of uncertainty, and the solutionmethods,Noorizadegan and
Shokri propose a simulation-based optimization framework to handle the complex
problem of generation and transmission problems (GTEP) with key features and
methods inspired by their review. Their framework aims to capture the uncertainty
of both the electricity load and the power generation by renewable resources. The
framework suggests starting with an initial problem that leaves the complex compo-
nents out and simplifies the model. Then, simulation is suggested for improving the
constraints and the solution to this initial optimization problem. The authors point out
that the resulting framework is advantageous because instead of searching the entire
feasible region in a large-scale problem, it relies on decomposing it and introducing
the complexities of the problem to a simpler initial model step-by-step.

The next Chap. ”Demand-Driven Electricity Supply Options of Electric Vehi-
cles: Modelling,Simulation, and Management Strategy of Public Charging Stations”
presents research on a contemporary topic: ElectricVehicles (EVs) and their charging
stations (CSs). Elvin Coban and Gokturk Poyrazoglu discuss the challenges and
research opportunities in the demand-driven electricity supply options of electric
vehicles at public charging stations. This is a comprehensive research that covers
different aspects of the electric vehicle charging stations from location to pricing.
After reviewing the strategic, tactical, and operational level problems related to CSs,
a discussion on the existing modeling approach to locate CSs and their potential
extensions are presented. Following that, a simulation framework is described to
decide the number and type of chargers. Finally, the authors discuss different pricing
policies and potential future problems related to CSs. Last but not least, Coban and
Poyrazoglu’s research provides an extensive look at one of the important concerns
of the future: public charging networks.
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This chapter is followed by research on another contemporary matter: Smart
Energy Management Systems (SEMS). Ozgur Ican and Taha Bugra Celik, in their
Chap. “A Review on Smart Energy Management Systems in Microgrids Based On
Power Generating and Environmental Costs”, offer a review on renewable energy,
microgrids, and Smart Energy Management Systems. They rely on the optimiza-
tion methods used in improving SEMS and investigate the common grounds for
computational frameworks employed within these systems. They present a compre-
hensive discussion and table on the previous research on SEMS, their methods, and
a comparison of their results in terms of power generating and environmental costs.

The next chapter presents an application of efficiency measurement based on
linear programming. Yetkin Cinar and Tekiner Kaya’s Chap. “Measuring Efficiency
and Productivity Change in the Turkish Electricity Distribution Sector” looks at the
efficiency of the Turkish electricity distribution sector and its change over time using
well-known efficiency measurement methods of OR literature: Data Envelopment
Analysis and Malmquist Productivity Index. Relying on the large-scale privatization
experienced by the Turkish electricity sector starting from 2013, Cinar and Kaya
evaluate the efficiency in the post-privatization period.After a detailed reviewofDEA
applications in electricity distribution sectors, they measure the efficiency levels of
Turkish distribution companies, investigate the relationship of the efficiency levels
with several exogenous factors and assess the level of change over 5 years. The
chapter serves as a compact application of DEA and MPI supported by a review of
the related research which has been an interest since the 1990s.

Part B of the book is designed to present research on the forecasting methods
applied in the energy sector. Main research interests are (i) price and volatility fore-
casting in electricity markets, (ii) forecasting of the hydro inflow and optimization
of virtual power plant pricing, (iii) comparison of renewable energy technologies
via forecasting, (iv) valuation of energy real options with regime shifts. In this
part, the methods vary between the conventional econometric models to learning
methodologies.

Part B starts with a Chap. “Price and Volatility Forecasting in Electricity with
Support Vector Regression and Random Forest” by Mahmut Kara, Kazim Baris
Atici, and Aydin Ulucan. The chapter aims at contributing to the contemporary
research streamofmachine learning applications to electricitymarkets for forecasting
prices and volatility. The chapter serves as a neat application of learning tools to the
electricity markets. The authors present two types of forecasting schemes (Price &
Volatility) using two types of modeling approaches (Support Vector Regression &
Random Forest) in Turkish day-ahead electricity markets. Within the scope of the
research, utilizing the hourly Euro prices January-2013 and September-2019 period,
a rolling data scheme is designed to produce hourly prices for 340 weeks considering
16 features. The volatility forecasting covers realized volatility values comprising
more than 2000 days and 10 features. The metrics of SVR and RF are compared
with each other in terms of each scheme as well as with the metrics of the naive
estimations.
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The next Chap. “Forecasting the Hydro Inflow and Optimization of Virtual Power
Plant Pricing” is on hydroelectricity and features two-part research focusing on hydro
inflow forecasting and virtual power plant pricing. The chapter combines forecasting
and optimization methodologies within a well-designed framework. The authors,
Sezer Cabuk, Ozenc Murat Mert, A. Sevtap Selcuk-Kestel, and Erkan Kalayci
propose a multiple-stage framework for hydroelectricity power plants that every
stage’s output is input to the next stage resulting in virtual power plant pricing. The
hydro inflow forecasting is accomplished by utilizing Seasonal ARIMAwith eXoge-
nous variables (SARIMAX). The output of this stage, the forecasts, is used as the
input for the hydro optimization model to forecast the water capacity for the future.
On the other hand, they determine the price behavior usingMonte Carlo simulations.
Once capacity and price have been modeled, the virtual hydropower plant values are
estimated.

The following Chap. “Comparing the Renewable Energy Technologies via Fore-
casting Approaches” by Fazil Gökgöz and Fahrettin Filiz focuses on evaluating
wind and hydro energy potentials through forecasting tools as conventional regres-
sion methods and deep learning methods as Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU). Utilizing Turkish wind and hydropower electricity
generation data, Gökgöz and Filiz discuss the strengths and weaknesses of several
forecasting methods in predicting electricity generation using renewable resources
with an emphasis that forecasting toolsmay serve as an effective tool for policymakers
in the sector.

Part B ends with the Chap. “Valuing Energy Real Options with Regime Shifts”
by Turalay Kenc and Mehmet Fatih Ekinci. The authors focus on the real options
approach to value energy projects since these investments possess a high level
of macroeconomic risk. After introducing, a basic real options valuation model
with regime shifts, they derive a framework based on the Arithmetic Brownian
motion (ABM) process with regime shifts for valuing the energy real options. The
proposed model is illustrated in numerical analysis with a detailed discussion of its
implications.

Finally, Part C is devoted to Financial Modelling. The part consists of three chapters
that financial modeling related applications on energy are presented: (i) analysis of
electricity switching behavior of industrial consumers, (ii) feasibility and potential of
renewable investments in Tanzania, (iii) valuation of clean innovation, (iv) the power
grid as a technical to a finance issue. The methods vary from Brownian Motion to
statistical tests to validate the various hypothesis.

Part C starts with the Chap. “Understanding the Electricity Switching Behavior
of Industrial Consumers: An Empirical Study on An Emerging Market” by Murside
Erdogan, Selin Metin Camgoz, Mehmet Baha Karan, and M. Hakan Berument.
The chapter is focusing on the supplier switching behavior of industrial electricity
consumers. The authors present empirical research based on survey data consisting
of items for risk of switching, cost of switching, the attractiveness of switching,
perceptions of the service quality, and market competition. The relation between
these items and the probability of switching from suppliers is established using a
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binary logistic regression model. The results of the research aim to shed light on the
decisions of electricity suppliers, regulatory agencies, and policymakers.

In Chap. “Does the Market Value Clean Innovation? Evidence from US Listed
Firms”, Antoine Dechezleprêtre, Cal B. Muckley, and Parvati Neelakantan aim at
bringing new insights to the corporate environmental-financial performance debates.
Utilizing the US patent data for the period 1995 to 2012, econometric modeling
is used to disaggregate the innovation measurements into clean, dirty, and other
components. The analysis reveals an important finding that environment-friendly
innovation pays off.

The final chapter of the book (Chap. “The Power Grid: From a Technical to a
Finance Issue. Who Bears the Financial Risk?”) is written by André B. Dorsman and
Kees vanMontfort. In their chapter, the authors provide insight into financial relations
between various stakeholders of the Dutch electricity market. The authors provide
an understanding of the Dutch energy sector dynamics of clearing and the margin
requirements in financing. After establishing the key parties and system players, the
chapter discusses the quantification and bearing of the financial risks on the future
cash flows in the energy sector.

4 Concluding Remarks

To conclude, with a wide range of look into the energy sector decisions from
the perspective of OR and Finance perspectives, we hope that Applied Operations
Research and Financial Modelling in Energy (AORFME) contributes to the applied
research on energy-related issues and reaches its audience from the both academic
and practitioner sides of the energy sector.

This is the eighth volume in a series on energy organized by theCentre for Energy
and Value Issues (CEVI). In this volume, CEVI collaborates withHacettepe Univer-
sity Energy Markets Research and Application Center. The previous volumes in
the series were: Financial Aspects in Energy (2011), Energy Economics and Finan-
cial Markets (2012), Perspectives on Energy Risk (2014), Energy Technology and
Valuation Issues (2015), Energy and Finance (2016), Energy Economy, Finance and
Geostrategy (2018) and Financial Implications of Regulations in the Energy Industry
(2020).

The editors would like to thank the authors for their valuable contributions and
the reviewers for their effort to improve the quality of this book project. We would
like to thank also the Springer staff for their continuous support.



Optimization Methods on Electricity
Generation and Transmission Expansion
Planning Problem

Mahdi Noorizadegan and Alireza Shokri

1 Introduction

Electricity is considered as the heart of modern economies and is predicted to have a
significant increase in its share in the global energy mix i.e., twice the rate of primary
energy demand (IEA, 2019). Solar andwindwill have the highest growth rates among
other electricity resources from2018 to 2040 (IEA, 2019).According the same report,
in a sustainable development scenario where electricity plays a larger role in energy
demand, renewable resourceswill account for two thirds of global electricity demand.
Therefore, given the energy mix transition towards electricity (particularly renew-
able sources), energy planning studies mainly focus on power Generation Expansion
Planning (GEP). In general, GEP seeks an optimal investment of power generation
units over a planning horizon to meet predicted/projected energy consumption (load)
subject to a variety of constraints and considerations. Moreover, transmission facil-
ities play important economic and technical roles in GEP as their installation cost
and technical constraints could have substantial impacts on generation expansion
decisions. Therefore, many studies combine these two problems and reviewed an
integrated generation and transmission expansion planning problem (GTEP). Whilst
there are different versions of GEP, the main decision variables include investment
schedule for generation units. While transmission expansion planning is included
in the problem, location of new power generation units and decisions for trans-
mitting power from generating locations to demand points/areas are also decided.
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However, decision variables are not limited to only these generation units and trans-
mission lines/corridors. Depending on the setting and assumptions, a problem may
include many other types of decision variables such as decommission decisions,
power generated by units, phase angles of voltages and currents, etc. For instance,
Micheliet al. (2020) consider decommissioning variables. Direct Current (DC) load
flow is an approximation of Alternating Current (AC) load flow and has been consid-
ered in some studies (Caunhye & Cardin, 2018) while it has been ignored in many
GTEP related studies. This involves the computation voltage angle which depends
on geographical properties and technical characteristics of transmission lines. Some
studies (Coester et al., 2018) incorporated less technical details and instead focused
more on economic analysis and environmental aspects of GTEP and GEP.

In recent years, technological and economic advancements in renewable sources
as well as environmental requirements have directed the focus of energy planning
problems towards GTEP with high renewable energy penetration. Despite their
advantages, renewable sources impose considerable complexities to power supply.
Although cost of renewable sources has substantially declined (e.g., 70% for solar
from 2010 to 2018), it seems that renewables still cannot effectively compete with
thermal technologies as their cost has also reduced (Feldman & Margolis, 2019;
Fu et al., 2018). Therefore, governments designed attractive incentive schemes to
encourage companies for investing in renewable sources. Levin et al. (2019) studied
incentives mechanisms under four categories: (1) investment support, (2) genera-
tion support, (3) quantity targets, and (4) carbon policies. There are various studies
for further investigation of incentive mechanisms (Alolo et al., 2020; Newbery,
2016). Because of their uncertain power generation, integrating renewable sources
into existing power systems which mainly consist of thermal units, is complex and
requires sophisticated planning and scheduling.Moreover, technical restrictions such
as rampage constraints of thermal units limit the utilisation of renewable sources.
For instance, Duck curve is a critical concept to address the impact of power gener-
ation by solar units on power systems (Denholm et al., 2015). Capacity factors of
renewable sources are another important component that can have a considerable
impact on economic and technical analysis in GTEP. Capacity factors are usually
estimated for an entire year. In fact, this type of complexity and limitation makes
renewable sources more expensive. The wide use of renewable sources imposes
another complication to GEP. The consumption of natural gas by gas-fired units is
significantly affected by the uncertainty of’ power generated by renewable sources.
In other words, the production of gas turbines needs to be adjusted with respect to
power generation changes of renewable sources to satisfy demand. As a result, the
uncertainty of renewables is transferred to the gas network. In order to maintain gas
pressure at a safe level in a gas network for other usage (e.g., residential and industrial
sectors), gas and electricity storage devices and gas compressors need to be installed.
Integrated gas and power networks have been studied in operational level (Fallahi &
Maghouli, 2020a). However, recently there has been an interest for this integration
in planning problem (Conejo et al., 2020). Such problems are in general non-convex
non-linear mixed integer problems (Esmaili et al., 2020). The source of non-linearity
is the gas flow equation known as Weymouth equation.
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This book chapter provides a relatively comprehensive overview on GTEP and
suggests an optimisation modelling framework for GTEP that includes important
features. The rest of this chapter is organised as follow. In Sect. 2, we focus on the
mathematical modelling of a general GTEP where various types of objective func-
tions and constraints are discussed. In Sect. 3, we discuss two types of uncertain-
ties: demand and power generation of renewable resources, and equipment failure.
We suggest Interval Optimisation to deal with demand and generation of renew-
able resources and a cutting plane-based method for equipment failure. The both
approaches are conservative and consider the worst possible situations. In Sect. 4,
we briefly review the solution methods and suggest a simulation-based optimisation
framework for solving practical GTEP problems. Finally, we provide a summary of
this chapter in Sect. 5.

Notation—In this chapter, we use a simple notation for simplicity. Bold face char-
acters and symbols indicate vector i.e., xD

t := [
xD
ikt

]
ik . Subscripts denote indices

while superscripts denote the type of variables (e.g., D stands for decommissioned
equipment). The main sets, indices, decision variables and parameters are defined as
per below. The rest of variables and parameters are defined where needed.

Sets, indices, superscripts

I : the set of locations (nodes),
t : index for time period (year),
Tt : a subset within time period t ,
i, j : location indices,
h: index for hours of a day,
k: index for technology type (either power generation unit or transmission line),
l: index for fuel type,
G: used to denote the natural gas,
st : used to denote storage devices,
dis: used to denote discharging storage devices,
ch: used to denote charging storage devices,
D: used to denote decommissioned equipment,
N : used to denote new equipment.

Decision variables

xNt := [
xN
ikt

]
ik : binary variables representing whether at location i , a unit of

technology k at time period t is installed,
xD
t := [

xD
ikt

]
ik : binary variables representing whether a unit of technology k

located at location i at time period t is decommissioned,

yNt :=
[
yNi jkt

]

i jk
: binary variables representing whether between locations i and

j , a transmission line of technology k at time period t is installed,
pht := [pikht ]ik : continuous variables representing power generation at location

i with technology k at hour h in time period t ,
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fht := [
fi jkht

]
i jk : continuous variables representing power flow between locations

i and j using transmission line technology k at hour h in time period t ,
Iht = [Iikht ]: continuous variables representing inventory of storage at location i

with technology k at hour h in time period t ,
θiht : continuous variables representing the phase angle at location i at hour h in

time period t ,
disht := [disikht ]ik : continuous variables representing discharge of storage at

location i with technology k at hour h in time period t ,
chht := [chikht ]: continuous variables representing discharge of storage at

location i with technology k at hour h in time period t ,
πiht : continuous variables representing gas pressure at location i at hour h in time

period t ,
ght := [

gi jht
]
i j
: continuous variables representing natural flow between locations

i and j at hour h in time periodt ,
M,MG : large enough numbers.

Parameters

Q := [Qk]k : maximum capacity of power generation unit of technologyk,
Qmin := [

Qmin
k

]
k : minimum level of power generation unit of technologyk,

F := [Fk]k : maximum capacity of power flow for line of technologyk,
r := [rk]k : increasing ramp rate for power generation unit of technologyk,
LlTt : maximum available fuel of type k in time period Tt
αh := [αkh]k : capacity factor for hourly power generation unit of technology k,
x
∧ := [

x
∧

ik
]
ik : indicator for existing unit at location i , a unit of technology k in the

beginning of the planning horizon,
y
∧ := [

y
∧

i jk

]
i jk
: indicator for existing transmission line between locations i and j

of technology k in the beginning of the planning horizon,
πmin
i , πmax

i : minimum and maximum permitted gas pressure at location i .
Note that xt = x

∧ + xNt and yt = y
∧ + yNt . We also eliminate the transpose sign in

the notation.

2 Mathematical Model

Key components of GEPR include but not limited to objective function, environ-
mental impacts of sources of power generation, reliability, resiliency, uncertainty,
operational restriction and consideration, and impact of power generated by gas
network. GTEP decides on facilities (generation units and transmission lines) with
effective lives of more than 30 years. Therefore, similar to long term planning prob-
lems, some technical details such as daily operational details are replaced with their
approximations or ignored. However, this could affect the electricity mix leading to
higher costs or in some severe cases infeasible situations in reality. On the other hand,
building and solving a GTEP with many details are formidable tasks. Therefore, a
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reasonable trade-off between operational details and the problem complexity and
computational challenges is usually sought.

2.1 Objective Function

Whilst majority of studies consider cost-based models, some (Allahdadi Mehrabadi
et al., 2020; Lohmann & Rebennack, 2017) study a welfare or profit-based objective
functions. Electricity markets will have to be simulated to detect the electricity price
tomodel amaximisation ofGTEPmodel. Simulating electricitymarketswith reason-
able details is a complex topic. However, some studies (Coester et al., 2018) applied
a rather simple methods such as Merit Order Curve. In such models, regulators also
play an important role in setting electricity markets.We refer to Cramton et al. (2013)
for further discussion on energy and capacity markets. The main components of cost
forGTEP include investment, decommission, operation, andfixedmaintenance costs.

Investment cost—The investment for power system equipment is capital intensive
and usually involves long-term financial arrangements. Uncertainty of demand and
power generation by renewable sources complicates the risk assessment for investors.
Hence, some studies (de Oliveira et al., 2017; Simo et al., 2015) formulate GTEP as a
dynamic program. GTEP can be considered as a facility location problem with fixed
cost. This approach essentially requires a long-term planning horizon (to include the
full effective lifecycle of all equipment) in order to make a right balance between
operational and investment costs. However, due to complications such as disparity
of lifecycle of different equipment, it is not always possible. Instead of total fixed
investment costs, an equivalent annual cost for each equipment is computed. In this
situation, additional constraints are required to ensure of availability of a selected
facility for its entire lifetime. The investment cost of facility is computed towards
the end of planning horizon (Caunhye & Cardin, 2018; Ding et al., 2018).

Let F inv
t (xNt , yNt ) denote the investment cost function at time period t .

Decommission and upgrade cost—The main reasons to retire a unit are its high
maintenance and operational cost and its high rate of failure and unreliability. In
practice, even unitsmaybeused beyond their nominal effective lifetimewhen they are
properly maintained and looked after. Decommissioning some units such as nuclear
units incurs cost while decommissioning units such as gas turbines may lead to profit
as they have salvage values. In some cases, old units may not be decommissioned
and may be used to cover limited peak loads as an alternative for installing new units
for this purpose. The decision to keep old units or to decommission them should be
made through GTEP models. Moreover, units can be upgraded in an extra cost. In
some cases, upgrading old units can be more cost effective than investing in new
ones. For instance, gas turbines may be converted into combined cycle units or an
overhaul may significantly increase the efficiency of steam units. Upgrading a unit
usually involves considerable modelling complexities. Related constraints need to be
defined based on the type of upgrade. A simple solution is to define two new variables
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one for investment in the unit upgrade and one for decommissioning the old unit.
We useF D,U

t (xt , yt ) to denote the cost function for decommissioning and upgrading
power generation units and transmission line at time period t . It is worth mentioning
that some units such as distributed generators have shorter effective lifecycle and
may be installed and also decommissioned within the planning horizon.

Operation cost—Alongside the investment cost, operation costs (i.e., variable cost)
comprise themain part of electricity cost. The operation cost includes fuel cost, water
supply, pollution and emission cost, start-up cost. All components of operation cost
may depend on the age of units. Thermal units can usually work with more than one
type of fuel, which increases the availability of units. However, the efficiency, and
emission produced by units depend on the type of fuel. For instance, due to restriction
of natural gas network in winter as the result of higher level of consumption, other
fuels such as Mazut are used in power plants. As such periods are usually short,
modelling other fuels can have a considerable impact on the electricity mix. The
reason is that when the natural gas limitation is enforced, a single-fuel GTEP model
would change themix e.g., installing sufficient fuel-efficient units to ensure the feasi-
bility. Once fuel-efficient units are installed, the power generation plan and conse-
quently the operation cost would change. However, due to modelling and compu-
tational complexities, alternative fuels are generally ignored in GTEP. Temperature
and altitude also affect power generation by almost 10 percent (Sen et al., 2018).
Whilst it is not difficult to incorporate temperature and altitude in GTEP models,
their impacts are usually neglected. It is worth mentioning that the fuel consump-
tion function is not linear; but, a linear approximation is usually studied for more
simplicity. Start-up cost is often considered in GTEP models. Modelling start-up
requires constraints that link power generation in different hours. Such constraints
are complicating constraints and increase the computational complexity.

Although water supply is crucial for thermal units, it is not included in GTEP
studies as it is considered water is available everywhere. However, this is not a
correct assumption. Water supply at certain dry locations can be quite expensive
or in some areas impossible. We carried out a simple experiment to investigate the
impact of water supply cost and restrictions. We noticed that water supply in areas
with particular restrictions could play an important role in determining the electricity
mix.

Environmental consideration is among the most influential factors to shift elec-
tricity mix towards renewable sources. The emission cost is now a key part of opera-
tion costs, and is mainly considered for NOx, SO2, CO, SPM, CO2, CH4and N2O (Li
& Taeihagh, 2020). It is worth mentioning that the penalty for each one is different.
In addition to penalising, the production of some pollutants may be restricted. The
emission cost depends on several factors such as distance between power plants
and cities, population of cities, type of emission and pollution and type of fuel.
Moreover, some environmental consideration may forbid installing power plants in
special areas. This is important when the decision for transmission lines/corridors in
included.

Let Fopr
t (xt , yt ) denote the operation cost function at time period t .
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Fixed and maintenance cost—There is usually a schedule for power plants and
unit maintenance, which depends on hours that each unit produces electricity in each
year. Some types of maintenance activities are short, but some are longer. The cost
for each type is therefore different. But it is common to consider a fixed cost for
annual maintenance for each unit depending on the technology of units. A fixed cost
is also considered for each unit, which does not depend on its performance. We use
F f i x

t (xt , yt ) to denote the fixed and maintenance cost function at time period t .

2.2 Constraints and Technical Conditions

We classify the constraints and technical conditions of a GTEP model into three
groups: (1) investment related constraints, (2) capacity constraints, and (3) technical
constraints. These constraints are related to power generation units, transmission
lines, and gas network. A key factor in formulating a GTEP is time interval which is
usually hourly based intervals. But depending on the problem, 24 h in a day could
be split into 6 intervals. This will significantly reduce the number of variables and
constraints. In the following constraints, we consider hourly interval and present a
brief mathematical model for a general GTEP.

Investment related constraints—As mentioned in the objective function descrip-
tion, when the investment decisions are annually modelled, additional constraints are
required to ensure that once a unit is installed, it will be available for the rest of the
planning horizon. Analogously, we need tomake sure once a unit is decommissioned,
it will be no longer available for production.

xNt ≤ xNt+1 (1)

yNt ≤ yNt+1 (2)

xD
t ≥ xD

t+1 (3)

yDt ≥ yDt+1 (4)

Capacity constraints—These constraints enforce capacity constraints for new and
existing power generation units and transmission lines.

∑

l∈Lphtl ≤ αh(Qxt + Q(1 − xD
t ) (5)

|fht | ≤ Fyt + F(1 − yD
t ) (6)
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∑

l∈Lηphtl ≤ LlTt (7)

where η is the vector of fuel consumption rate for 1MWh corresponding to units
in vector phtl . When hydropower units are included in GTEP, additional constraints
for their power generation should be considered such as intakes and reservoir levels.
Since other entities (agricultural related organizations) are involved, hydropower
units may not be always available in particular during pick times.

Technical constraints—In an accurate model, all technical constraints in a Security
Unit Commitment (SUC) problem will have to be considered. However, as GTEP
is a long-term planning problem, only important conditions are studied. Given their
complexities, effective approximations for some constrains are developed and used
in GTEP. Here, we consider ramp rate constraints, start-up related constraints, and
DC power flow requirements. In order to formulate rampage constraints, additional
binary variables are needed for each unit. However, it may not be vital to include
such details for a GTEP. We suggest using the following ramp rate constraints:

pht − ph+1,t ≤ min{r,αh(Qxt + Q
(
1 − xD

t

) − pht } (8)

The above inequality only enforces increasing ramp rate limits. A similar
inequality can be used for modelling decreasing ramp rate; but it is not crucial to add
the latter to the model. Equivalent ramp rate functions can be used to further simplify
the ramp rate constraints. Lohmann and Rebennack (2017) proposed an efficient way
of modelling unit start-up. They divided the power generation of each unit to two
parts: pL

ht is a vector of variable for power generation of units up to their Qmin, and
pUht is another vector of variables for power generation between Qmin and Q. Then,
the difference between pL

h−1,t and pL
ht approximates the start-up variable uht . The

below inequalities compute the start-up variables

QminpL
ht + (

Q − Qmin
)
pUht = pht (9)

pL
ht + pL

h−1,t ≤ uht (10)

pUht ≤ pL
ht (11)

The last inequality ensures that the load below minimum generation always
exceeds the load above minimum generation. It is trivial that without this inequality,
the start-up variable may be zero. AC load flow equations involve non-linear and
complex terms. Even in SUC problems which needs to be accurate, they are approx-
imated by DC load flow equations. In a long-term planning, a good approximation
may be sufficient. Therefore, we only enforce the key equations for load flow as
follows.
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−M(1 − yht ) ≤ f ht − Sθ
∧

ht ≤ M(1 − yht ) (12)

where S is the matrix of reactance of lines and θ
∧

ht is the vector of difference of
phase angles at two ends of each line. We misuse the notation in the above inequality
for the notation brevity and simplicity. But it is worth mentioning that it should be
constructed so that we have fi jht = si j (θiht − θ jht ) if a line is installed or exists.
We have observed that when the above inequality is removed, the solution of GTEP
significantly changes and may not be feasible for a real situation.

Storage Constraints—Storages substantially complicate the problem; because it
includes binding constraints that connect power generation of different hours (similar
to rampage constraints). Therefore, although theyhavebecomevital in power systems
with high renewable penetration, many studies still do not explicitly formulate them
(Chen et al., 2019). They are very important for technical purposes such as helping
to cover load rampage, stability of power network, and variation of renewables’
power generation. Storages are especially usefulwhen the difference of themaximum
and minimum electricity loads is very high. In this case, there will be enough idle
units to charge storages during off-peak times to be used in pick times. Storages
conventionally are batteries and pumped-storage hydroelectricity. Recently, Power-
to-Gas (PtG) systems are used to produce gas during off-pick times, in order to be
used to generate power when required (Ban et al., 2017; Fallahi &Maghouli, 2020b).

Ih+1,t = Iht − γ disdisht + γ chchht (13)

Iht ≤ Qst (Qxstt + Q(1 − xD,st
t ) (14)

disht ≤ ιdis(Qxstt + Q(1 − xD,st
t ) (15)

chht ≤ ιch(Qxstt + Q(1 − xD,st
t ) (16)

where γ ch and γ dis are charging and discharging efficiency vectors, respectively.
Also, ιch and ιdis are charge and discharge rate vectors, respectively. Equations (13)
state the storage balance equation between two hours. Constraints (14–16) enforce
inventory, discharging and charging restrictions based on the existing, installed and
decommissioned capacity.

Gas Network—Natural gas is the main fuel used thermal units. The variation of
power generation by renewable sources changes the natural gas consumption of
thermal units and consequently the gas pressure in gas network. This could affect the
natural gas consumption of residential and industrial sectors. Therefore, it is impor-
tant to include the gas equation into GTEP to manage the impact of power system
with high renewable penetration on gas network. Below, we suggest a simplified
variation of gas network modelling. We use a non-vector notation for clarity.



16 M. Noorizadegan and A. Shokri

−MG
(
1 − yGi jt

) ≤ gi jht
∣∣gi jht

∣∣ − φi j
(
π2

jht − π2
iht

) ≤ MG(1 − yGi jt ) (17)

πiht ≤ π jht ≤ �πiht (18)

πmin
iht y

G
i j t ≤ πiht ≤ πmax

iht yGi j t (19)

gmin
iht y

G
i j t ≤ giht ≤ gmax

iht yGi j t (20)

pG,min
i ≤ pGiht ≤ pG,max

i (21)

where φi j is the parameter of natural gas pipeline, � is the compression ratio and
yGi jt = 1 if there exists a pipeline between node i and j , and otherwise, yGi jt = yGi jt (i.e.,
a decision variable). Constraints (17) state relation between gas flow and gas pressure
for new and existing pipelines. Constraints (18) model the impact of compressors on
the gas pressure. Constraints (19 and 20) respectively enforce the pressure and flow
restrictions on new and existing pipelines. Constraints (21) ensure gas production
restrictions on gas production nodes. Adding the above set of inequalities to GTEP
results in a non-linear program. There are various methods such as Newton method
and decomposition-based methods to deal with the nonlinear terms. The reader is
referred to Ding et al. (2018) and Fallahi and Maghouli (2020b) for further topics
on non-linear gas network related terms. Note that in these inequalities, we assume
that the gas flow direction is known in each pipeline. We also neglected modelling
line-pack and installing new compressors.

BalanceEquations—Natural gas and power networks have to be separately balanced
at each node

pht + disht − chht + f inht − foutht = dht (22)

pG
ht + ginht − goutht = dG

ht + ηphtl (23)

where l is the fuel index for natural gas, foutht is a vectorwith element f outiht presented
asfoutht = [

f outiht

]
i , f

out
iht = ∑

j∈I fi jht . Similarly, we havef inht = [
f iniht

]
i , f

in
iht =

∑
j∈I f j iht , g

out
ht = [

goutiht

]
i , g

out
iht = ∑

j∈I gi jht ,g
in
ht = [

giniht
]
i , and giniht = ∑

j∈I g jiht .
The first balance equation ensures that electricity load at each node is satisfied. The
second balance equation connects the natural gas network to the power network.
The last term in this equation (ηphtl) is the consumption of natural gas by power
generating units.
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2.3 Final Deterministic Model

The summary of this section is a deterministic optimisation model as presented
below:

min
∑

t∈TF
inv
t

(
xNt , yNt

) + F f i x
t (xt , yt ) + F D,U

t (xt , yt ) + Fopr
t (xt , yt )

s.t., (1 − 23)

The above model can be used as a base model for the next stage, which is to
consider uncertain parameters. The above problem has a diagonal structure based
on t . In other words, there is no constraint coupling variables for different t . The
objective function is also separatable based on t . As it will be explained in the solu-
tion method section, decomposition methods can be applied to such a structure. In
some studies (Moradi Sepahvand & Amraee, 2020), reserve and spinning reserve
are included in GTEP models. In security-constrained unit commitment problems,
reserve and spinning reserve are considered to respond unforeseen events such as
demand variations and equipment failure. A simple and practical way of computing
reserve and spinning reserve is to consider a certain fraction of load (Moradi Sepa-
hvand & Amraee, 2020). As reserve and spinning reserve are mainly operational
decisions, we do not independently address them in this model. In the next section,
we study uncertainty in GTEP which are due to two events: net load variation and
equipment.

3 Uncertainty

Electricity demand and power generation by renewable sources are two key sources
of uncertainty in GTEP. Power unit and transmission line failures are also uncertain
events in a power system. These two types of uncertainty are usually dealt with
differently. We briefly review main approaches for both types of uncertainties in this
section.

3.1 Uncertain Electricity Demand and Power Generation
by Renewable Sources

Stochastic programming (Ding et al., 2018) and robust optimisation (Jabr, 2013) are
the common approaches used to deal with power generation of renewable sources
and load uncertainties. The application of stochastic programming involves scenario
generation for possible electricity load and power generation by renewable sources
for the planning horizon. For aGTEPproblem, the planning horizon is generallymore
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than 15 years. Based on prediction/projectionmethods, a discrete set of possible real-
isations of each uncertain parameter is generated. Therefore, the number of scenarios
for hourly electricity load and power generation by renewable sources will be expo-
nential. As the first step to reduce the number of scenarios, only selective days are
considered for modelling (e.g., few days per month, or even per season for each
year). Another way of reducing number of scenarios is to merge 24 h of a day into
fewer time blocks. Then, scenario reduction approaches are applied to eliminate less
likely scenarios. However, solving a large multi-stage stochastic problem specially
for practical cases is still very challenging.

Alternatively, robust optimisation takes a less complex but more conservative
approach and plans for the worst cases. The worst cases can be formed prior to the
start of solution procedures. Multivariate statistical analysis based methods such as
“flying-brick” have been developed to deal with variable requirements of the look-
ahead generation capacity, ramping capability, and ramp duration for unit commit-
ment problems. For more details see Pourahmadi et al. (2020). We focus on Interval
Optimisation approach developed for unit commitment problems byWu et al. (2012).
They used the concept of net load (NL) which is equal to total demand minus wind
generation output minus solar output generation. Net load is commonly used because
wind and solar generation, and demand have some similar characteristics such as
they are non-dispatchable, they depend on the weather condition, and they deviate
from forecasts (Makarov et al., 2010). Therefore, the electricity balance equation is
modified by the concept of net load. The key idea is to make sure that the installed
electricity mix is capable of responding to extreme situations which are illustrated
in Fig. 1. The worst situations are as follow: (1) power generation units including
thermal and hydropower units are able to increase their generation to satisfy the net
load from hour h where the net load is in its lowest level to hour h + 1 where the net
load is in its highest level. (2) power generation units can deal with duck curve from
mid-day towards night peak.

To this end, we need to define three power generation variable pP
ht , p

E
ht ,p

O
ht , power

generation for pessimistic, expected and optimistic net loads. Then, the rampage

Fig. 1 Net load uncertainty intervals for a sample daily load
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constraints need to be imposed for all combinations of these new variables (e.g.,
pP
ht −pO

h−1,t ≤ min{r,αh(Qxt +Q
(
1 − xD

t

)−pO
ht }). When the ramp rate constraints

are revised as explained, it can be ensured that the duck curve is also addressed.

3.2 Uncertain Equipment Failure

Security and resiliency of a power system are usually defined by uncertain equipment
failures which can be due to technical failure, natural disasters, or sabotage. One
solution to deal with unforeseen equipment failures is to allocate a sufficient level
of spinning and non-spinning reserves, which is usually a topic for daily operation
(Morales et al., 2009). Another approach is to set the N-k security criterion. That
means if for any reasons, k equipment (mainly lines) fails at the same time, there
will be no power cut in the power system. This criterion can be imposed locally
with different values for k. As the number of equipment is high in a power system,
contingencies are limited to a pre-defined set of contingency scenarios (Qiming
Chen & McCalley, 2005). Then, binary variables or indicators and a set of related
constraints are used to model the N-k security criterion. This idea is applied within
bi-level programming, multi-stage robust optimisation and multi-stage stochastic
programming (Wu et al., 2016). There are also some probabilistic versions of N-k
security criterion (Sundar et al., 2018). But due to the complexity of probabilistic
constraints, this approach is not popular for GTEP.

As GTEP problems expand existing electricity networks, it may not be necessary
to define a binary variable for each line for the N-k security criterion. In other words,
it is very likely that there are already other routes to a demand bus if one line fails.
Studying the topology of the network could be very useful. Therefore, instead of
initially defining binary variables for each line, cutting plane methods can be used
to ensure the N-k security criterion with much less computational complexity. In a
cutting plane method, the N-k security criterion is first relaxed and the problem is
solved. Then, using a separation algorithm, it is checked to find a violation of the
N-k security criterion for each demand bus. If found, a cutting plane is constructed
to enforce the security criterion for that bus. In general, separation algorithms are
usually quite fast and it is relatively simple to identify violated constraints which
were relaxed (Nemhauser &Wolsey, 1988). For a GTEP, graph-based problems such
as maximum flow problem and shortest path problem could be used in designing
separation algorithms. Therefore, it is expected to achieve a better computational
efficiency in particular for real problems, as significantly less binary variables are
required in the model.
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4 Solution Method

There is a longitudinal study on GTEP in which the majority of them use Benders’
decomposition-basedmethods to solve their problems (such as Lohmann and Reben-
nack (2016) and Wu et al., (2016)). Therefore, this section reviews some princi-
ples of Benders’ decomposition and few important tips for implementing Benders’
decomposition particularly useful for solving practical problems.

Decision variables in a GTEP problem are naturally divided into strategic deci-
sions and operational decisions. This division paves the way for applying Benders’
decompositionwhere the investment and operational decisions aremade in themaster
problem and subproblems, respectively. In particular, Benders’ decomposition is
applied to two or multi-stage stochastic programming or robust optimisation varia-
tions of GTEP. Some studies (Lohmann & Rebennack, 2017) have further explored
the structure of their problem and proposed nested Benders decomposition reformu-
lations. As the operational problems are independent some time intervals, they can be
solved separately. Constraints such as available fuel and maximum amount of pollu-
tion produced by units are usually defined seasonally or annually. These constraints
link operational variables within a season or a year. In these cases, seasonal or annual
operational problems can be independently solved. Such further breakdowns can help
to reduce the computational efforts.

Connecting the master problem and the subproblems is done using optimality
and feasibility cuts. Optimality cuts approximate the impact of the master problem
decisions on the cost of the subproblem (Conejo et al., 2006). It is worth mentioning
that if there are binary or integer decision variables in the subproblem, standard
optimality which are developed for pure linear continuous subproblems cannot be
used. The reason is that optimality cuts are constructed based on the dual form of the
subproblem. The linear programming duality theorem does not hold for an integer
program (Nemhauser & Wolsey, 1988). This is a common mistake in studies about
GTEP problems. Further details can be found in studies about the concept of value
function (Guzelsoy & Ralphs, 2006; Trapp et al., 2013). Feasibility cuts are driven
when a solution of the master problem leads to an infeasible subproblem. When a
subproblem is infeasible for amaster problem solution, feasibility cuts driven for that
solution only remove that solution from the search space. Nevertheless, it is possible
that next solutions of the master problem still lead to infeasible subproblems. Signif-
icant computational efforts thus would be spent on finding master problem solutions
with feasible subproblems. It will be computationally beneficial to avoid feasibility
cuts, if possible. Investment decisions e.g., power generation unit installation, are
made in the master problem. For a minimisation problem, in the first iteration, no
new investment is made to keep the master problem cost at its minimum level. This
will lead to some infeasible subproblem. To avoid dealing with feasibility cuts and
their drawbacks, valid inequalities that reflect the subproblem’s feasible region of
subproblems can be derived and added to the master problem prior to the solution
process. For power generation expansion decisions, a constraint can be formed to
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enforce the sufficiency of the accumulative capacity to satisfy a selective peak load-
Similar valid inequalities can be formed for transmission lines. Moreover, storage
devices are complicating components of GTEP problems as they are only available
when they are charged. Because the investment cost of storage devices is usually
lower than other technologies, the solution of the master problem may include too
many storage devices at the first iteration. As a result, subproblemsmay be infeasible.
To overcome this issue, some valid inequalities approximating storage constraints
(charge and discharge processes) are useful in the master problem.

Given the significant number of variables and constraints, it may take several days
to solve a practical problem even with very powerful machines. The feasible region
can be reduced before the solution process by applying methods such as Merit Order
or even simple economic analysis to only include power generation technologies
which are likely to be a part of the optimal solution. In addition, decomposition
methods such as DantzigWolfe decomposition and column generation methods have
proved to be very efficient for optimisation problems with binary variables (Singh
et al., 2009). Nevertheless, they have not received much attention for reformulating
and solving GTEP problems (Flores-Quiroz et al., 2016).

A practical GTEP with fair number of details, which addresses concerns for inde-
pendent system operators may not be solvable with a reasonable time. Key aspects
of a power system such as frequency response control, power system inertia, various
types of losses (particularly important for distributed generators) are usually ignored.
Asmentioned, gas network and storages are alsomainly neglected inGTEPproblems.
Simulation-based optimisation is a practical way of addressing all important compo-
nents, factors and constraints of GTEP and at the same time solving the resulting
problem. The application of simulation-based optimisation to GTEP is an indepen-
dent topic with many technical details. Here, we emphasise on its benefit for GTEP
and outline some general steps. For more detail, we refer the reader to Rodgers et al.
(2018).

As it is illustrated in Fig. 2,we can start with aGTEPoptimisationmodel including
only key constraints. The GTEP optimisation model box may contain several sub-
boxes in relation to modelling and solution methods (e.g., cutting planes and decom-
position methods). In particular, with uncertainty assumptions, it is usually the case
that the problem is decomposed into a master problem and several sub-problems.
In the initial optimisation model, complicating components such as the gas network
(i.e., constraints (17–21) and (23)) and N-k security criterion may be ignored. Once
the optimisation model is solved, its solution can be used for a Monte-Carlo simula-
tion model with more details (including the gas network and N-k security criterion)
compared with the initial optimisation model. The aforementioned complicating
components do not directly affect the objective function i.e., there is no term for
these components in the objective function. It is worth noting that the focus here is to
solve a GTEP in which the impact of the gas network is also considered, and we do
not intend to optimise the gas network aswell. Therefore, these components affect the
feasibility of the problem. If the solution satisfies all requirements, then the optimal
solution is generated. It is worth mentioning that the notion of optimal solution here
may be challenged. Otherwise, constraints that enforce the violated requirements


