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Preface

Noise, especially at low frequencies, is a major environmental problem across
Europe. Increasingly more information is becoming available about the health
impacts of noise. The latest publication of the World Health Organization (WHO)
and the Joint Research Center of the European Commission shows that traffic-related
noise may account for over 1 million healthy years of life lost annually in the Euro-
pean Union (EU) Member States and other Western European countries. In addition,
the Guidelines for EU Noise acknowledge effects of environmental noise, including
annoyance, as a serious health problem. According to the European Environment
Agency, more than 30% of the EU population may be exposed to excessive noise
levels causing annoyance, fatigue, and sleep disturbance.

Urbanization, growing demand for motorized transport, and inefficient urban
planning are the main driving forces for environmental noise exposure. There is
a pressing need for lighter, thinner, and more efficient structures for the absorption
of low frequency sound. Until now, porous materials have been the common choice
for noise and vibration control due to their ability to dissipate vibro-acoustic energy
through thermal and viscous losses. However, bulky and heavy porous material treat-
ments are required to absorb low frequency sound and mitigate low frequency elastic
energy. In addition, in many engineered systems (such as aircraft) the multifunction-
ality of the noise reducing components, which need to carry mechanical loads and
provide thermal or electromagnetic insulation, is essential. This cannot be achieved
using conventional porous materials.

For many years the development of noise reducing treatments has been the subject
purely of acoustics research. However, recent scientific advances provide a unique
and timely opportunity to bring about significant improvements in the design of
noise treatments. Phononic and sonic crystals, acoustic metamaterials, and metasur-
faces can revolutionize noise and vibration control and in many cases replace tradi-
tional porous material. The major breakthroughs are expected in the areas where
the traditional acoustics overlaps with new branches of physics and mechanics.
Moreover, it is expected that not just attenuation, but also manipulation of sound
and vibration by compact devices and structures will be an important next step in
addressing this issue. It is therefore necessary to unite the efforts of all the scientific

vii



viii Preface

communities involved. The first action is to provide a common theoretical back-
ground to the different communities, researchers and engineers, working on acoustic
metamaterials, metasurfaces, and sonic crystals as well as conventional acoustic
materials.

The Training School Sound waves in metamaterials and porous media has been
organized by the DENORMS COST Action (CA15125) in order to facilitate this. The
Trainers decided to write the present book with the aim of providing the theoretical
background on acoustic materials for the researchers from different communities. It
is thus organized into three parts. Each part comprises a theoretical part illustrated
by examples. The Part I (Chaps. 1-4) focuses on the wave propagation in periodic
media and describes the commonly used modeling techniques such as Plane Wave
Expansion, Multiple Scattering theory, and Transfer Matrix Method. The illustrating
example considers their application to the analysis of the sonic crystal performance.
The subject of the Part II (Chaps. 5-8) is the acoustic wave propagation in meta-
material and porous absorbers with viscothermal losses. The recent advances in the
design of acoustic metamaterials are first reviewed. The acoustic wave propagation
in viscothermal effective fluids, i.e., porous media, and the extension of this theory
to non-local models for fluid saturated metamaterials are then considered. Numer-
ical methods, relevant to this problem, are described in detail. Finally, the Part III
(Chaps. 9-12) offers a review of industrial applications targeted at building, auto-
motive, and aeronautic industry. This part is thought as a white book for these three
industries.

In this book, we have tried to cover theoretical background of the subject, related
solution methods, and applications, in order to equip the reader with the skills essen-
tial for a successful researcher. The Editors would like to thank the participants, both
the Trainers and the Trainees, of the Training School Sound waves in metamaterials
and porous media and the authors of each chapter. This book is the result of a huge
collective effort over years and we hope it will be useful for the current and future
generations of researchers in the field of acoustic materials.

Le Mans, France Jean-Philippe Groby
Salford, UK Olga Umnova
Valencia, Spain Noé Jiménez

November 2019
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Part I
Wave Propagation in Periodic and
Structured Media



Chapter 1

Periodic Structures, Irreducible Brillouin | 2
Zone, Dispersion Relations and the Plane

Wave Expansion Method

Jérome O. Vasseur

Abstract The Plane Wave Expansion (PWE) method allows the calculation of dis-
persion curves, i.e., the relation linking the frequency to the wave number for any
propagating mode of periodic structures made of elastic materials such as phononic
crystals. The method is relatively easy to implement numerically but presents some
limitations. After recalling some fundamental aspects of crystallography that are nec-
essary to the study of periodic structures, the PWE method described in detail for the
case of bulk phononic crystals, i.e., structures of infinite extent, and its advantages
and drawbacks are discussed. It is also shown that the method can be used for cal-
culating the band structure of phononic crystals of finite thickness and for analysing
the evanescent waves within the phononic band gaps.

1.1 Preamble

Propagation of elastic waves in composite materials exhibiting a periodic structure
constitutes a very old topic in physics. One can mention the work, among others,
of Lord Rayleigh in 1887 where has been demonstrated the existence of band gaps
in periodically stratified media [1]. However since the beginning of the 1990s and
the pioneering works of Sigalas et al. [2] and Kushwaha et al. [3] on phononic
crystals, this topic received a renewed interest. These artificial material composites
whose physical characteristics (density, elastic moduli, ...) are periodic functions
of the position have been proven to exhibit very peculiar propagation properties
such as frequency band gaps, negative refraction or self-collimation phenomena [4].
Studies of the propagation of elastic waves in periodic structures necessitate using
theoretical tools that were initially developed in the frame of solid state physics such
as the unit cell, the direct lattice, the reciprocal lattice, the irreducible Brillouin zone
or dispersion relations. Moreover, these studies also require solving, with a high level

J. O. Vasseur (<)

Institute of Electronic, Microelectronic and Nanotechnology, UMR CNRS 8520, Université de
Lille, Villeneuve-d’ Ascq, France

e-mail: jerome.vasseur @univ-lille.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 3
N. Jiménez et al. (eds.), Acoustic Waves in Periodic Structures, Metamaterials,

and Porous Media, Topics in Applied Physics 143,

https://doi.org/10.1007/978-3-030-84300-7_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-84300-7_1&domain=pdf
mailto:jerome.vasseur@univ-lille.fr
https://doi.org/10.1007/978-3-030-84300-7_1

4 J. O. Vasseur

of accuracy, the equations of elastic waves propagation. Different theoretical tools
were proposed for this. One can mention the Plane Wave Expansion (PWE) method,
the Finite Difference Time Domain (FDTD) method, the Multiple Scattering (MS)
method, the Finite Element (FE) method, and many others [4].

With the aim of introducing in a pedagogical way most of the solid state physics
concepts listed above, very simple periodic structures such as one dimensional infinite
atomic chains are considered first. In the second part of this Chapter, we recall in a
more formal way, the elements of crystallography that are necessary for the study of
periodic structures. The third part of the Chapter focuses on the PWE method. Basic
principles of the method are first presented and its application to two-dimensional
periodic structures is reported with many details. Limitations of the PWE method
are discussed. Finally, it is also shown that the method can be used for calculating
the band structure of phononic crystals of finite thickness and for analysing the
evanescence of waves inside the phononic band gaps.

1.2 One-Dimensional Atomic Chains

1.2.1 One Dimensional Atomic Chain With One Atom by
Unit Cell

We consider first a very simple periodic structure, namely an infinite one-dimensional
linear chain of identical atoms with mass m, connected by springs with constant
stiffness 8 and oriented along the x direction. The equilibrium position of atom n
iS x40 = na, where a is the distance between two adjacent atoms in equilibrium.
Atoms are assumed free to move slightly around their respective equilibrium position
and their position, at any time 7, is given as x,, (t) = na + u,, (t) with |u, ()| < |x,(?)]
andu, = x, — X, ., is the displacement of the n'" atom from the equilibrium position.
In that case, the unit cell, shown in Fig. 1.1, that can be repeated along direction x with
periodicity a, contains only one atom and the lattice spacing a defines the periodicity
of the chain along the x axis. Newton’s second law applied to atom n considering
interaction between nearest neighbours leads to

0 u,
mw = _/6 (un - un—l) + 6 (un—H - un) = ﬁ(un—H +Up—1 — 2”11) . (11)
Seeking solutions of Eq. (1.1) in the form of sinusoidal propagating waves of ampli-
tude Uy such as u, (1) = Upe'*¢=+1 where k is the wave number and w the circular
frequency, Eq. (1.1) becomes

—mw? = B (™ + e " —2) = 23 (cos (ka) — 1) = —43sin® <k2—“> (1.2)
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unit cell
n-2 n—-1 n+1 n+2
L U1 L U, —>1U,,

T

Fig. 1.1 Schematic illustration of the infinite atomic chain made of identical atoms of mass m with
a lattice parameter a. (3 is the stiffness of the spring linking atoms

0 k /a
rv: T T - T A [ —— I
m m
< =
Y 3
. , @) ®)],
—4r/a -3m/a —2m/a -7/a 0 +m/a +2m/a +37/a +4r/a
Wavenumber (k) Wavenumber (k)

Fig. 1.2 a Dispersion relation of the infinite atomic chain made of identical atoms. The red and
shaded boxes represent the first Brillouin zone and the irreducible Brillouin zone, respectively; b
Dispersion relation plotted in the irreducible Brillouin zone

One deduces from Eq. (1.2), the dispersion relation of the atomic chain, i.e., the
relation linking the circular frequency w to the wave number & in the form

wk) =,/ g ‘Sin (kz_a)‘ . (1.3)

Figure 1.2a shows the dispersion relation w (k). Note that | sin (ka/2)| is a m-periodic

function,
sin (2| = Jsin (&2 4 7) [ = fsin (& [k + 22 (1.4)
1 ) 1 3 ™ = |S1 B P . .

Then, w(k) is a periodic function of k with periodicity G = 27 /a and w(k + nG) =
w(k) where n is an integer. One deduces that a propagation mode of wave number k
and a mode with wave number (k 4+ G) are exactly the same modes. The periodicity
G = 27 /a in the wave number space is associated with the reciprocal lattice of the
chain while the lattice parameter a characterizes its direct lattice.

Due to the periodicity of the dispersion relation in the reciprocal space, the useful
information concerning the vibration modes that can propagate in the chain, is con-
tained in the waves with wave numbers lying between the limits —7/a and +7/a.
This range of wave numbers centred at k = 0 is named the first Brillouin zone of the
reciprocal lattice. Therefore, the dispersion relation is also symmetric with respect
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of the plane £ = 0, and one may restrict the study to the irreducible Brillouin zone,
i.e., the domain of wave numbers ranging from O to 4+ /a, as shown in Fig. 1.2b.

1.2.2 One Dimensional Atomic Chain With Two Atoms Per
Unit Cell

We can now turn to alittle bit more complicated structure: an infinite one-dimensional
linear chain with two atoms of different masses in the unit cell, as shown in Fig. 1.3.
The lattice parameter is 2a and all the springs are supposed to have the same stiffness
3. Atoms of mass m; and m, are named even and odd atoms and are labelled with
integers 2n and 2n + 1 respectively.

With the same assumptions as that of Sect. 1.2.1, we can write the equations of
motion for even and odd atoms in the form

821/[2"
mo—oa = =B (u2n — uzn—1) + B (U2nt1 — u2y)
, = B (uant1 + uzn—1 — 2u2,) (1.5)
0" Uopt1
2 =B (uap1 — u2n) + B (Uant2 — Uzp41)

= 5 (M2n+2 + U — 2”2n+1) .

Seeking solutions of Eq. (1.5) in the form

MZn(t) — Aei(k(Zn)afwt)’
Uoptl (t) — Bei(k(ZnJrl)afwt)’ (16)

where A and B are amplitude terms, one obtains a set of two equations that can be
recast in the following matrix form

28 —mw?) —28cos(ka) A 0 an
23costka) —(28 —maw?) | | B 0l '
. unit cell .
: 2a '
B : :
00 @ @ @
2n—2 2n—1 2n 2n+1 2n+2
; Uy, F Uy, > Uy, |

x

Fig. 1.3 Schematic illustration of the infinite atomic chain made of two atoms of masses m| and
my in the unit cell with a lattice parameter 2a. 3 is the stiffness of the spring linking atoms
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Equations (1.7) admit non-trivial solutions if the determinant of the matrix vanishes.

This leads to
Y (m1 +m2) N 432 sin” (ka) _
nymyp

0, (1.8)

mymy

and one deduces

(1.9)

. 2 k
wil) = 6m1 + my I:I:\/l _4m1m251n (ka)

mim; (my 4+ my)?

Consequently, Eq. (1.8) admits two real solutions w_ (k) and w (k) that are periodic
in wave number, k, with a period of +7/a and the first Brillouin zone corresponds
to the wave numbers varying between —7/2a and +7/2a. One notes that because
the unit cell in the direct lattice of the chain is two times larger than that of the
monoatomic chain, the first Brillouin zone is two times smaller. Figure 1.4 shows
the dispersion relations plotted in the irreducible Brillouin zone (k between 0 and
+/2a) as a function of the ratio m, /m | greater than or equal to 1. One observes that
form, = m, the dispersion relation of the infinite monoatomic chain is recovered but
the band is folded in a smaller irreducible Brillouin zone. Moreover, for increasing
mass ratio, a band gap appears at the edge of the irreducible Brillouin zone and higher
is the mass ratio, the larger is the band gap.

In this Section, considering very simple one dimensional periodic structures, we
have introduced the notions that are of fundamental importance in the study of
periodic structures namely the unit cell, the direct and reciprocal lattices and the
irreducible Brillouin zone. We will see in Sect. 1.3.1 of this Chapter, how these con-
cepts can be generalized of much more complicated periodic structures such as the
phononic crystals.

(a) (k) (b) . (c)
w, wi (k)
, w (k)

w, B ————,

_ . BAND GAP .

o < w, =

\3/ \3/ ! \3/ BAND GAP
) -
w_(k w (k
(k) v (k)

0 k 27/a 0 k 2nfa 0 k 27/a

Fig. 1.4 Dispersion relations of the infinite atomic chain made of two atoms of masses m; and
my in the unit cell with a lattice parameter 2a plotted in the irreducible Brillouin zone for a
my =mi, bmy =2my, ¢ my = 10m;. Circular frequencies wi, wy and w3 are equal to /23/m2,
V208/my1,£/28(m| + my)/mymy, respectively
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1.3 Elements of Crystallography

In this Section, we recall the elements of crystallography that are necessary for the
study of periodic structures. We limit ourselves to some simple structures. Complete
reports on solid state physics are available in text books such as Refs. [5, 6]. These
references are strongly recommended to the reader of the present Chapter.

1.3.1 Bravais Lattice, Primitive Vectors, Wigner-Seitz Cell

In solid state physics, solids possessing a crystalline structure are periodic arrays of
atoms that are modelled by a combination of a basis and a Bravais lattice. In Ref. [6],
a Bravais lattice is defined as: an infinite array of discrete points with an arrangement
and orientation that appear exactly the same, from whichever of the points the array
is viewed (all the points have the same environment).

In three dimensions (3D), there exist a total of fourteen different Bravais lattices
[5, 6], five in 2D and one in 1D. The symmetry of any physical crystal is described by
one of the Bravais lattices plus a basis. The basis consists of identical units, usually
made by group of atoms, which are attached to every point of the underlying Bravais
lattice. A crystal, whose basis consists of a single atom or ion, is said to have a
monatomic Bravais lattice.

In 3D, from the mathematical point gf view, a Brgwais lattice is defined as a
collection of points with position vectors R of the form R = ¢a; + ma, + nads where
dy, a, and as are three vectors (named the primitive vectors of the Bravais lattice)
not in the same plane and ¢, m and n are three integers. For the sake of simplicity, the
notion of Bravais lattice is illustrated in 2D on Fig. 1.5. In this figure, one observes
that from a point chosen at the origin of the array, any other point can be obtained
by a translation equals to a linear combination of the primitive vectors. Moreover
for any given Bravais lattice, the set of primitive vectors is not unique, as shown in
Fig. 1.5. Characterization of an array of points requires also to define a volume of
space that contains precisely one lattice point and can be translated through all the
vectors of a Bravais lattice to fill all the space without overlapping itself or leaving
voids. This space is named a primitive cell and is depicted also in Fig. 1.5. There is
no unique way of choosing a primitive cell but the most common choice, however, is
the Wigner-Seitz cell, which has the full symmetry of the underlying Bravais lattice.
The Wigner-Seitz cell about a lattice point also has a property of being closer to that
point than to any other lattice point. It can be constructed by drawing lines connecting
a given point to nearby lying points, bisecting each line with a plane and taking the
smallest polyhedron bounded by these planes. The Bravais lattice, which is defined
in real space, is sometimes referred to as a direct lattice.
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Primitive cells

O O

O
Wigner-Seitz cell

O O O O

Fig. 1.5 A 2D Bravais lattice. Two possible choices of the primitive vectors a; and a; are indicated.
Black and blue parallelograms represent the primitive unit cells associated with each set of primitive
vectors. Red parallelogram is the Wigner-Seitz cell of the Bravais lattice. It has been constructed
by drawing red lines connecting a given point to nearby lying points, drawing black lines bisecting
each red line and considering the area bounded by red dashed lines

1.3.2 Reciprocal Lattice, Irreducible Brillouin Zone

With the direct lattice being defined in the real space, there exists a dual space
named the reciprocal lattice. This concept is very important when studying wave
propagation, diffraction and other wave phenomena in crystals. We know that in the
direct lattice, a periodic function in space f(7) satisfies f(r) = f(F + ﬁ) where
R = 0d, + mad, + nads, see Sect. 1.3.1. For example, the function f () in phononic
crystals can be the mass density or the elastic moduli. This function being R-periodic
can be developed in Fourier series such as

r@ =Y r(G)e, (1.10)
G

where G are named the reciprocal lattice vectors and f (é) are the Fourier coeffi-
cients of f (7). Then one can write

¥ <7+ 13) _ Z-f (é) o G-(F+R) _ ) = Zf (5) ei(}f’ (1.11)
G G

and one deduces that ¢/ = 1 and G - R = 2 - N where N is an integer. Conse-
quently, one can define the reciprocal lattice as a set of points whose positions are
given by a set of vectors G satisfying the condition

G-R=2r-N; NeZ, (1.12)
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forall Rin the Bravais lattice. Searching for a mathematical form for the G vectors, we
assume that because R is alinear combination of the primitive vectors ai,i=1,2,3,
G may be ertten also asa linear combination of some basis vectors b, ,i=1,2,3as

=/ b1 +m b2 + n’b3 where ¢/, m’, n’ and the b are initially undefined. Equation
(1 .12) leads to

E/EI;] . Ei] + m’ZEz . 51 + n/£53 . Eir}—
+ Z’mgl . ag + m/ml;z . 52 + m’nlgg . 534—
+n'lby -Gy +n'mby -Gy +n'nbsy -d; = 27N.  (1.13)

One may impose the basis {l;i} to be orthonormal to the basis {g;} and write l;,- aj =
2md;; where ¢;; is the Kronecker’s symbol and the multiplicative factor 27 has been
introduced for simplification. Then Eq. (1.13) reduces to

0l+m'm+n'n=N. (1.14)

The left-hand side of Eq. (1.14) must be an integer as the right-hand side and con-
sequently £, m’ and n’ must be also integers. This implies that a reciprocal lattice
of a d1rect lattice is also a Bravals lattice. We can now_ define vectors b Con-
sider first b1 Because le_az and b Las, one may write b1 = \-a, x a; where \
is a constant to be determined. Moreover, 4, - b1 =2r = \d; - (a» X az) and one
deduces A = 27/[a; - (a2 x a3)]. The same can be done for vectors b, and b3 and
one obtains by = 27ds x a1 /[d> - (@3 x d)] and by = 270G, x d»/[ds - (@, x @»)].
One notes that a; - (d, x a3) = a» - (a3 x a;) = as - (d; x d,) and the basis vectors
of the reciprocal lattice depend on the basis vectors of the direct lattice as

by =2 ﬂ (1.15a)
(day x dz)’

By = 2w%, (1.15b)
ap - (ax x az)

By =2p X2 (1.15¢)
a - (ax x az)

In Egs. (1.15), the scalar quantity a; - (@» x az) corresponds to the volume of the
parallelepiped constructed from the three primitive vectors {a;} of the original direct
(Bravais) lattice, i.e., the volume of the unit cell [7]. Moreover one observes that the
length of the reciprocal lattice vectors is proportional to the reciprocal of the length
of the direct lattice vectors and this is the origin of the term reciprocal lattice.

As an example, Fig. 1.6 shows a simple-cubic Bravais lattice with a lattice constant
a as well as its reciprocal lattice, which is also a simple-cubic one with a lattice
constant 27 /a, as follows from relations (1.15). Since the reciprocal lattice is a
Bravais lattice, one can also find its Wigner-Seitz cell. The Wigner-Seitz cell of a
reciprocal lattice is conventionally called a first Brillouin zone. Planes in reciprocal
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Direct lattice Reciprocal lattice
21 /a

Fig. 1.6 Simple-cubic direct lattice and its reciprocal lattice. The primitive vectors of both lattices
are also indicated

space, which bisect the lines joining a particular point of a reciprocal lattice with all
other points, are known as Bragg planes. Therefore, the first Brillouin zone can also
be defined as the set of all points in the reciprocal space that can be reached from the
origin without crossing any Bragg plane. Symmetry properties may allow to reduce
the dimensions of the first Brillouin zone and to define the smallest Brillouin zone
also named the irreducible Brillouin zone.

In what follows we will consider, for the sake of simplicity, two examples of
Bravais lattices in two dimensions, the square and the hexagonal one, and we will
illustrate the concepts previously introduced.

1.3.3 Examples

1.3.3.1 The Square Bravais Lattice

We first consider the case of the square Bravais lattice with lattice parameter a. The
points (the “atoms”) are located at the vertices of a square as depicted in Fig. 1.7. The
space is refereed to an orthonormal basis (0, €1, é;, €3) with Cartesian coordinates
(x1, x2, x3) and O is a point chosen as origin. The array being two-dimensional in
the plane (x;, O, x3), the pr1m1t1ve vectors of the direct lattlce have components only
in this plane and are a; = a¢; and a, = ae, and vectors Rwrite R = a (Le, + mes).
In Fig. 1.7, the red lines correspond to lines connecting the origin to its nearest
neighbours and blue lines bisect the red dashed ones. One deduces easily from this
drawing that the Wigner-Seitz cell is the grey square.

One may define now the basis vectors of the reciprocal lattice applying relations
(1.15). One obtains
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Fig. 1.7 The square direct €2 '
lattice of lattice parameter a :
. . . (®) (¢]
and its Wigner-Seitz cell AN .
hN [ e
. g K
€1 ry— 7
s K
NG
e l& N
-t
. i N
Wigner-Seitz cell P ! N
e I N
I' ! ‘\
(@) O
! a
—>
- aEz X 23 271'_,
b =21———5—"-— = —¢, (1.16a)
aey - (aey X e3) a
- E3 X aEl 27T'_,
bz = 27‘(’? = —é), (116b)
e - (aey X e3) a

where ¢; is introduced only for constructing the different cross products.

In Fig.1.8a, the dots represent points whose positions are given by
two-dimensional vectors G = £/ by -+ m’b,. One chooses point I as the origin of the
reciprocal lattice and draws red dashed lines connecting I" to its nearest neighbours.
With the help of the blue lines bisecting the red ones, the grey square is defined as

> 4
g & (b) .
(a‘) EI o ’&,' 1
! .
g8 SYoe¥ O, by = %e; O
S g .
w0, AR
1 ’ ~ ra
; M < =
: ‘\\ /'
- Symmetry N P
T X plane AN 2
A 7Ty s | = Te
& . P - s
d 1 4 1 ~
. : . o L : AN
First Brilloin L ' .
zone ° , 2r o
— 5

Fig. 1.8 a The reciprocal lattice of the square Bravais lattice and the first Brillouin zone (grey
square), b the first Brillouin zone and the irreducible Brillouin zone (I'’XM) with T" : za—"(O, 0),

X : 27”(% 0)and M : za—”(% %). I', X, and M are the points of highest symmetry in the irreducible
Brillouin zone. In terms of wave propagation, vectors X, XM and TM represent the principal
directions of propagation
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the first Brillouin zone. Due to the symmetries of the grey square, shown in Fig. 1.8b,
one reduces the study to the triangle (I' X M) where the components of point I" in the
basis (€1, &) are 27(0, 0). Because ['X = b;/2 and T'M = (b; + b>)/2, the com-
ponents of points X and M are (%7”)(%, 0) and %”(%, %), respectively. The triangle
(I'XM) is the irreducible Brillouin zone of the square Bravais lattice.

When considering propagation of waves in two-dimensional phononic crystals,
any wave vector k (which belongs to the reciprocal space), can be written as k=
G+K 1Bz Where K 1Bz belongs to the irreducible Brillouin zone. Consequently study
of the propagation of waves can be limited to waves with wave vectors belonging to
the irreducible Brillouin zone (see Sect. 1.2).

1.3.3.2 The Hexagonal Bravais Lattice

As depicted in Fig. 1.9, in the case of the hexagonal Bravais lattice, the “atoms” are
located on the vertices and at the centre of a regular hexagon of side length a. One can
construct the Wigner-Seitz cell following the same processes than that used for the
square array. Around point O’ the Wigner-Seitz cell has exactly the same symmetry
as the direct lattice and is represented by the red hexagon. Nevertheless, due to the
rather complicated geometry of the array, one may choose a simpler primitive unit
cell such as the blue parallelogram constructed from the set of primitive lattice vectors

Fig. 1.9 The hexagonal direct lattice with lattice parameter a and its Wigner- Seitz cell around
point O’ (red hexagon). It is convenient to choose as primitive unit cell the blue parallelogram

constructed from the primitive vectors @) = aé; and dy = 261 + “f
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Fig. 1.10 a The reciprocal lattice of the hexagonal Bravais lattice and the first Brillouin zone (grey
square), b the first Brillouin zone and the irreducible Brillouin zone (I'JX) with T : Za—’r(O, 0),
: %’T(% 0) and X : za—"(% ﬁ). Points I", J, and X are the points of highest symmetry in the

irreducible Brillouin zone

{a =aeé),a, = 5é; + "‘[ez} The basis vectors of the reciprocal lattice are then
obtained using relatlons (1.15) as
l; 3 52XE3 27T<_, 1_,) (117)
| =&afMs— 5 .- =—\|¢€¢ ——F—=é2), .l/a
ap - (ax x e3) a V3
- E3 X 51 2 2 5
by=2m— 374 _ 7 (—) &, (1.17b)
ap - (a x e3) a \J/3

and the reciprocal lattice vectors are given in the basis (O, €1, &;) as G = E’l;] +
m'by = & 08 + Jlg(—z’ +2m’)é].

The remprocal lattice of the hexagonal array together with its first Brillouin zone
are depicted in Fig. 1.10a. Due to the symmetries of the grey hexagon, shown in
Fig. 1.10b, one reduces the study to the triangle (I"J X) where the components of
point I' in the basis (¢, €,) are Za—” (0, 0). Because rx = (l;l + I;Z) /2, the components
of point X are 27” (%, %@). Finally, triangle (I" J X) being right-angled on X, one may
write [ X? + XJ? = I'J? and one deduces that point J has components 2;”(%, 0).
The area of the triangle (I'J X) is the irreducible Brillouin zone of the hexagonal
Bravais lattice.



