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Preface

Not everything that can be counted counts, and not everything that counts can
be counted.

(Albert Einstein)

If we date the origin of modern item response theory from Derrick Lawley’s pio-
neering 1943 paper, “On problems connected with item selection and test con-
struction,” or Frederic Lord’s 1950 Psychometric Monograph, “A theory of test
scores,” the field has now enjoyed nearly 75 years of vigorous development. It
appears to have reached a level of maturity sufficient to warrant a comprehen-
sive review of the accomplishments up to this point. The previous effort, Lord
and Novick’s 1968 monograph “Statistical theories of mental test scores,” while
incorporating the innovative contributions of Allan Birnbaum, was necessarily a
report of work in progress in a young field. Only the models for binary-scored items
were available at that time, and the estimation theory required to implement them,
although intimated, was not yet well developed.

Results in the field are now much richer. Currently, there are models to fit
many forms of item response data, and the statistical methods for estimating the
parameters of these models exist and are implemented. Procedures for assigning
scale scores to respondents are more varied and include efficient adaptive
algorithms. Entirely new methods exist for estimating latent distributions of
populations without computing scores for individual sample members. Better
solutions have been found for the classic problems of test maintenance and forms
equating. Connections between item response theory and multilevel sampling
models have been clarified. Perhaps most important, the computing facilities now
exist to make large-scale applications of these developments practical.

Our aim in the present text is to present a reasonably complete account of
this progress with special emphasis on the computer applications. Our discus-
sion therefore includes details on numerical procedures suitable for practical
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xvi Preface

applications of IRT. The most difficult aspect of writing this text has been finding
the right level at which to present these topics, which are inherently mathematical
and statistical. To make the discussion accessible as possible, without violating
the spirit of the subject, we have adopted a level of presentation that assumes
a first-year graduate background in the behavioral or social sciences, together
with mathematics preparation through calculus and courses in statistics through
generalized linear models. To supplement that preparation, we offer in Chapter 2
a review of some of the mathematical and statistical foundations required in the
sequel. To motivate the reader and to fix ideas, we have everywhere tried to find
real and interesting data with which to illustrate the theory.
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1

1

Foundations

To measure is to know.
(Source: Lord Kelvin (William Thompson) 1824–1907)

Most observations of behavior are recorded as distinct qualitative events. For
example:

a student responds correctly to certain specified questions, responds incor-
rectly to others, and declines to respond to still others;
on the fifth trial of a learning experiment, the subject recalls six abstract
and ten concrete words from a list of thirty;
a reader rates each paragraph of an essay exercise on a scale of rhetorical
effectiveness graded from 1 to 7.
a participant in a class discussion group speaks up three times on issue A,
once on issue C, but not at all on issues B, D or E;
in response to a social survey, a head of household endorses five out of ten
statements concerning a public issue, but disagrees with the others;
an applicant for a secretarial position makes two spelling errors in tran-
scribing 300 words of dictation;
a patient in a primary care clinic reports specific problems with mood, cog-
nition and somatic symptoms of depression during the past two weeks.

These types of data have in common the fact that each respondent is reacting
qualitatively to multiple stimuli in a specified set. In the present context, we call
all such stimuli items and define item response theory, or “IRT,” as the statistical
study of data that arise in this way. That each respondent is responding to more
than one item is essential to the definition: if each respondent were presented only
one item, an enumeration of the observed qualitative responses would result in a
simple contingency table that could be analyzed by conventional chi-square or

Item Response Theory, First Edition. R. Darrell Bock and Robert D. Gibbons.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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log-linear methods. Such methods can be extended to perhaps three or four items
by assigning respondents to distinct categories generated by all possible combina-
tions of the repeated qualitative response, but they quickly become unworkable
as the numbers of items increase. When there are repeated qualitative responses
to relatively large numbers of items, the data are the special province of IRT. This
form of data must be regarded to arise from two stages of sampling – the sampling
of responses within each respondent, and the sampling of respondents from some
population.

There are three main uses of IRT methods of data analysis. The first is to sum-
marize information in the responses in a way that is suitable for some practical
decision about a given respondent. The IRT reduction of the data either classifies
the respondents qualitatively or assigns each a quantitative measure that supports
such a classification. This is a traditional treatment of data from multiple-item
tests. A score on an educational test, for example, may support the decision to
admit a student to a college or university; a profile of performance in a battery of
vocational tests may influence the choice of job applicants or military recruits; a
self-report on a personality inventory may suggest the best approach to counseling
or psychotherapy. Under favorable conditions, these kinds of uses of item response
data can substantially improve the chances of successful outcomes of the decision
compared to subjective or more arbitrary methods of selection or classification.

The second important use of these methods is to describe various groups to
which the respondents may belong. The paradigm of this use is the randomized
experiment, in which subjects are assigned with equal probability to control or
treatment groups and a multiple-item test is administered in order to evaluate the
effects of the treatments. The object of the IRT analysis of the test data is to estimate
the distribution of response tendencies in the several groups. Similarly, in survey
studies, respondents may be randomly selected from defined subpopulations of
some larger population and administered an attitude or opinion questionnaire.
The responses to the questionnaire items could in principle be used to classify the
individual respondents, as in an employment interview, but this is not the purpose
of the typical survey. The aim is rather to compare the subpopulations with respect
to the distribution of response tendencies among their members.

The classical approach to analysis of data from either of these sources is to
make comparisons among the groups or subpopulations by estimating scores
for the respondents and analyzing them as if they were the primary data. One
of the important contributions of IRT has been to show that this is not necessarily
the best way to proceed. We present methods by which population characteristics
can be directly estimated from the original item responses without computing
intermediate respondent-level scores.

The third use of IRT analysis is to characterize the items. In some types of
study, the items themselves are the objects of interest. For example, the aim



�

� �

�

1.1 The Logic of Item Response Theory 3

may be to construct items with levels of difficulty and discriminating power
suitable for a particular population of respondents. These activities will inevitably
involve the analysis of empirical item data in order to verify that the methods
of item construction are succeeding. Some items may be far wide of the mark
and will have to be made easier or harder. Others, especially among multiple
choice items, may contain hidden ambiguities that weaken their discriminating
power; they can usually be corrected by reworking the response alternatives. In
either case, IRT methods can identify and estimate characteristics of the items
that are diagnostic of these problems. These methods now extend beyond the
traditional multiple-choice item formats to rating scales, nominal categories, and
item clusters. They also encompass the empirical study of the cognitive processes
involved in the item response. In these studies, interest centers on classes of items
distinguished by common stimulus or task features. The objective is to identify
such features, connect them to other cognitive theory, and predict their effect
on statistical characteristics of the items (e.g., item difficulty or discriminating
power). Chapters of this text devoted to this aspect of IRT are Chapter 4 on
parameter estimation for binary items, Chapter 5 on multiple-category items, and
Chapter 6 on item factor analysis.

1.1 The Logic of Item Response Theory

Classical and IRT methods of measurement differ dramatically in the ways in
which items are administered and scored. The difference is clarified by the fol-
lowing analogy. Imagine a track and field meet in which 10 athletes participate
in men’s 110-m hurdles race and also in men’s high jump. Suppose that the hur-
dles race is not quite conventional in that the hurdles are not all the same height
and the score is determined not only by the runner’s time but also by the number
of hurdles successfully cleared, i.e. not tipped over. On the other hand, the high
jump is conducted in the conventional way: The crossbar is raised by, say, 2-cm
increments on the uprights, and the athletes try to jump over the bar without dis-
lodging it. The first of these two events is like a traditionally scored objective test:
Runners attempting to clear hurdles of varying heights is analogous to questions
of varying difficulty that examinees try to answer correctly in the time allowed.
In either case, a specific counting operation measures ability to clear the hurdles
or answer the questions. On the high jump, ability is measured by a scale in mil-
limeters and centimeters at the highest scale position of the crossbar the athlete
can clear. IRT measurement uses the same logic as the high jump. Test items are
arranged on a continuum at certain fixed points of increasing difficulty. The exam-
inee attempts to answer items until she can no longer do so correctly. Ability is
measured by the location on the continuum of the last item answered correctly.
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In IRT, ability is measured by a scale point, not a numerical count. These two
methods of scoring the hurdles and the high jump, or their analogues in tradi-
tional and IRT scoring of objective tests, contrast sharply: If hurdles are arbitrarily
added or removed, the number of hurdles cleared cannot be compared with races
run with different hurdles or different numbers of hurdles. Even if percent of hur-
dles cleared were reported, the varying difficulty of clearing hurdles of different
heights would render these figures noncomparable. The same is true of traditional
number-right scores of objective tests: Scores lose their comparability if item com-
position is changed. The same is not true, however, of the high jump or of IRT
scoring. If the bar in the high jump were placed between the 2-cm positions, or
if one of those positions were omitted, height cleared is unchanged, and only the
precision of the measurement at that point on the scale is affected. Indeed, in the
standard rules for the high jump, the participants have the option of omitting lower
heights they feel they can clear. Similarly, in IRT scoring of tests, a certain number
of items can be arbitrarily added, deleted, or replaced without losing comparabil-
ity of scores on the scale. Only the precision of measurement at some points on
the scale is affected. This property of scaled measurement, as opposed to counts of
events, is the most salient advantage of IRT over classical methods of educational
and psychological measurement.

1.2 Model-Based Data Analysis

The IRT discussed in this text is aptly described as “model-based.” There are
cogent reasons for taking this approach to item response data rather than relying
on enumerative summaries or nonparametric statistical methods. Perhaps most
important is the economy of thought and discussion that results from substituting
quantitative complexity for voluminous descriptive detail. In this, IRT emulates
modern physical science, which attempts to account for a wide range of observ-
able phenomena by a possibly complicated mathematical function depending on
relatively few free parameters. IRT achieves this kind of economy by expressing
the probability of an observed response to a stimulus in terms of a limited number
of characteristics of the stimulus and of the respondent. The mathematical
functions used for this purpose, the most important of which we discuss in
Chapters 3–6, are called item response models. They are a central feature of IRT.
They are capable of accounting succinctly for the kinds of data exemplified above,
and their parameters concisely describe the operating characteristics of the items.

Another merit of the model-based approach is that, when it leads us to a
restricted class of parsimonious models that fit a wide range of data, our confi-
dence in the theory behind the models is strengthened. We are then encouraged
to extend the theory to new situations and further test its generality. Apart from
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fortuitous discoveries, this is the main avenue of progress in scientific work.
Purely descriptive methods of data analysis do not give us the same reassurance
that we have the right conception of the phenomenon. Nonparametric curve
fitting procedures, for example, merely produce smoothed representations of
the data, possibly under continuity restrictions. They have no definite limit on
the number of free parameters implicitly fitted in the construction of the curve.
Having no definite form, they are difficult to compare, discuss, or extend to other
domains. Admittedly, they are useful for limited purposes, such as interpolating
values between observations when no suitable functional forms can be found. But
absence of suitable functions is not generally the case in item response data: most
of the response models that have been proposed for both binary and multiple
category data account for the observations within the limits of sampling error, and
they do so with comparative few free parameters. It is unlikely that worthwhile
improvement in fit could be expected by a model-free approach to item response
data in the domains typically analyzed.

A main strength of existing IRT is that it provides a coherent and rigorous
methodology for the analysis of a very wide range of multiresponse qualitative
data. The familiar statistical tools for measured, quantitative variables are not gen-
erally suitable for such data. The most widely used procedures for such variables,
including linear least-squares regression, univariate and multivariate analysis
of variance, discriminant analysis, linear structural analysis, etc., all model
the distribution of the observations on a continuous interval scale and assume
homogeneous error variation. Except in limiting cases, qualitative response data
do not even remotely satisfy these assumptions. They are discrete events: They
do not refer to any continuum, do not have interval scale properties or have
homogeneous error from one stimulus to another. Even the familiar population
descriptors in the classical statistical analysis – means, standard deviations,
product-moment correlations, etc. – do not serve these forms of data well.

1.3 Origins

IRT is not primarily a theory in the sense of a putative explanation of some phe-
nomenon. Rather, it is a coherent methodological system, similar to estimation
theory or least-squares theory in the field of statistics. The exception in IRT is the
concept of an observed qualitative responses arising from underlying quantitative
variation through the action of an intervening threshold process. This conception,
especially as it applies to sensory discriminations or preference judgments, is
implicit in the more psychologically oriented applications of the theory. In other
areas of application, such as educational measurement, IRT is viewed merely
as a means of relating the response probabilities to a much smaller number
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of underlying parameters in terms of which respondents can be characterized,
populations compared, or items described.

The psychological orientation in IRT had its origins in the nineteenth and
early twentieth-century work on scaling of stimuli; the educational measurement
orientation is associated with the development of educational tests during the
twentieth century and is now referred to as “classical test theory.” Running
through both of these approaches is a common thread of concepts and methods
borrowed from mathematics and mathematical statistics. An understanding of
these sources of present theory is a good foundation for study of the topic. In
Section 1.3.1, we review briefly the contributions from each and discuss their
relationships to the theory in its present form.

1.3.1 Psychometric Scaling

The first attempt to estimate scale values from discrete data was by Fechner
(1966) in connection with his study of Weber’s Law. Weber had found in a careful
series of experiments that the magnitude of errors made by human observers in
judging the size or intensity of a physical stimulus tends to be proportional to the
intensity of the stimulus. Fechner reasoned that this indicated the existence of
a sensory continuum on which the intensities of the stimuli are perceived as the
logarithm of their physical measures. In a typical experiment demonstrating the
Weber effect, the investigator requires the observer, by a pulley arrangement, to
adjust the length of a variable line to match that of a displayed line of fixed length.
This procedure is called the “method of adjustment.” The general finding by this
method, that the average absolute error in reproducing the stimulus is a constant
proportion of the stimulus size (usually about 10%), is now known as Weber’s Law.
To establish the generality of this law and gain support for his theory relating stim-
ulation to sensation, Fechner wanted to extend these studies to stimuli that could
not easily be adjusted continuously, such as flavors, odors, or weights. For this
purpose, he developed what he called the “method of right-and-wrong cases,” but
which is now called the “method of constant stimuli,” or the “constant method.”

In the modern version of the “lifted-weight” experiment discussed by Fechner
in 1860 (Guilford 1954), the observer is presented a trial weight, and an identically
appearing standard weight, and asked to lift them and state whether the former
is heavier than the latter. The trial weights, which are set at several different lev-
els smaller than, equal to, and larger than the standard, are sufficiently close to
the standard that the observer makes a certain proportion of errors in repeated
attempts at this task. The data from the experiment consist of the number of times
the observer chooses the trial weight as heavier in a fixed number of attempts.

To infer a continuous measure of the average absolute error from these fre-
quencies, Fechner invoked the same assumption that Gauss had made earlier
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for errors in astronomical observations – namely, that the errors are normally
distributed with a mean and standard deviation typical of the observer. On this
assumption, the expected size of the error associated with each observed propor-
tion of “greater-than” judgments is the deviate at the corresponding percentage
point of the normal distribution. If the assumption of normally distributed errors
is tenable and Fechner’s theory is correct, the plot of the corresponding normal
deviates versus the log stimulus intensity (or in this case the difference between
the logs of the test weights and the standard weight) should form a straight
line, apart from sampling error in the observed proportions. With properly
counterbalanced orders of stimulus presentation, the 50 percent point (or zero
deviate) should occur at the point of stimulus equality. In that case, the probable
error in judgments involving the standard stimulus can be defined as difference
between the 75 and 25 percent points read from the fitted line – the so-called
“difference limen” or “difference threshold” (Bock and Jones 1968).

Moreover, if Weber’s Law holds over a wide range of physical intensities, the
difference limen is constant on the sensory continuum and can serve as the unit of
the scale that measures the psychological construct “sensation.” The origin of the
continuum can be set at the log of that value of the stimulus that can be correctly
distinguished from the null stimulus 50% of the time (the “absolute threshold”).
The logarithmic relationship between stimulation and sensation is now referred
to as “Fechner’s Psychophysical Law.”1

In 1928, Louis Leon Thurstone formalized the concept of a sensory scale by
introducing the discriminal process construct and a threshold mechanism. We dis-
cuss his model in more detail in Chapter 3, but briefly his assumption was that the
stimulus gives rise in the observer to an unobservable random variable consisting
of a fixed component attributable to the stimulus and a random component due to
temporal instability of the sensory system. He called this unobservable variable a
“discriminal process.” To explain the observed response, he posited the existence
of a point, or threshold, on the continuum such that the observer responds in one
category if the process is above the threshold, and in another category if not.2

In Thurstone’s model, it is the difference of the discriminal processes that is the
relevant variable. If the process for the test stimulus momentarily exceeds that
of the standard, the difference is positive and the observer responds that the test

1 In the 1950s, Stevens (1961) disputed the validity of Fechner’s Law and proposed in its place a
class of power functions relating physical to sensory intensity. But Stevens was discussing the
relationship between magnitude judgments and stimulus intensity, which is a quite different
phenomenon than the stimulus confusions on which Fechner’s logarithmic psychophysical law
is based. Although the power-law includes the logarithmic function in the limiting case as the
exponent goes to zero, it makes no special contribution to the modeling of sensory
discrimination phenomena.
2 Fechner (1860) attributed a similar account of the constant method results to his colleague,
Möbius.
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stimulus appears greater or more intense; otherwise, not. Thus, for the difference
process, the threshold is at zero. Like Fechner, Thurstone assumed that the dis-
criminal processes, and thus the difference process, are normally distributed. The
continuous value attributed to the difference between the two stimuli is therefore
consistently estimated by the normal deviate corresponding to the proportion of
times the trial stimulus is judged greater than the standard.

Thurstone’s most important contribution to scaling was the demonstration that
a purely psychological scale not dependent on any form of physical measurement
can be constructed from a suitable set of interlocking comparisons. If the deviates
corresponding to these comparisons determine, or overdetermine, the locations
of the stimuli on the sensory continuum, it then becomes possible to assign to
the stimuli quantitative values in a well-defined metric. In particular, Thurstone
(1928) showed that in the method of paired comparisons, where the observer
compares all n(n − 1)∕2 distinct pairs of n stimuli, the equations implied by
the discriminal process model overdetermine the locations of the stimuli on
the psychological continuum. From the observed qualitative judgments, the
locations can be estimated on a continuous scale with arbitrary origin and unit,
and (n − 1)(n − 2)∕2 degrees of freedom remain to test the fit of the model (see
Chapter 5 in Bock and Jones 1968). In principle, the dispersions of the random
processes could also vary and require estimation, but in the classical “Case V”
analysis of paired-comparisons, they are assumed constant. To emphasize that
such a scale could be constructed for any sort of pairwise orderable objects,
Thurstone referred to it as a “psychological” continuum rather than a sensory
continuum.

IRT borrows heavily from these earlier conceptions of psychological scaling. It
accepts the idea that a discrete behavioral response to a set task, object, or propo-
sition (in short, to an item) is the expression of a stochastic mechanism that can
be modeled by an unobservable random variable and a threshold. The variable is
assumed to have some form of distribution on an infinite latent continuum. The
items are characterized by their locations, or thresholds, on this continuum and
by the dispersion of the corresponding random variable. If an external variable or
criterion is correlated with the unobservable random variable, the IRT scaling can
proceed on the same basis as psychophysical scaling (see Section 4.1). But in the
more typical case where no such external variable exists, the scale depends only
on relationships internal to the data, which in IRT are direct responses to multiple
items rather than the multiple comparisons of Thurstonian scaling.

As we elaborate in Chapter 3, when Lawley (1943) and Lord (1952) formulated
the IRT model, they added a random component associated with the observer (or
in our terminology the respondent). The paired comparison model does not require
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this component because, if present, it would subtract out of the difference process
(Andrich 1978).3

The main objective of IRT is to estimate from the item responses the attribute
values of the respondents. We discuss statistical methods for this purpose in
Chapters 4–6 and 10. Because the values are on a scale determined by the error
process implicit in the item response models, they are often referred to as “scale
scores” to distinguish them from the traditional “test score,” which is just a count
of the number of correct item responses.

There is a precise formal sense in which the psychological scaling model, which
does not include an individual difference component, stands in the same rela-
tionship to the IRT model, as the analysis-of-variance fixed-effects model stands
to the mixed-effects model with one random dimension. In the IRT model, the
parameters that characterize items are the fixed effects and the attribute compo-
nents associated with the respondents are the random effects. The only difference
between the models is that the estimators of these quantities are linear in the analy-
sis of variance and nonlinear in IRT. This is a very big difference methodologically;
however, the simple noniterative calculations of the mixed-effects analysis of vari-
ance give way to the more complex iterative procedures of nonlinear estimation
that characterize much of IRT analysis (see Chapters 4–6).

In IRT, the item response model expresses the probability of a specified response
to a test item as a function of the quantitative attribute of the respondent and
one or more parameters of the items. Such models now exist for many types
of item responses. Those for binary (right–wrong) scored items were the first
to be developed and are still the most common, but models for ratings and
graded or multiple-category item responses are now available and enjoying
increasing application. We discuss binary item response models in Chapter 3 and
multiple-category items in Chapter 5. (See Thissen and Steinberg (1986) for a
taxonomy of item response models.)

1.3.2 Classical Test Theory

Classical test theory is essentially an extension of the Gaussian theory of errors
(Gauss 1809) to the measurement of individual differences. Originating in the
work of Spearman (1907), Brown, E.L. Thorndike, and others, the classical the-
ory was first applied to scores from cognitive tests in which item responses were

3 If each observer judges all stimuli in a paired comparison experiment, random interactions
between observers and stimuli need to be included in the sampling model for the Case V
analysis. Otherwise, the correlation between deviates for comparisons involving common
objects are correlated, and the test of fit is grossly biased (Chapman and Bock 1958).
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scored “right” or “wrong.” The test score of a respondent was the number of right
responses. Later the theory was extended to any multiple-item psychological test
in which items can be meaningfully scored in a consistent direction. Sometimes
the direction cannot be specified a priori, and empirical evidence must be invoked.
In the personality tests – scales of the Minnesota Multiphasic Personality Inven-
tory (MMPI), for example – the direction for scoring each item is chosen so that
the scale will best discriminate between normal and pathological groups identified
by expert judgments. A similar method is available in IRT whenever an external
variable correlated with the attribute dimension is available (see Section 4.1).

Classical test theory assumes that the test score obtained by counting “right”
responses is an additive linear model consisting of two random components – one
due to the individual differences in the population of respondents – the other
due to error, defined as the item-by-respondent interaction. Both components are
assumed normally distributed, although this assumption is not required in many
of the results. A main motivation of the theory is to obtain a scale-free index of the
precision with which test scores estimate attributes of the respondents. Because
the origin and range of the test score depends arbitrarily on the number of items
in the test, the scale-dependent measure of precision used by Gauss (the recipro-
cal of the mean square error) is not applicable in classical test theory. It is replaced
by the reliability coefficient, defined as the ratio of the variance of the individual
difference component (true score variance in classical test theory terms) to the
sum of that variance plus the variance of the error component. In statistical terms,
reliability is the intraclass correlation of within-to between-individual variation in
the population of respondents. The reliability coefficient therefore ranges from 1,
indicating error-free measurement, and 0, indicating no variation other than error.

One of the main results of reliability theory, based on the assumption of inde-
pendent responses within individuals, is that the size of the error component in
the test score is constant as the number of items increases, whereas the variance of
the individual-difference component increases proportionately with the number
of items. The reliability coefficient therefore tends to unity as the number of items
increases indefinitely, assuming that the items that are added have parallel con-
tent. The effect on reliability of increasing the test length by some arbitrary factor is
given in the Spearman–Brown formula. In practice, the between-respondent vari-
ance component and the item-by-respondent interaction are estimated by analysis
of variance methods or related formulas.

1.3.3 Contributions from Statistics

Simultaneous with, but largely independent of, the developments in psychologi-
cal scaling and reliability theory, similar concepts and methods were elaborated
in the field of statistics. Fechner’s constant method reappeared in the 1920s


