

Digital System Design
using FSMs

Digital System Design
using FSMs
A Practical Learning Approach

Peter D. Minns
Formerly at Northumbria University
Newcastle upon Tyne, UK

This edition first published 2021
© 2021 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise,
except as permitted by law. Advice on how to obtain permission to reuse material from this title is available
at http://www.wiley.com/go/permissions.

The right of Peter D. Minns to be identified as the author of this work has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley products
visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that
appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this work and
specifically disclaim all warranties, including without limitation any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written
sales materials or promotional statements for this work. The fact that an organization, website, or product is
referred to in this work as a citation and/or potential source of further information does not mean that the
publisher and authors endorse the information or services the organization, website, or product may provide
or recommendations it may make. This work is sold with the understanding that the publisher is not engaged
in rendering professional services. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a specialist where appropriate. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this work was written and
when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Name: Minns, Peter D., author.
Title: Digital system design using FSMs : a practical learning approach /

Peter D. Minns.
Description: Hoboken, NJ : Wiley, 2021. | Includes bibliographical

references and index.
Identifiers: LCCN 2021015256 (print) | LCCN 2021015257 (ebook) | ISBN

9781119782704 (hardback) | ISBN 9781119782711 (adobe pdf) | ISBN
9781119782728 (epub)

Subjects: LCSH: Sequential machine theory. | Digital electronics.
Classification: LCC QA267.5.S4 M56 2021 (print) | LCC QA267.5.S4 (ebook)

| DDC 621.381501/51135–dc23
LC record available at https://lccn.loc.gov/2021015256
LC ebook record available at https://lccn.loc.gov/2021015257

Cover Design: Wiley
Cover Image: (inset) Image by Peter Minns, (background) © Govindanmarudhai/Getty Images

Set in 10.5/13pt Times by Straive, Pondicherry, India

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://www.wiley.com

Preface viii

Acknowledgements x

About the Companion Website xi

Guide to Supplementary Resources xii

1 Introduction to Finite State Machines 1

1.1 Some Notes on Style 1

2 Using FSMs to Control External Devices 25

2.1 Introduction 25

3 Introduction to FSM Synthesis 45

3.1 Introduction 45
3.2 Tutorials Covering Chapters 1, 2, and 3 71

3.2.1 Binary data serial transmitter FSM 71
3.2.2 The high low FSM system 76
3.2.3 The clocked watchdog timer FSM 80

3.2.3.1 FSM equations 81
3.2.4 The asynchronous receiver system clocked FSM 84

3.2.4.1 Brief note on the development of the test bench generator 86
3.2.4.2 The state diagram 86
3.2.4.3 The state diagram equations 87
3.2.4.4 The outputs 87
3.2.4.5 Verilog HDL simulation of the completed system 95

4 Asynchronous FSM Methods 97

4.1 Introduction to Asynchronous FSM 97
4.2 Summary 144

Contents

vi Contents

4.3 Tutorials 144
4.3.1 FSM motor with fault detection 144
4.3.2 The mower in four and two states 148

5 Clocked One Hot Method of FSM Design 153

5.1 Introduction 153
5.2 Tutorials on the Clocked One Hot FSM Method 168

5.2.1 Seven-state system clocked one hot method 168
5.2.2 Memory tester FSM 170
5.2.3 Eight-bit sequence detector FSM 174

6 Further Event-Driven FSM Design 179

6.1 Introduction 179
6.2 Conclusions 195

7 Petri Net FSM Design 197

7.1 Introduction 197
7.2 Tutorials Using Petri Net FSM 234

7.2.1 Controlled shared resource Petri nets 234
7.2.2 Serial clock-driven Petri net FSM 240
7.2.3 Using asynchronous (event-driven) design with Petri nets 247

7.3 Conclusions 249

Appendix A1: Boolean Algebra 251

A1.1 Basic Gate Symbols 251
A1.2 The Exclusive OR and Exclusive NOR 252
A1.3 Laws of Boolean Algebra 252

A1.3.1 Basic OR rules 252
A1.3.2 Basic AND rules 253
A1.3.3 Associative and commutative laws 253
A1.3.4 Distributive laws 253
A1.3.5 Auxiliary rule for static 1 hazard removal 254

A1.3.5.1 Proof of the Auxiliary Rule 254
A1.3.6 Consensus theorem 254
A1.3.7 The effect of signal delay in logic gates 255
A1.3.8 De-Morgan’s theorem 256

A1.4 Examples of Applying the Laws of Boolean Algebra 257
A1.4.1 Converting AND–OR to NAND 257
A1.4.2 Converting AND–OR to NOR 257
A1.4.3 Logical adjacency rule 258

A1.5 Summary 258

Appendix A2: Use of Verilog HDL and Logisim to FSM 261

A2.1 The Single-Pulse Generator with Memory Clock-Driven FSM 261
A2.2 Test Bench Module and its Purpose 267
A2.3 Using Synapticad Software 268
A2.4 More Direct Method 270
A2.5 A Very Simple Guide to Using the Logisim Simulator 271

A2.5.1 The Logisim top level menu items 271

 Contents vii

A2.6 Using Flip-Flops in a Circuit 273
A2.7 Example Single-Pulse FSM 275
A2.8 How to Use the Simulator to Simulate the Single-Pulse FSM 278

A2.8.1 Using Logisim with the truth table approach 278
A2.9 Using Logisim with the Truth Table Approach 279

A2.9.1 Useful note 281
A2.10 Summary 281

Appendix A3: Counters, Shift Registers, Input, and Output with an FSM 285

A3.1 Basic Down Synchronous Binary Counter Development 285
A3.2 Example of a Four-Bit Synchronous Up Counter with T Type Flip-Flops 288
A3.3 Parallel Loading Counters – Using T Flip-Flops 291
A3.4 Using D Flip-Flops To Build Parallel Loading Counters 292
A3.5 Simple Binary Up Counter with Parallel Inputs 293
A3.6 Clock Circuit to Drive the Counter (and FSM) 294
A3.7 Counter Design Using Don’t Care States 295
A3.8 Shift Registers 296
A3.9 Dealing with Input and Output Signals Using FSM 298
A3.10 Using Logisim to Work with Larger FSM Systems 301

A3.10.1 The equations 302
A3.11 Summary 305

Appendix A4: Finite State Machines Using Verilog Behavioural Mode 307

A4.1 Introduction 307
A4.2 The Single-Pulse/Multiple-Pulse Generator with Memory FSM 307
A4.3 The Memory Tester FSM Revisited 313
A4.4 Summary 315

Appendix A5: Programming a Finite State Machine 317

A5.1 Introduction 317
A5.2 The Parallel Loading Counter 317
A5.3 The Multiplexer 319
A5.4 The Micro Instruction 320
A5.5 The Memory 320
A5.6 The Instruction Set 321
A5.7 Simple Example: Single-Pulse FSM 323
A5.8 The Final Example 325
A5.9 The Program Code 328
A5.10 Returning Unused States via Other Transition Paths 328
A5.11 Summary 328

Appendix A6: The Rotational Detector Using Logisim
Simulator with Sub-Circuits 329

A6.1 Using the Two-State Diagram Arrangement 333

Bibliography 335

Index 337

This book is, in large part, a development of FSM‐Based Digital Design using
Verilog HDL (Minns and Elliott 2008), a book I wrote with Ian Elliott. It is rather
unusual in that it forms a linear programmed learning text in all chapters to help
readers learn on their own.

The intention in this current version is to make use of programmed learning
methods in which the chapters are made up of frames that must be read in a sequen-
tial manner. It is hoped that the book will help readers in their study of the material.
There is also new content in Chapter 6, Appendix A5, and Appendix A6, as well as
consideration of unused states in finite state machines (FSMs).

It is assumed that the reader has a good understanding of Verilog HDL;
however, the interested reader will find that Chapters 6, 7, and 8 of Minns and
Elliott (2008) provide a very good account of Verilog HDL. Wiley make it pos-
sible to purchase these chapters on request for a small fee.

Note that in this version of the book the reader is given help to assist them as they
progress through this book.

Indeed, Chapters 3, 4, 5, and 7 as well as some of the appendices include exam-
ples of FSMs with Verilog HDL for illustrated examples. Use is also made of the
Digital logic simulation program Logisim to help the reader become familiar with
using FSMs in the development of their work. This Logisim Simulator is freely
available throughout the world to run on Windows, OS X, and Linux Operating
Systems (see Appendix A2 for details).

The chapters are organized as follows.
Chapter 1 covers the introductory ideas of what FSMs are and how to represent

them using a state diagram.
Chapter 2 covers the use of external devices and how to control them with an FSM.

Preface

 Preface ix

Chapter 3 looks at how to synthesize FSMs using T type flip‐flops, then D type
flip‐flops.

Chapter 4 introduces asynchronous FSM design.
Chapter 5 looks at the use of the one hot method of synchronous FSM design

applied to clocked FSM designs.
Chapter 6, a new chapter, looks at applying an FSM to event‐driven systems,

and considers one hot ideas and the one hot method.
Chapter 7 deals with Petri nets and how they can be used to synthesize elec-

tronic circuits using both sequential and parallel state machine design. This allows
FSM‐based systems to support both sequential and parallel structures.

There are six appendices covering the necessary aspects of FSM systems that the
reader needs to understand in the support of the FSM work. These are written in a
more formal manner (i.e. not using frame method or programmed learning).

Appendix A1 looks at the logic gates and Boolean algebra used in this book.
This should help those readers who may not have done much work on Boolean
algebra for some time.

Appendix A2 is a tutorial on how to use the simulation programs and the Verilog
Hardware Descriptive Language (HDL) with the SynaptiCAD system as well as a
short introduction on the use of the gate logic simulator Logisim.

Appendix A3 covers the use of counters and shift registers as used in a number
of the tutorials in this book. The reader should find them very useful.

Appendix A4 covers the use of behavioural Verilog HDL with some examples to
help the reader become familiar with its use in the design of FSM‐based systems.

Appendix A5 looks at the way an FSM can be designed using digital hardware
that can be programmed to produce programmable FSM systems. Tutorial examples
are introduced to illustrate how this works.

Appendix A6 looks at how a rotation direction indicator can be implemented
using an event‐driven FSM.

This book provides enough information for the reader to learn how to design their
own FSMs and simulate them using the hardware descriptive language Verilog HDL.

I hope that the content of this book is both interesting and useful, and that it helps
readers to learn more about digital system design using FSMs. I have used these
techniques for many years, in lectures and when working with companies, and have
found them really helpful.

Peter Minns BSc(h) PhD CENG MIET (retired)

Access to Wiley Web for my Verilog HDL and Logisim files:
www.wiley.com\go\minns\digitalsystemdesign

http://www.wiley.com/go/minns/digitalsystemdesign

I would like to thank all those who helped in the proofreading of this book, in par-
ticular those who have looked at specific chapters and especially Kathleen Minns
for her help in the proofreading of the entire manuscript.

Also thanks to Ian Elliott for introducing the Logisim digital simulation
program.

Special thanks go to my commissioning editor Sandra Grayson and managing
editor Juliet Booker for their kind support and guidance in the preparation of this
book as well as the Wiley publishing team.

Thanks are also extended to: Dr C. Burch – Logisim, IET Digital Library, Oxford
Publishing Limited, and Sage Publishing, USA for their various permissions, and
these are referred to in the relevant sections of the book.

Any errors are, of course, entirely the responsibility of the author.

Acknowledgements

This book is accompanied by a companion website

www.wiley.com/go/minns/digitalsystemdesign

This website includes:

• An Index for Logisim Circuits
• An Index for Verilog Listings
• Guide to Supplementary Resources
• Verilog HDL
• Logisim Files

About the Companion
Website

Guide to Supplementary
Resources

The reader will be aware that this book is supported by working Logisim circuits
and Verilog listings and these can be accessed via the Wiley website locator.

However in order to be able to access these Logisim and Verilog circuits/listings
the reader needs to download two programs namely Logisim and SynaptiCAD
Verilog HDL from the internet and install them on their computer (either PC or
MAC) as explained in Appendix 2 of this book.

Each of the Logisim and Verilog HDL folders on the Wiley website has an
individual index that shows the appropriate chapter/appendix reference locator to
which they refer.

Once the appropriate software has been installed the reader will need to click
onto either the .circ or .v files located in ‘Logisim Circuits for Web Folder’ or
‘Verilog Listings for Web Folder’ which they wish to access.

In both folders there is additional material and ideas that do not appear in this
book but maybe of interest to the reader.

Digital System Design using FSMs: A Practical Learning Approach, First Edition. Peter D. Minns.
© 2021 John Wiley & Sons Ltd. Published 2021 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/minns/digitalsystemdesign

1

This chapter (like all other chapters) is written in the form of a linear frame,
 programmed learning text. This is to help you learn the basic skills required to
design clocked finite state machines (FMSs) so that you can develop your own
designs based on traditional T flip‐flops and D flip‐flops. Later, other tech-
niques will be introduced, such as ‘one hot’ and ‘asynchronous finite state
machines’, but these will be developed along the same lines as the work covered
in this chapter.

The text is organized into ‘frames’. Each frame follows on consecutively from
the previous one, but at times you may be redirected to other frames, depending
upon your response to the questions you are asked. Do not cheat, but follow the
frames as indicated.

1.1 SOME NOTES ON STYLE

Bold denotes questions for you to answer to check your understanding of the
material, highlights important points, or indicates an aside when further ideas
are presented.

Please read this chapter first, and attempt all the questions before moving on to
the later chapters. Note that the book can be read as a textbook. The programmed
aspect of the book makes it more suitable for individuals to read and learn in their
own time.

Introduction to Finite State
Machines

2 Introduction to Finite State Machines

Frame 1.1 What is a Finite State Machine?

A finite state machine (FSM) is a digital sequential circuit that can follow a
number of predefined states under the control of one or more inputs. Each state
is a stable entity that the machine can occupy. It can move from this state to
another state under the control of an outside world input.

In Figure 1.1, we see an FSM with three outside world inputs (p, q, and the
clock) and three outside world outputs (X, Y, and Z). Note some FSMs have a
clock input; those that don’t belong to a type of FSM called ‘asynchronous FSM’.
However, this chapter deals with the more usual synchronous FSM, which do
have a clock input. Only Chapter 4 and Chapter 6 will look at asynchronous FSM.

Synchronous FSM can move between states only if a clock pulse occurs.
Task: Draw a block diagram for an FSM with five inputs (x, y, z, t, and a

clock) and with two outputs (P and Q).
When you have done this, turn to Frame 1.2.

p

q

clock

X

Y

Z

FSM

Primary
inputs

Primary
outputs

Figure 1.1 Block diagram of an FSM‐based application.

Frame 1.2

The FSM with five inputs (x, y, z, t, and a clock) and two outputs (P and Q) is
shown in Figure 1.2.

If you did not get this answer, go back and re‐read Frame 1.1. Don’t worry
about using a mixture of both upper‐ and lower‐case letters here; the only thing
that matters is that the same letters are used.

Each state of the FSM needs to be identifiable. This is achieved by using a
number of internal flip‐flops within the FSM block. An FSM with four states
would require two flip‐flops since two flip‐flops can store 22 = 4 state numbers.

 Some Notes on Style 3

Each state has a unique state number, and states are usually assigned numbers,
such as s0 (state 0), s1, s2, and s3 (for a four‐state example).

As you can see, the rule here is 2number of flip‐flops.
So an FSM with 13 states would require 24 flip‐flops (i.e. 15 states of which

13 are used in the FSM and states 14 and 15 remain unused.
How many flip‐flops would be required for an FSM using 34 states?
What would the state numbers be for this FSM?
When you have answered these questions, turn to Frame 1.3.

FSM

x

y

t

clock

P

Q

z

Figure 1.2 Block diagram with five inputs and two outputs.

Frame 1.3

The answer to the previous question is:

2 64 346 , .which would accommodate states

In general: 24 = 16 states, 25 = 32 states, 26 = 64 states, 27 = 128 states, and so on.

What would the state number be for this FSM?

 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s s s s s s s, , , , , , , , , , , , , , , , ,10 11 12 13 14 15 16 ss s s s
s s s s s s s s s s s

17 18 19 20
21 22 23 24 25 26 27 28 29 30

, , , ,
, , , , , , , , , , 331 32 33, , .s s

Answer:

The unused states would be s34 through to s63.
Note that the states run through from s0 to sn−1, for n states.
As well as containing flip‐flops to uniquely define the individual states of the

FSM, there is also combinational logic, which defines the outside world outputs.
In addition, the outside world inputs connect to combinational logic, which sup-
plies the flip‐flops’ inputs.

Please turn to Frame 1.4.

4 Introduction to Finite State Machines

Frame 1.4

Figure 1.3 illustrates the internal architecture for a Mealy FSM.

Note the feed forward paths between the outside world inputs and the
input to the output decoder.

The figure shows that the FSM has a number of inputs that connect to the next
state decoder (combinational) logic. The Q outputs of the memory element flip‐
flops connect to the output decoder logic, which in turn connects to the outside
world outputs via the output decoder.

The flip‐flop outputs are used as next state inputs to the next state decoder,
and it is these that determine the next state that the FSM will move to. Once the
FSM has moved to this next state, its flip‐flops acquire a new present state as
dictated by the next state decoder.

Note that some of the outside world inputs connect directly to the output
decoder logic. This is the main feature of the Mealy type of FSM. This affects
the outputs of the FSM.

Please turn to Frame 1.5.

An FSM block diagram: Mealy

Memory
Elements

Flip-
Flops

Output

Decoder

...

...
...

......

Next

State

Decoder

Outside

world

outputs

Outside
world
inputs

Next
State

Present
State

Feedback

Feed forward input to output

Figure 1.3 Block diagram of a Mealy state machine structure.

Frame 1.5

Another architectural form for an FSM is the Moore FSM, as shown in
Figure 1.4.

 Some Notes on Style 5

This FSM differs from the Mealy FSM in that it does not have the feed
 forward paths.

This type of FSM is very common. Note that the outside world outputs are a
function of the flip‐flop outputs only (unlike the Mealy FSM architecture where
the outside world outputs are a function of flip‐flop outputs and some outside
world inputs).

We will be using both Moore and Mealy FSM in our designs.
Please turn to Frame 1.6.

An FSM block diagram: Moore

Memory
Elements

Flip-
Flops

Output

Decoder

...

...
...

......

Next

State

Decoder

Outside

world

outputs

Outside
world
inputs

Next
State

Present
State

Feedback

NO feed forward input to output

Figure 1.4 Block diagram of a Moore state machine structure.

Frame 1.6

Complete the following:

• A Moore FSM differs to that of a Mealy FSM in that it has…
• This means that the Moore FSM outputs depend on…
• Whilst the Mealy FSM outputs can depend upon…

If you cannot complete the above sentences, go back and read Frame 1.4 and
Frame 1.5.

When you have completed these questions, please go to Frame 1.7.

6 Introduction to Finite State Machines

Frame 1.7

If we look at the Moore FSM architecture again and remove all of the outside
world inputs apart from the clock, and we also remove the output decoding
logic, we are left with a very familiar architecture. This is shown in Figure 1.5.

This architecture is in fact the synchronous counter the reader may have
already seen in previous studies. Note that an up/down counter would have the
additional outside world input ‘up/down’, which would be used to control the
direction of counting.

The flip‐flop outputs in this architecture are used to connect directly to the
outside world.

Please move on to Frame 1.8.

An FSM Block Diagram: Class C

Memory
Elements

Flip -
Flops...

...
...

...

Next

State

Decoder

Outside

world

outputs

Outside
world
inputs
(up/down)

Next
State

Present
State

Feedback

NO feed forward input to output

Figure 1.5 Block diagram of a Class C state machine structure.

Frame 1.8

Historically, two types of state diagrams have evolved, one for the design of the
Mealy FSM the other for the design of the Moore FSM. The two are known as
‘Mealy state diagrams’ and ‘Moore state diagrams’.

These days we use a more general type of state diagram, which can be used to
design both the Mealy and Moore type of FSM. This is the type of state diagram

 Some Notes on Style 7

we use throughout this book. As you will learn, it allows you to build a lot of
ideas into the FSM diagram.

Figure 1.6 shows each state of the FSM and the transitions to and from that
state to other states.

The states are usually drawn as circles (but some people like to use a square box).
The transitions between states are shown as an arrowed line connected

between the states.

In addition to the transitional line between states, there is an input signal name.
The right‐angled lines _| represent the clock input (in this case a rising edge

0 to 1) (Figure 1.7).

In Figure 1.7, the transition between states s0 and s1 will occur at the clock
pulse in the upper state diagram, while in the lower state diagram it will only
occur if the outside world input set to 1 ‘st = 1’ and a ‘0 to 1’ transition occurs
on the clock input.

s0 s1

State 1

An FSM can move between states along transitional lines.

State 2

Figure 1.6 Transition between states.

The transition between the states can be controlled.

s0 s1

State 1 State 2
In this case the
transition will
occur when the
clock pulse occurs.
Moving the FSM from
s0 to s1.

st_|
s0 s1

In this case the transition will
occur when the clock pulse
occurs and input st is logic 1.

Figure 1.7 Transition with and without outside world inputs.

8 Introduction to Finite State Machines

Frame 1.9

The answer is shown in Figure 1.8.

Since in this case the outside world input ‘st’ must be equal to zero (denoted
by the inverting bar to the left of the input st (as in /st).

That is / means not so /st means not st, i.e. when st = 0, then /st = 1.
Note that outside world inputs always lie along the transitional lines.

Also, the reader could be using ‘·’ as well as ‘*’ for ‘AND’. Also, ‘+’ for ‘OR’
in Boolean equations; however, in most cases ‘.’ will be used rather than ‘*’.
In some cases no symbol will be used for ‘AND’, as in ‘AB’ to mean ‘A·B’.

The state diagram must also show how the ‘outside world outputs’ are affected.
This is achieved by placing the outside world outputs either:

• inside the state circle (or square); or
• alongside the state circle (or square).

Figure 1.9 shows the outside world outputs P and Q inside the state circles. In
this particular case, P is logic 1 in state s0, and changes to logic 0 when the
FSM moves to state s1. Output Q does not change in the above transaction,
remaining at logic 0 in both states.

Draw a block diagram showing inputs and outputs for the state diagram.
Then turn to Frame 1.10.

s0 s1

Transitional line between two states when st = 0
and clock goes from 0 to 1.

State 1 State 2

/st_|

Clock pulse 0 to 1 transition

Figure 1.8 Outside world input between states.

What changes would be needed to Figure 1.7 to make the transition
between s0 and s1 occur when input st = 0?

Turn to Frame 1.9 after you have attempted this question.

 Some Notes on Style 9

Frame 1.10

The block diagram will look like that shown in Figure 1.10.

Sometimes we show a negating circle to imply that the input is actually
inverted (see later).

It is easily obtained from the state diagram since inputs lie along transitional
lines and outputs lie inside (or alongside) the state circle. The input st would
normally have a negating circle to show it is an active low input. This is com-
mon practice.

/st

Clock

P

Q

FSM

Outside world
input st

Outside world
outputs P and Q

Figure 1.10 The block diagram for the state diagram shown in Figure 1.9.

st_|s0 s1

P, /Q /P, /Q

Outside world input st

Outside world outputs P and Q

Figure 1.9 Placement of outside world outputs.

10 Introduction to Finite State Machines

You may remember that in Frame 1.2 we said that each state had to have a
unique state number and that a number of flip‐flops were needed to perform this
task. These flip‐flops are part of the internal design of the FSM and are used to
produce an internal count sequence; they are essentially acting like a synchronous
counter, but one that is controlled by the outside world inputs. The internal count
sequence produced by the flip‐flops is used to control the outside world decoder
so that outputs can be turned on and off as the FSM moves between states.

In Frames 1.4 and 1.5 we saw the architecture for the Mealy and Moore FSM.
In both cases, the memory elements shown are the flip‐flops discussed in the previ-
ous paragraph. We look at how the internal flip‐flops are coded in a later chapter.

At this stage it is perhaps worth looking at a simple FSM design in detail. We
can then bring together all the ideas discussed so far, as well as introducing a few
new ones. Try answering the following questions before moving on:

1. A Mealy FSM differs from a Moore FSM in? (See Frames 1.4 and 1.5.)
2. The circles in a state diagram are used to? (See Frames 1.8 and 1.9.)
3. Outside world inputs are shown in a state diagram where? (See Frames 1.8

and 1.9.)
4. Outside world outputs are shown where? (See Frame 1.9.)
5. The internal flip‐flops in an FSM are used to do what? (See Frame 1.10.)

Please turn to Frame 1.11.

Frame 1.11

Figure 1.11 shows an example of a single‐pule circuit FSM.
The idea here is to develop a circuit based on the FSM that will produce a single

output pulse at its output P whenever its input s is taken to logic 1. The FSM is to
be clock driven so it also has an input clock. An additional output L is used to
indicate that a P pulse has been produced so the user can see effect of ‘fast’ pulses.

The block diagram of this circuit is shown in Figure 1.11.

Single-pulse
generator with
memory
FSM

Input s

Clock input

Output P

Output L

Figure 1.11 Block diagram of single pulse with memory FSM.

 Some Notes on Style 11

Figure 1.12 shows a suitable state diagram.

In this state diagram the sling (loop /s going to and from s0) indicates that
while input s is logic 0 (/s) the FSM will remain in state s0 regardless of how
many clock pulses are applied to the FSM. Only when input s goes to logic 1 will
the FSM move from state s0 to s1, and then only when a clock pulse arrives.
Once in state s1, the FSM will set its output P to logic 1, and on the next clock
pulse the FSM will move from state s1 to s2.

The reason why the FSM will stay in state s1 for only one clock pulse is
because in state s1 the transition from this state‐to‐state s2 occurs on a clock
pulse only. Once the FSM arrives in state s2, it will remain there whilst input s
= 1. As soon as input s goes to logic 0 (/s) the FSM will move back to state s0 on
the next clock pulse.

Since the FSM remains in state s1 for only a single clock pulse, and since P = 1
only in state s1, the FSM will produce a single output pulse.

Note in the FSM state diagram that each state has a unique state identity:
s0, s1, and s2.

Also note that each state has been allocated a unique combination of flip‐flop
states, for example:

• State s0 uses the flip‐flop combination A = 0 B = 0, e.g. both flip‐flops reset.
• State s1 uses the flip‐flop combination A = 1 B = 0, e.g. flip‐flop A is set.
• State s2 uses the flip‐flop combination A = 0 B = 1, e.g. flip‐flop A is reset,

flip‐flop B is set.

Now move on to Frame 1.12.

s0 s1 s2

/P, /L P, L /P, Ls_| _|

/s _|

/s
s

Sling
Sling

AB
0 0

AB
1 0

AB
0 1

A and B are secondary state variables

Figure 1.12 State diagram for single pulse with memory FSM.

12 Introduction to Finite State Machines

Frame 1.12

Let’s continue with the one‐pulse design.
The flip‐flop outputs are seen to define each state. If we could see nothing

more than the A and B outputs of the two flip‐flops, we could tell what state the
FSM was in by the output logic levels on each flip‐flop.

We could also tell in which state the output P was to be logic 1, i.e. in state s1
where the flip‐ flop output logic levels are A = 1 and B = 0.

Therefore, the output P = A/B. (Remember, AB is used to indicate the logical
AND operation used in Boolean algebra.)

So we now see that the flip‐flops are used to provide a unique identity for
each state.

We also see that, since each state can be defined in terms of the flip‐flop out-
put states, the outside world outputs can also be defined in terms of the flip‐flop
output states since the outside worlds output states themselves are a function of
these states.

L is logic 1 in states s1 and s2 and is defined in terms of the flip‐flop outputs
A/B + /AB.

Therefore, L = A/B + /AB = A/B + /AB. No Boolean reduction is possible in
this case.

The allocation of unique values of flip‐flop outputs to each state is rather
an arbitrary process. In theory, we can use any values so long as each state has
a unique combination. This means that we cannot have more than one state
with the flip‐flop values of, say, A/B (i.e. both states cannot have the same
value).

In practice it is common to assign flip‐flop values so that the transition
between each state involves only one flip‐flop changing state. This is known as
‘following a unit distance pattern’: only one flip‐flop changes state.

The above example does not use a unit distance pattern since there are two
flip‐flop changes between states s1 and s2. However, the reader will be going on
to make use of the unit distance code idea.

The reader could also make the single‐pulse state diagram (Figure 1.12) fol-
low a unit distance pattern by adding an extra state. This extra state could be
inserted between states s2 and s0, having the same output for P as state s0. In
the state diagram the new state would also have the value of L, the same as that
in state s2, since the reader does not want L to change until s goes to 0.

Try re‐drawing the state diagram with this additional state and assign a
unit distance pattern to the flip‐flops.

When you have done this, go to Frame 1.13.

 Some Notes on Style 13

Frame 1.13

A completed state diagram with unit distance patterns for flip‐flops is shown in
Figure 1.13.

Note that the added state has the unique name of s3 and the unique flip‐flop
assignment of A = 0 and B = 1.

Also note that s2 uses the A and B values of A = 1 and B = 1. This provides
the required unit distance coding. It also has the output P = 0, as it would in
state s0 (the state it is going to go to when s = 0).

In this design the addition of the extra state has not added any more flip‐flops
to the design since two flip‐flops can have a maximum of 22 = 4 states (remember
Frames 1.2 and 1.3).

The addition of this extra state is usually called a dummy state.
Look carefully at the state diagram in Frame 1.13 and satisfy yourself that the

state diagram is doing the same thing as the one in Frame 1.11. If you cannot see
this, consider reading Frames 1.11–1.13 again.

Now let us add an additional input called r to our state diagram.
Input r is to be added so that if r = 1 the FSM will continue to pulse output P

(on and off) until r is made 0. At this point the FSM will return to state s0 but
only if input s = 0.

Draw the block diagram for the FSM.
Draw the state diagram for this modified FSM.
Take your time and think about what you are doing.
Turn to Frame 1.14 when you have completed this task.

s0 s1 s2

s3

/P, /L P, /L /P, L

/P, L

s_| _|

_|

/s_|

AB
0 0

AB
1 0

AB
1 1

AB
0 1

/s

s

Additional dummy state

Figure 1.13 State diagram for single‐pulse generator with memory and dummy state.

14 Introduction to Finite State Machines

Frame 1.14

The block diagram in Figure 1.14 is changing the behaviour of the state diagram.

The state diagram is shown in Figure 1.15.

The new state diagram is essentially the same as that in Frame 1.13 except that
now if r = 1 the state diagram sequence (with s = 1) becomes s0 → s1 → s2 → s1
→ s2, and so on.

However, if s = 1 and r = 0 the sequence will be s0 → s1 → s2 → s3, which
then stops until s = 0 then goes to s0.

Single-pulse
generator with
memory FSM

Input s

Clock input

Output P

Output L

New input r

Figure 1.14 Block diagram for the FSM.

s0 s1 s2

s3

/P, /L P, L /P, L

/P, L

s_| _|

/r_|

/s_|

AB
0 0

AB
1 0

AB
1 1

AB
0 1

/s

s

r_|

Figure 1.15 State diagram of single‐pulse generator with a multipulse feature.

 Some Notes on Style 15

From this you should understand that if we make r = 0 before we make s = 1
the state diagram will follow a single pulse on output P.

The Boolean equation for L can be active high or active low.
As active high, we look for states when the value of L is 1.

L A B AB A A A As1 s2 s3 / AB / B B B / B(/) () .

The Boolean equation for P was P = s1 = A/B (see Frame 1.12).
The Boolean equation for L = s1 + s2 + s3 = A + B since only in states s1, s2

and s3 is the output L = 1.
Note that an alternative equation for L could be the inverse equation for L,

otherwise known as ‘active low’. Here we look for the states that make L = 0.

/ /(/) .L A B/s0 / which is a NAND gate

In practice there is a tendency to show this active low output as:

L A B() (/).active low / /

Note that to obtain the L = 0 the reader needs to invert s0 (/s0). This idea
will be used later.

This is less complex so it may be used.
The latter equation is in terms of NOT L. This means that when in state s1, s2, or

s3, L will be logic 1. Only when the FSM is NOT in any of these states will L = 0.
So in summary:

• Input r is used with a two‐way branch from state s2.
• If r = 0 there is no change in the operation of the FSM (single pulse from P).
• However, if r = 1 the FSM will keep looping between s1 and s2 so as to keep

turning the output P on and off, in effect using input r to change the operation
of the FSM.

This shows how easily it is to change the behaviour of the FSM (in this case).
Note that this change was done in the state diagram then transferred to

the actual FSM.
Please turn to Frame 1.15.

Frame 1.15

In the previous frames we have considered the flip‐flop output patterns. These
are often referred to as the secondary state variables (SSVs) (Figure 1.16).

16 Introduction to Finite State Machines

They are called ‘secondary state variables’ because they are (from the FSM
architecture viewpoint) internal to the FSM (i.e. secondary not primary). If we
consider the outside world inputs and outputs as being primary then it seems
sensible to call the flip‐flop outputs SSVs (and state variables because they
define the states of the state machine).

Moore and Mealy state diagram

The outputs in our FSM are seen to be dependent upon the SSVs or flip‐flops
internal to the FSM. If you look back to Frame 1.5 you will see that Moore FSM
outputs are dependent upon the flip‐flop outputs only. The output decoding
logic in our P pulse example is:

P A B
L A B

s1 / see Frames and and
s0 / / an active l

(). . ;
/ /(),

1 12 1 13
oow.

That is it consists of an AND gate and a NAND gate. This means that a single P
pulse is a Moore FSM.

How could we make our single‐pulse design into a Mealy FSM?
One way would be to make the output P depend on the FSM being in state s1

(A/B), but we could say that the output was to be the width of a single logic 0 of
the clock pulse.

How would we modify our state diagram to do this?
Try doing this, and then turn to Frame 1.16 to find out if you got it right.

Single-pulse
generator with
memory FSM

Input s

Clock input

Output P

Output L

Primary
inputs

Primary
outputs

SSVs A and B
inside FSM

Clock input is clk

Figure 1.16 Block diagram showing secondary state variables in the FSM.

Frame 1.16

The modified state diagram is shown in Figure 1.17 (the r signal here has been
dropped so we are back to a simple one‐pulse FSM). Also, /clk is clk inverted.

