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Supervisor’s Foreword

Adhesive particle flow arises in many applications in industry, nature, and life
sciences and has driven great research interests in areas of aerosol filtration, dust
mitigation, nanoparticle deposition, ceramics manufacturing, fouling of MEMS
devices, sediment transport, and production of fuel cells. An in-depth understanding
of the relationship between microscopic interparticle interactions and the collective
behavior of a large number of particles would be helpful to understand and further
design large-scale devices. However, linking the microscopic properties of discrete
particles to the macroscopic behaviors of particle flow systems is never a simple task.
The difficulty lies in the complicated interacting modes between particles, namely the
electrostatic interaction, the hydrodynamic interaction, and the contact interactions,
across several orders of magnitude in time and length scales.

Within the past few decades, the discrete element method (DEM), in which
the motion, collision, and adhesion of individual particles are resolved in time
and space, has been developed to model particle collective dynamics from single-
particle level. DEM coupled with computational fluid dynamics (i.e., CFD-DEM) has
shown powerful capabilities in investigating particle-laden flows. Moreover, there has
recently been rapid progress on understanding the physics related to the intermolec-
ular and surface forces, which enable us to develop more rational adhesive contact
models. Scalable and efficient computational frameworks have also been proposed
for handling long-range many-body interactions and for collision resolution. It is
recognized that merging the expertise across various disciplines of fluid and solid
mechanics, condensed matter physics, materials science, and applied mathematics
will significantly improve our understanding of particle dynamics in electrostatic and
flow fields.

The objective of this thesis is to propose new approaches for modeling contacting
interactions and electrostatic interactions between microparticles in the framework
of discrete element methods and to present an insightful view on the agglomeration,
migration, and deposition of microparticles in electrostatic and flow fields. The first
chapter discusses various applications of adhesive particle flows. Chapter 2 starts
with a simple case of binary collisions of adhesive particles to show how the discrete
element method gives the information on the force, the displacement, and the energy
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viii Supervisor’s Foreword

conversion. A novel fast DEM based on the reduced particle Young’s modulus is then
proposed to accelerate the computation. In Chap. 3, the fast DEM is coupled with
direct numerical simulation to investigate the agglomeration of particles in homoge-
neous isotropic turbulence. The structure and the size distribution of agglomerates
are obtained. The agglomeration and collision-induced breakage rates are formu-
lated based on the classic theory for particle collisions in turbulence. In Chap. 4, the
evolution of spherical clouds of charged particles that migrate in a uniform external
electrostatic field is then investigated by Oseen dynamics and a continuum approach,
and the scaling laws for evolution of cloud radius and particle number density are
derived. Finally, in Chaps. 5 and 6, an elaborate investigation of the deposition of
charged particles on a flat plane and fibers is presented. The findings, together with
previous results for neutral particles, form a more complete picture of filtration and
deposition of microparticles.

I believe that the results in this book will substantially impact the field relevant
to adhesive particle flows. Beyond that, the findings here may also have broader
implications for granular fluidization, liquid—solid suspensions, and colloidal gels,
where complicated particle—particle interactions exist.

Beijing, China Prof. Shuiqing Li
January 2021
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Nomenclature

English Characters (Lowercase)

SH>Q

dtr
dep
dte

Radius of contact region between two colliding particles (m)

Impact parameter

Fluid time step (s)

Particle convective time step (s)

Collision time step (s)

Coefficient of restitution

Elementary charge (1.6 x 1071°C)

Friction factor for viscous drag

Particle ID

(i) Wave number; (ii) permeability (m?)

Elastic coefficient in normal direction (N/m)
Elastic coefficient in tangential direction (N/m)
Mass (kg)

Radial distribution function

Particle number density (m~)

Collision rate of particles per unit volume (s~'m~%)
(i) Pressure (Pa); (ii) dipole strength (Cm)

(i) Turbulent kinetic energy (m?/s?); (ii) particle charge (C)
Position vector (m)

Particle radius (m)

Fiber radius (m)

Time (s)

Flow velocity, (m/s)

Turbulent velocity fluctuations (m/s)

Slip velocity (m/s)

Particle velocity (m/s)

Normal component of the colliding velocity (m/s)

xvii
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Nomenclature

English Characters (Uppercase)

A Agglomerate size

Ad  Adhesion parameter

El Elasticity Parameter

Dy Fractal dimension of particle agglomerate

E Particle Young’s modulus (Pa)

E Electric field (V/m)

Er Reduced particle Young’s modulus (Pa)

F Force on particles (N)

Fe Critical pull-off force (N)

F, Lubrication force (N)

1 Moment of inertia of particles (kgm?)

M Torque on particles (Nm)

Nc Number of collision events

Ng Number of sticking events

Ng Number of rebound events

Np  Number of breakage events

Ro Radius of particle cloud (m)

R;; (i) Reduced particle radius (m); (ii) radius of collisional sphere (m)
Re Reynolds number

Re, Particle-scale Reynolds number

Re;  Taylor-scale Reynolds number

R, Gyration radius of particle agglomerate (m)

S Size ratio between a particle and a cloud

St Stokes number

Sty Kolmogorov-scale Stokes number

T, Large eddy turnover time (s)

Venv  Normal component of critical sticking velocity (m/s)
Veo  Critical sticking velocity for head-on collisions (m/s)
Wi Volume of Voronoi cell

W, Kernel for particle—particle hydrodynamic interaction
z Coordination number

Greek Symbols

o Damping coefficient for particle collisions

B (i) Particle size ratio; (ii) parameter for the agglomerate size distribution
y Particle surface energy density (J/m?)

r Particle collision kernel (m?/s)

I, Particle agglomeration kernel (m3/s)

8 Overlap between contact particles (m)



