Design Patterns
in Modern (++20

Reusable Approaches for Object-
Oriented Software Design

Second Edition

Dmitri Nesteruk

Design Patterns in
Modern C++20

Reusable Approaches
for Object-Oriented
Software Design

Second Edition

Dmitri Nesteruk

Apress’

Design Patterns in Modern C++20: Reusable Approaches for
Object-Oriented Software Design

Dmitri Nesteruk
St. Petersburg, Russia

ISBN-13 (pbk): 978-1-4842-7294-7 ISBN-13 (electronic): 978-1-4842-7295-4
https://doi.org/10.1007/978-1-4842-7295-4

Copyright © 2022 by Dmitri Nesteruk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Clark van der Beken on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484272947. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7295-4

Table of Contents

About the AUhOFcccmminmmmmsessmsssss s xi
About the Technical REVIEWEIScccsmmssmsmmssnsmsssnsmsssssssssnsssssnsssssnnss xiii
Chapter 1: Introduction...........cccvnnnsmemmmmmnnnnmsssssssnmnre s —————- 1
WHO ThiS BOOK IS FOF......cereeeriecrireere e 2
0N Code EXAMPIESovveerirere it 3
ON DEVEIOPET TOOIS.....c.ecerrrrererreserrsesrssese e s e s sr e enns 4
Preface to the Second Edition..........c.cocvveinnnnninnnnssssss s 5
IMPOrANt CONCEPLS.....cveiervererertrsere st r s s rese e s sresr e se s aennes 6
Curiously Recurring Template Patterncccveevrevevnsnsenienssensesesssessessensens 6
MixXin INNEIEANCE.........ccerrcere s 8
0ld-Fashioned Static POlymOrphiSmccccvevverrernnensensesessssessesessssessessensens 8
Static Polymorphism with CONCEPS......ccevvvrveriernrerreriere e senennens 11

o (0] 0T (TR 12

The SOLID DeSign PriNCIPIES.....ccvcerrererrerrerersessssessessessessssessessesssssssessessessssssessees 14
Single Responsibility PrinCiplecccccvevvvrrnreriensserserse s sesesseseesessessessens 15
0pen-Closed PriNCIPIEcovvvrereverrerrerere s sersesse s sse s saesessessessessssessessees 17
Liskov Substitution PrinCiplecccvvrveriernrerrerienesesserseseseesessessessesessessessenes 26
Interface Segregation PrinCiple........ccccvivevrrrinievnsensesse e ses s sesseseene s 29
Dependency INversion PriNCIPIeccvvvveniniensenne s 33

iii

TABLE OF CONTENTS

Part I: Creational Patternscceeessssssssssmssssssssssssssssssssnsnssnnnnnns 41

Chapter 2: BUilder........ccccurnnssmmmnmmssssnsnmmsssssnnmssssssssssssssssssssssssnssssssnnnnes 43
RS T 14T R 43
SIMPIE BUIAET ..o 45
FIUBNT BUIIAET ... s 46
Communicating INteNt..........coceoeecrnerres e 47
GrooVY-STYIE BUIIEKcccererieireriere s se e s se s s se s snes 49
COMPOSITE BUIIEccereererrerirrerereresserere e e s s e sssses e sae e s e ssesnesaesessenaesees 52
Builder Parameter ..o 57
Builder INNETANCE.........cco e 59
SUMMANY....eeieeereserre e se s e e se s e re e e e ne s 65

Chapter 3: FACtoriesccciuusssmmmmmssssnmnmmssssnnnmssssssnssssssnssnssssssnnnsssssnnnnss 67
BT - L [0 TSRS 67
Factory Method...........cooivriini e 70
[(1] (0] S 72
Factory Methods and PolymorphiSmccccecevrvninnnninserses s e 75
Nested FACIOrY ... s 76
ADSIIACE FACTIONY......coveceeeer e s 78
FUNCLON@l FACIONYcoveeiccerrcstr et 82
ODJECT TrACKING ...vvveerreerise e 83
1] 4= 85

Chapter 4: Prototype.......ccccvnnemmminssnnmnmmsssnnnmnssssssnssssssssssssssssssssssssnnnes 87
Object CONSTFUCTION.......coverereccrc e 87
Ordinary DUPliCALION ... ———— 88
Duplication via Copy ConStructionccccucvinninnniennsnsenese s sessessens 89
Virtual CoNSEIUCTONcovieeree s 92

iv

TABLE OF CONTENTS

SerAliZAtIONcovovevcccri e ——————————— 94
Prototype FaCLOry ... s snens 98
SUMMANY.c..ciicir st e e s s b e s b e e e aennn 99
Chapter 5: Singleton........ccccciierinissssssesmmmmmmmssssssss - 101
Singleton As GIODal ODJECT..........ccorvrernrmrrresere s 102
Classic Implementation...........ccuceeriinnnnnennse s 103
Thread SATELY ..o 105

The Trouble With SINGIETON........cccve e 107
Per-Thread Singleton..........cccvvriereninsirie s ssesnens 111
Ambient CoNteXt ... ———— 114
Singletons and Inversion of CONtrol...........cccverievnnnininn s 118
MONOSEALE. ... ————————— 119
SUMMAIY .ttt 120
Part II: Structural Patternsccinsemmssenmmssnsmssanssssassssansssnss 121
Chapter 6: Adaplercccummmmmenmmmnmssnmmasmssnssssmsssmssasssnssasssannns 123
RS T4 1o OO 123
AUAPLEL ... e 126
Adapter TEMPOFAIIES......ccvierernsirrere s s 128
Bidirectional CONVEIEcccuveerreserrsesesese s s s ssssssessanes 131
SUMMAIY . ueitetrierere st re e s e s a e e s e s s sae e e e s e s aesae e e e e aesae e e e nannaees 133
Chapter 7: Bridge......cccusmmsmmmsnsssasssssssssnsssasssssssssssssassssassssnsssassssassnns 135
The PImpPlIdIom ..o e 135
BIUGE. ... ettt e e 138
SUMIMANY.....eeeererceeree e s s e e e s e re e e e e 141

TABLE OF CONTENTS

Chapter 8: COMPOSITecerrrrsrsmerrrssssnnnsmsssssnnsmsssssnssssssssnnsesssssnnsssssnnns 143
Array-Backed Properties......c.ccouvrvrirnnnnne s sesse s enes 145
Grouping Graphic ODJECTScccvcvirinrrrr e 148
NeUral NEtWOIKScccoveeerererereerreesesese s snens 150

Shrink-Wrapping the COMPOSILecccvvvvrinirinnnsnrne s 155
Conceptual IMProvements.........covrininnnnsnr e 155
Concepts and Global Operators.........ccccucvnvnvnieniennsnses e eees 157
Composite SPeCification ... ——— 159
SUMMANY ...t r e e p e e e npn e e 161

Chapter 9: Decoratorcccccrmrnmmmmmmmsssssnnnmmmmmssssssss s 163
BT 1 14 o 163
Dynamic DECOFALOrccocverreiirrere s 166
(L= 2 (0] S 169
FUNCLION@l DECOTALON.......ccceeereeerieereee s 172
SUMMANY....ceirierinesrsese e e e nr e e 177

Chapter 10: Fagade..........ccusmmmmmismmssmmssmmsmmsmssmssms s s sssssssssssns 179
Magic SQUAre GENEIALOrcccvvriererrrrerrere s sae s 180

T [T 1 o RS 184
Building a Trading Terminal...........cccuverinininnnnnsrsse e seseas 185
An Advanced Terminalccoverernnmrnnnese s 187
Where’s the Fagade?...........cocovieninnnnnsssssssss s sssssssssesens 189
SUMMAIY . ueitetrereresessere s rse s s ssess e e s e ssesse e ssesaesaess s e ssesaesasssnsesaesaessssensersens 190

Chapter 11: Flyweightccccccmmnnnmmmmmssssnmmmsssssnmsssssssesssssssssssans 191
USEI NAIMES....c.occeceecreecreree e e e 191
BOOSLFIYWEIGNT ... 194
SHNG RANGES ...covveerreeerrce e e 195

TABLE OF CONTENTS

NaIVE APPIOACKveveerereerirrerser e s e sse e sss e saessesae e ssessesaesessessessessesensessens 195
Flyweight Implementation..........cccccocvvninnnininin e 197
31111111 T o OO S 200
Chapter 12: ProXY ...ccccusssssssessssssssssssssnsssssssssnsssssssnnsssssssnsssssssnnnnssssnnns 201
SMANt POINEIS ... e 201
PrOPErtY PrOXY....ccoveserrrerenesessesessssesessessssssessssessssssessssssessssssssssssssssssssssssssessnnes 202
ViIrTUI PrOXY ..cvceircciincsenese s ss e sss s s ssssssssssnens 204
ComMMUNICALION PrOXY ...ccccverieieriereresisseresesessessesessesessessessessssessessesasssssensessens 207

L LT o ()| S 210

£ 14114 7 214
Part Ill: Behavioral Patternsccucccsmmsssmsmmsssensssssssssnsssnssnnns 215
Chapter 13: Chain of Responsibilitycccccunmmmmmmmmmmmmesmsssssssssnnnnns 217
BT =] - L [0 SR 217
POINtEr ChaiN.......ccceeeeriierrne e 218
Broker Chain ... 222
SUMMAIY.c.veiteirereresessere e s s srese e e ssesse s s e se s e saesaese s e saesaesae e e e saesae s eensesanns 226
Chapter 14: Command........ccocecerrrsssnnnnmssssssnnssssssnsssssssssssssssssssssssssnns 229
ES 1= - L [0 229
Implementing the Command Pattern...........coccoveeerervncnneeser e 230
UNdO OPErations.........covcerieririsiniene s st 232
Composite COMMANG.......c.ccovirrrierernrre e rens 236
Command Query Separationcucevvrrrerrernnnsenseresessessese s ses s ssessssesessens 240
SUMMAIY.c.veiteitrerereseeserse e ses s e ss e e s e saessese s e saesaese e e saesaeseesensesaesaesssensessens 243

vii

TABLE OF CONTENTS

Chapter 15: Interpreter.......c.ccccinninmmnmnnssnnmmnmsssnnmmsssssensssssnmmnn. 245
Parsing Integral NUMDErsS ... 246
Numeric Expression Evaluator ... 247

I3 (1o OSSPSR 248
ParSING .c.veoiiircirer s e e e 251
Using the Lexer and Parserocooenrnenrenernsesesese s sesese e 255
Parsing with BOOSL.SPIFitccccovvrinirinrrr s 255
AbStract SYNtax TrEE.......cccvvrrerrererese s s 256
o 1T TSR 257
11 TS 259
SUMMANY....ceireerereresese s se e e s s s e se e nensenenns 260

Chapter 16: Iteratorccovcmmmimmmsmmsssmmssmmssmsss . 261
Iterators in the Standard LiDrary..........cccvevievnnniniennnnsense s sesese s sessessens 261
Traversing @ Binary Tree.......ccvvvviririniin s sse e 264
[teration With COrOULINES.........cccoevererernscesrs e s 269
SUMMANY..c..eitiirire e bbb b e s R b e e e nne s 271

Chapter 17: Mediatorccoussemmmnsnmmmsssnsmsssnsmsssnsssssnsssssnsssssnsssssnnsnss 273
L 1 L 20 RS 273
Mediator With EVENTScccccvvvernserncsess s s snanes 279
Service Bus AS Mediatorc.oueenerennnnsssse s 283
SUMMAIY.c.veitetrrerere e s s e sse s e sa e e s e sse s s e se s e saesaese e e saesaesee e s e saesaesseennessens 284

Chapter 18: Mementoccuseumssesmssmnssnsssassssnssssnsssassssassssnsssassssanssns 287
BanK ACCOUNL ...t 287
00T {02 o N 2= (o ST 289
Memory ConsSiderationsccocvveererrererenernsesese e seenes 293
Using Memento for INTEropccoveevvererenennsesseses s 294
SUMMAIY . viiteitriere st sa e e s e s b sa e e s e R sae e e e e aenne s 296

viii

TABLE OF CONTENTS

Chapter 19: Null Object.......c.ccccmmrmnsmmnmmsssssnnsmsssssnssssssssnssssssssnnssssssnns 297
RS T4 1o TR 297
NUIT OBJECTvvverrrrrrereseresesesesee s ss e 299
shared_ptrls Nota Null ODJECT........c.cccovvririnnnnrn s 300
Design IMProvemMeNntsccoveeernnerncrerese s 301
Implicit NUll ODJECL. ..o s 301
Interaction with Other Patterns...........cocvvrnnnnn s 303
SUMMAIY.c.ueiteirerere e sere e see s s e e e s e s s s e se s e s aesaese e e saesaesae e e e saesaesseennesnens 304
Chapter 20: ODSErVEr.....cccsrusssssnssrsssssnsssssssssnsssssssnnssssssannssssssnnnnssssnnns 305
Property ODSEIVELScccuereriiinsire e s 305
(00T 1T 2 306
ODSEIVADIEST> ... e 308
Connecting Observers and ObServablesccccvvvnennesesnssssesese e 310
Dependency Problems ... 311
Unsubscription and Thread Safety........cccvvievvnnvninn s sessensens 312
L] 0L TSRS 314
Observer with Boost.SignalS2............cocvrninnnnnesnsnsesess s sessessens 317
VIBWS .. e s nae s s e e s e nnnnnns 319
SUMMANY ...ttt e s nr e 321
Chapter 21: State..........cccvcmmismmmsmmmmmmsmmsssss . 323
State-Driven State TranSitionscccovrnnnn s 324
Handmade State Machine............cccoviininnnnnssss s 328
Switch-Based State Machine............cccovvreinnnnnssss s 332
State Machines with BOOST.MSM ... 335
SUMMANY.....eeeerieereree e e e re e e e 339

ix

TABLE OF CONTENTS

Chapter 22: Strategy......ccerrmssmnnmmssssnnnsmssssssnsssssssnssssssssnssssssssnsnssssnnns 341
DyNamic Strategy.......ccucvrrerririrnrerire st s 343
STaAtIC SrAtBOY ..coveeeeree e s 348
SUMMANY....eieeerircreree e n e pe e e e e 349

Chapter 23: Template Method............covnnmnmsmsmsmssnnmnsnsnssss 351
Game SIMUIALION.......ccoveerrrerirce e 351
Functional Template Method.........c.ccooevrrrvniennnnsni e 354
SUMMAIY.c.veitetrierere s s e sese s e e e s e saess e e s e saesaese e e saesaesaesessesaesaesseennessens 356

Chapter 24: Visitor.........coiuemmssmmmsanmsssnmssnsssssssssssssnssssssssassssnsssassssanssns 357
INEPUSIVE VISITON ... s 358
RefleCtive PrNTE ..o s 360
What IS DiSPatCh? ... s 363
ClaSSIC VISITONueeerrrrererreerrssesssese s ss s se s ses e 365

Implementing an Additional Visitor..........cccccvvninnnnnnnnnsnenens e 368
X0 [T (0] S 370
Variants and SEA:VISIE..........ccceeeeriiiesrr s 374
SUMMAIY . veitetrereresessere s e sese s e ss e e ssessesaesessesaesaess s e ssesassassessesassasssssensersens 376

1T = 377

About the Author

Dmitri Nesteruk is a quantitative analyst,
developer, course and book author, and

an occasional conference speaker. His
professional interests lie in software
development and integration practices in the
areas of computation, quantitative finance,
and algorithmic trading. His technological
interests include C# and C++ programming
as well as high-performance computing using
technologies such as CUDA and FPGAs. He
has been a C# MVP since 2009.

About the Technical Reviewers

David Pazmino has been developing software applications for 20 years in
Fortune 100 companies. He is an experienced developer in front-end and
back-end development who specializes in developing machine learning
models for financial applications. David has developed many applications
in C++, STL, and ATL for companies using Microsoft technologies.

He currently develops applications in Scala and Python for deep

learning neural networks. David has a degree from Cornell University, a
masters from Pace University in Computer Science, and a masters from
Northwestern in Predictive Analytics.

Massimo Nardone has more than 25 years of experience in security, web/
mobile development, cloud, and IT architecture. His true IT passions are
security and Android. He has been programming and teaching how to
program with Android, Perl, PHP, Java, VB, Python, C/C++, and MySQL
for more than 20 years. He holds a Master of Science degree in Computing
Science from the University of Salerno, Italy.

He has worked as a CISO, CSO, security executive, loT executive,
project manager, software engineer, research engineer, chief security
architect, PCI/SCADA auditor, and senior lead IT security/cloud/SCADA
architect for many years. His technical skills include security, Android,
cloud, Java, MySQL, Drupal, Cobol, Perl, web and mobile development,
MongoDB, D3, Joomla, Couchbase, C/C++, WebGL, Python, Pro Rails,
Django CMS, Jekyll, Scratch, and more.

xiii

ABOUT THE TECHNICAL REVIEWERS

He worked as visiting lecturer and supervisor for exercises at the
Networking Laboratory of the Helsinki University of Technology (Aalto
University). He holds four international patents (PKI, SIP, SAML, and Proxy
areas). He is currently working for Cognizant as head of cyber security
and CISO to help both internally and externally with clients in areas of
information and cyber security, like strategy, planning, processes, policies,
procedures, governance, awareness, and so forth. In June 2017 he became
a permanent member of the ISACA Finland Board.

Massimo has reviewed more than 45 IT books for different publishing
companies and is the co-author of Pro Spring Security: Securing Spring
Framework 5 and Boot 2-based Java Applications (Apress, 2019), Beginning
EJB in Java EE 8 (Apress, 2018), Pro JPA 2 in Java EE 8 (Apress, 2018), and
Pro Android Games (Apress, 2015).

Xiv

CHAPTER 1

Introduction

The topic of design patterns sounds dry, academically dull, and, in

all honesty, done to death in almost every programming language
imaginable - including programming languages such as JavaScript which
aren’t even properly OOP! So why another book on it? T know that if
you're reading this, you probably have a limited amount of time to decide
whether this book is worth the investment.

The main reason why this book exists is that C++ is “great again.” After
a long period of stagnation, it's now evolving and growing, and, despite
the fact that it has to contend with backward C compatibility, good things
are happening - they may not always happen at the pace we’d all like, but
this is a byproduct of the way the evolution of the C++ language standard is
structured.

Now, on to design patterns - we shouldn’t forget that the original
Design Patterns book' was published with examples in C++ and Smalltalk.
Since then, plenty of programming languages have incorporated
design patterns directly into the language: for example, C# directly
incorporated the Observer pattern with its built-in support for events
(and the corresponding event keyword). C++ has not done the same, at
least not on the syntax level. That said, the introduction of types such as
std: : function sure made things a lot simpler for many programming
scenarios.

'Erich Gamma et al. (1994), Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley

© Dmitri Nesteruk 2022 1
D. Nesteruk, Design Patterns in Modern C++20,
https://doi.org/ 10.1007/978-1-4842-7295-4_1

https://doi.org/10.1007/978-1-4842-7295-4_1

CHAPTER 1 INTRODUCTION

Design patterns are also a fun investigation of how a particular
problem can be solved in many different ways, with varying degrees of
technical sophistication and different sorts of trade-offs. Some patterns are
more or less essential and unavoidable, whereas other patterns are more of
a scientific curiosity (but nevertheless will be discussed in this book, since
I'm a completionist).

Readers should be aware that comprehensive solutions to certain
problems (e.g., the Observer pattern) typically result in overengineering,
that is, the creation of structures that are far more complicated than is
necessary for most typical scenarios. While overengineering is a lot of fun
(hey, you get to solve the problem and impress your coworkers), it’s often
not feasible in the real world of time and budgeting constraints.

Who This Book Is For

This book is intended to be a modern-day update to the classic GoF book,
targeting specifically the C++ programming language. I mean, how many
of you are writing Smalltalk out there? Not many, that would be my guess.?

The goal of this book is to investigate how we can apply Modern C++
(the latest versions of C++ currently available) to the implementations of
classic design patterns. At the same time, it’s also an attempt to flesh out
any new patterns and approaches that could be useful to C++ developers.

Finally, in some places, this book is quite simply a technology demo for
Modern C++, showcasing how some of its latest features (e.g., concepts)
make difficult problems a lot easier to solve.

2To be fair, the Pharo variety of Smalltalk has some interesting ideas that I have
since borrowed and adapted to other programming languages. One idea, which I
managed to successfully transplant, is the idea of input-output matching. It works
like this: you give the software desired input and output values, say, abc and 3,
and a piece of software uses combinatorial analysis to derive the expression
x.length() for taking you from one to another.

CHAPTER 1 INTRODUCTION

On Code Examples

The examples in this book are all suitable for putting into production, but a
few simplifications have been made in order to aid readability:

e Quite often, you'll find me using a struct instead of a
class in order to avoid writing the public keyword in
too many places.

o Iwill avoid the std: : prefix, as it can hurt readability,
especially in places where code density is high. If
I'm using string, you can be sure I'm referring to
std::string.

o Twill avoid adding virtual destructors, whereas, in real
life, it might make sense to add them in certain places.

o Insome cases, I create and pass parameters by value to
avoid the proliferation of shared ptr/make shared/etc.
Smart pointers add another level of complexity, and
their integration into the design patterns presented in
this book is often left as an exercise for the reader.

e Iwill sometimes omit code elements that would
otherwise be necessary for feature-completing a type
(e.g., move constructors) as those take up too much
space. Feature-completing a type is quite often a
separate challenge, somewhat unrelated to the topic at
hand.

o There will be plenty of cases where I will omit const,
whereas, under normal circumstances, it would
actually make sense to use it. Const-correctness quite
often causes a split and a doubling of the API surface,
something that doesn’t work well in book format.

CHAPTER 1 INTRODUCTION

You should be aware that most of the examples leverage Modern C++
(C++ 14, 17, 20, and beyond) and generally use the latest C++ language
features that are available to developers at the time of writing. For example,
you won't find many function signatures ending in -> decltype(...)
when C++14 lets us automatically infer the return type. None of the
examples target a particular compiler, but if something doesn’t work with
your chosen compiler,® you'll need to find workarounds.

At certain points in time, I will be referring to other programming
languages such as C# or Kotlin. It is often interesting to note how designers
of other languages have implemented a particular feature. C++ is no
stranger to borrowing generally available ideas from other languages:
for example, the introduction of auto and type inference on variable
declarations and return types is present in many other languages.

On Developer Tools

The code samples in this book were written to work with Modern C++
compilers, such as Clang, GCC, and MSVC. I make the general assumption
that you are using the latest compiler version that is available and thus will
use the latest and greatest language features that are available to me. In
some cases, the advanced language examples will need to be downgraded
for earlier compilers; in others, it might not work out. Naturally, if I use any
experimental language features, they might not work in all compilers until
they catch up to the necessary level of C++ language support.

As far as developer tools are concerned, this book does not focus
on them specifically, so, provided you have an up-to-date compiler, you
should follow the examples just fine: most of them are self-contained

3Plenty of compilers, such as the Intel C++ Compiler, do not make it their goal
to support all features of a particular C++ standard as quickly as possible.
Nevertheless, these compilers do have their own loyal followings because they
shine in areas other than feature-completeness such as optimization.

CHAPTER 1 INTRODUCTION

single . cpp files, but some examples that involve complex dependencies
or static initialization are spread across several files. Regardless, I'd like

to take this opportunity to remind you that quality developer tools such

as CLion or ReSharper C++ greatly improve the development experience.
For a tiny amount of money that you invest, you get a wealth of additional
functionality that directly translates to improvements in coding speed and
the quality of the code produced.

Preface to the Second Edition

The world is changing. Some of those changes, such as the pandemic that
we're currently experiencing worldwide, are a bit frightening. On the other
hand, some changes are good: the C++20 standard has finally been ratified,
and C++20 language features such as modules and concepts are making an
appearance in popular C++ compilers.

We are, of course, far from having a complete implementation in any
given compiler. For example, even if we are able to use modules in our own
code, we still need to wait in order to have modularized implementations
of the Standard Library, Boost, and other popular libraries. But what
we have right now is already changing the way design patterns are
implemented. For example, if, in the past, we wanted to ensure a template
argument implemented some interface, we would use a static_assert.
But now, with C++20, we can leverage concepts, which are reusable
(avoiding cut and paste) and self-descriptive.

With the never-ending evolution of C++, we can all feel as if we were
on a never-ending journey that keeps getting better and better. The only
challenge is to learn how to leverage all the new functionality, a challenge
for which I hope this book can become a useful tool. Enjoy!

CHAPTER 1 INTRODUCTION

Important Concepts

Before we begin, I wanted to briefly mention some of the key concepts
of the C++ world that will be referenced in this book. None of them are
particularly advanced, and most of them will be familiar to experienced
C++ developers.

Curiously Recurring Template Pattern

I don’t know if it qualifies to be listed as a separate design pattern, but the
curiously recurring template pattern (CRTP) is certainly a pattern of sorts
in the C++ world. The idea is simple: an inheritor passes itselfas a template
argument to its base class.

struct Foo : SomeBase<Foo>

{

Why would one ever do that? Well, one reason is to be able to access a
typed this pointer inside a base class implementation.

For example, suppose every single inheritor of SomeBase implements
abegin()/end() pair required for iteration. How can you iterate the
object inside a member of SomeBase, rather than inside the inheritor
class? Intuition suggests that you cannot, because SomeBase itself does not
provide a begin()/end() interface. But if you use CRTP, a derived class can
pass information about itself to the base class:

struct MyClass : SomeBase<MyClass>

{

class iterator {

CHAPTER 1 INTRODUCTION

// your iterator defined here
}
iterator begin() const { ... }
iterator end() const { ... }

}

This means that, inside the base class, you can cast this to a derived
class type:

template <typename Derived>
struct SomeBase

{
void foo()

{

for (autod item : *static_cast<Derived*>(this))

{

When calling foo() on an instance of MyClass, this pointer gets
cast from SomeBase* to MyClass*. We then dereference the pointer
and iterate on it using a range-based for loop which, of course, calls
MyClass::begin() and MyClass::end() behind the scenes.

For a concrete example of this approach, check out Chapter 8,
“Composite.”

CHAPTER 1 INTRODUCTION

Mixin Inheritance

In C++, a class can be defined to inherit from its own template argument,
that is:

template <typename T> struct Mixin : T

{

This approach is called mixin inheritance and allows hierarchical
composition of types. For example, you can make an instance of
Foo<Bar<Baz>> x; thatimplements the traits of all three classes, without
having to actually construct a brand new FooBarBaz type.

Mixin inheritance is particularly useful together with Concepts
because it allows us to put constraints on the type our mixin inherits from
and lets us deterministically use the base type features without relying on
compile-time errors to tell us we are doing something wrong.

For a concrete example of this approach, check out Chapter 9,
“Decorator.”

Old-Fashioned Static Polymorphism

Imagine you want to build an alert system that notifies someone about
an event by different means: email, SMS, Telegram, etc. Under the CRTP
paradigm, you could implement a base Notifier class similar to the
following:

template <typename TImpl>
class Notifier {
public:

CHAPTER 1 INTRODUCTION

void AlertSMS(string view msg)

{
imp1().SendAlertSMS(msg);

}

void AlertEmail(string view msg)

{
impl().SendAlertEmail(msg);

}

private:
TImpl& impl() { return static_cast<TImpl&>(*this); }
friend TImpl;

b

Since TImpl is a template argument, we can call methods on it with
impunity, knowing that, even though we’re not explicitly specifying
that TImpl must inherit from Notifier (we’ll do this soon enough), the
compiler will check that the methods AlertSMS() and AlertEmail() do
actually exist.

This allows us to define a method which sends an alert on all channels:

template <typename TImpl>
void AlertAllChannels(Notifier<TImpl>& notifier, string view
msg)

{
notifier.AlertEmail(msg);

notifier.AlertSMS(msg);
}

CHAPTER 1 INTRODUCTION

Now all that remains is to construct implementations of Notifier. For
example, you can build a no-op (see the Null Object pattern) notifier for
testing:

struct TestNotifier: public Notifier<TestNotifier>
{

void SendAlertSMS(string view msg){}

void SendAlertEmail(string view msg){}

};
And you can use this to do absolutely nothing!

TestNotifier tn;
AlertAllChannels(tn, "testing!"); // just testing!

While this is a workable approach, it has deficiencies, namely:

e We end up having two parallel APIs, that is,
AlertSMS()/SendAlertSMS(). We cannot call those
methods the same because then one would hide
another (and your IDE will complain).

o The whole impl() thing is weird and feels unnecessary.
You'd expect the alert methods to be virtual in base
class and overriding in the implementing class.

o There’s no explicit enforcement that TImpl has any
particular interface; we try to call things to check them
at runtime, but the implementer is not informed about
what we call and where. Concepts can help with this.

10

CHAPTER 1 INTRODUCTION

Static Polymorphism with Concepts

The solution here is to introduce a concept that requires the presence of

relevant member functions:

template <typename TImpl>

concept IsANotifier = requires(TImpl impl) {
impl.AlertSMS(string view{});
impl.AlertEmail(string view{});

};

Now, we no longer need the base Notifier class: we can simply
construct the AlertAl1Channels method that expects some type that has
all the AlertXxx() methods:

template <IsANotifier TImpl>
void AlertAllChannels(TImpl& impl, string view msg)

{
impl.AlertSMS(msg);

impl.AlertEmail(msg);
}

In this function, the TImpl template argument is required to support
the IsANotifier concept. We can make a class that conforms to this
requirement:

struct TestNotifier

{
void AlertSMS(string view msg) {}

void AlertEmail(string view msg) {}

};

11

CHAPTER 1 INTRODUCTION

And continue to use it as before. As you can see, we avoid the notion of
a base class altogether.

Properties

Properties are a topic worth mentioning even though they are not part
of the C++ standard. Despite the fact that properties have already proven
themselves over and over in other programming languages, many C++
programming purists continue to believe that they have no business being
part of C++ and are best implemented as a library solution - something
that doesn’t work particularly well, to be honest.

A property is nothing more than a (typically private) field and a
combination of a getter and a setter. In standard C++, a property looks as
follows:

class Person

{

int age;
public:

int get_age() const { return age; }

void set age(int value) { age = value; }
};

Plenty of languages (e.g., C#, Kotlin) internalize the notion of a
property by baking it directly into the programming language. While C++
has not done this (and is unlikely to do so anytime in the future), there is
a non-standard declaration specifier called property that you can use in
most compilers (MSVC, Clang, Intel):

class Person

{

12

CHAPTER 1 INTRODUCTION

int age_;
public:
int get age() const { return age ; }
void set age(int value) { age_ = value; }
__declspec(property(get=get age, put=set age)) int age;
}s

What happens here is, within __declspec(property(...)) field
declaration, you specify the getter and the setter using the keywords get
and put. This then becomes a virtual field - it doesn’t result in any memory
allocations, but attempts to access this field or write to it are replaced by
the compiler with calls to the getter and setter, respectively.

This can be used as follows:

Person p;
p.age = 20; // calls p.set age(20)

Those not fond of C++ language extensions typically expose properties
as a combination of getter and setter methods, often by keeping the field
private and exposing a pair of identically named (overloaded) methods
with the same name as the field they expose:

class Person
{
int _age;
public:
int age() const { return age; }
void age(int value) { _age = value; }

}

13

CHAPTER 1 INTRODUCTION

Why is this discussion relevant? In and of themselves, getters and
setters may seem useless: if you have a field that you want people to
modify, expose it as public and be done with it! If, however, you want to
perform additional actions - for example, notifying subscribers that a field
has changed - then the setter is exactly the place where some of the code
should go. This is what we’ll encounter when we talk about the Observer
design pattern.

The SOLID Design Principles

SOLID is an acronym which stands for the following design principles (and
their abbreviations):

o Single Responsibility Principle (SRP)

e Open-Closed Principle (OCP)

e Liskov Substitution Principle (LSP)

o Interface Segregation Principle (ISP)

o Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early
2000s - in fact, they are just a selection of five principles out of dozens that
are expressed in Robert’s books and his blog.* These five particular topics
permeate the discussion of patterns and software design in general, so
before we dive into design patterns (I know you're all eager to see them),
we're going to do a brief recap of what the SOLID principles are all about.

*https://blog.cleancoder.com/

14

https://blog.cleancoder.com/

CHAPTER 1 INTRODUCTION

Single Responsibility Principle

Suppose you decide to keep a journal of your most intimate thoughts. The
journal has a title and a number of entries. You could model it as follows:

struct Journal

{
string title;
vector<string> entries;

explicit Journal(const stringd title) : title{title} {}
};

Now, you could add functionality for adding an entry to the journal,
prefixed by the entry’s ordinal number in the journal. This is easy:

void Journal::add(const stringd entry)
{
static int count = 1;
entries.push_back(boost::lexical cast<string>(count++)

+ "t "+ entry);

And the journal is now usable as

Journal j{"Dear Diary"};
j.add("I cried today");
j.add("I ate a bug");

It makes sense to have this function as part of the Journal class
because adding a journal entry is something the journal actually needs to
do. It is the journal’s responsibility to keep entries, so anything related to
that is fair game.

15

CHAPTER 1 INTRODUCTION

Now suppose you decide to make the journal persist by saving it in a
file. You add this code to the Journal class:

void Journal::save(const string& filename)
{
ofstream ofs(filename);
for (autod s : entries)
ofs << s << endl;

This approach is problematic. The journal’s responsibility is to keep
journal entries, not to write them to disk. If you add the disk-writing
functionality to Journal and similar classes, any change in the approach
to persistence (say, you decide to write to the cloud instead of disk) would
require lots of tiny changes in each of the affected classes.

I want to pause here and make a point: a situation that leads us to
having to do lots of tiny changes in lots of classes, whether related (as in a
hierarchy) or not, is typically a code smell - an indication that something’s
not quite right. Now, it really depends on the situation: if we’re renaming
a symbol that’s being used in a hundred places, I'd argue that’s generally
OK because ReSharper, CLion, or whatever IDE we use will actually let
us perform a refactoring and have the change propagate everywhere. But
when we need to completely rework an interface... well, this can be a very
painful process!

We therefore state that persistence is a separate concern, one that is
better expressed in a separate class, for example:

struct PersistenceManager

{

static void save(const Journal® j, const string& filename)

16

