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CHAPTER 1

Introduction

The topic of design patterns sounds dry, academically dull, and, in

all honesty, done to death in almost every programming language
imaginable - including programming languages such as JavaScript which
aren’t even properly OOP! So why another book on it? T know that if
you're reading this, you probably have a limited amount of time to decide
whether this book is worth the investment.

The main reason why this book exists is that C++ is “great again.” After
a long period of stagnation, it's now evolving and growing, and, despite
the fact that it has to contend with backward C compatibility, good things
are happening - they may not always happen at the pace we’d all like, but
this is a byproduct of the way the evolution of the C++ language standard is
structured.

Now, on to design patterns - we shouldn’t forget that the original
Design Patterns book' was published with examples in C++ and Smalltalk.
Since then, plenty of programming languages have incorporated
design patterns directly into the language: for example, C# directly
incorporated the Observer pattern with its built-in support for events
(and the corresponding event keyword). C++ has not done the same, at
least not on the syntax level. That said, the introduction of types such as
std: : function sure made things a lot simpler for many programming
scenarios.

'Erich Gamma et al. (1994), Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley

© Dmitri Nesteruk 2022 1
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Design patterns are also a fun investigation of how a particular
problem can be solved in many different ways, with varying degrees of
technical sophistication and different sorts of trade-offs. Some patterns are
more or less essential and unavoidable, whereas other patterns are more of
a scientific curiosity (but nevertheless will be discussed in this book, since
I'm a completionist).

Readers should be aware that comprehensive solutions to certain
problems (e.g., the Observer pattern) typically result in overengineering,
that is, the creation of structures that are far more complicated than is
necessary for most typical scenarios. While overengineering is a lot of fun
(hey, you get to solve the problem and impress your coworkers), it’s often
not feasible in the real world of time and budgeting constraints.

Who This Book Is For

This book is intended to be a modern-day update to the classic GoF book,
targeting specifically the C++ programming language. I mean, how many
of you are writing Smalltalk out there? Not many, that would be my guess.?

The goal of this book is to investigate how we can apply Modern C++
(the latest versions of C++ currently available) to the implementations of
classic design patterns. At the same time, it’s also an attempt to flesh out
any new patterns and approaches that could be useful to C++ developers.

Finally, in some places, this book is quite simply a technology demo for
Modern C++, showcasing how some of its latest features (e.g., concepts)
make difficult problems a lot easier to solve.

2To be fair, the Pharo variety of Smalltalk has some interesting ideas that I have
since borrowed and adapted to other programming languages. One idea, which I
managed to successfully transplant, is the idea of input-output matching. It works
like this: you give the software desired input and output values, say, abc and 3,
and a piece of software uses combinatorial analysis to derive the expression
x.length() for taking you from one to another.
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On Code Examples

The examples in this book are all suitable for putting into production, but a
few simplifications have been made in order to aid readability:

e Quite often, you'll find me using a struct instead of a
class in order to avoid writing the public keyword in
too many places.

o Iwill avoid the std: : prefix, as it can hurt readability,
especially in places where code density is high. If
I'm using string, you can be sure I'm referring to
std::string.

o Twill avoid adding virtual destructors, whereas, in real
life, it might make sense to add them in certain places.

o Insome cases, I create and pass parameters by value to
avoid the proliferation of shared ptr/make shared/etc.
Smart pointers add another level of complexity, and
their integration into the design patterns presented in
this book is often left as an exercise for the reader.

e Iwill sometimes omit code elements that would
otherwise be necessary for feature-completing a type
(e.g., move constructors) as those take up too much
space. Feature-completing a type is quite often a
separate challenge, somewhat unrelated to the topic at
hand.

o There will be plenty of cases where I will omit const,
whereas, under normal circumstances, it would
actually make sense to use it. Const-correctness quite
often causes a split and a doubling of the API surface,
something that doesn’t work well in book format.
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You should be aware that most of the examples leverage Modern C++
(C++ 14, 17, 20, and beyond) and generally use the latest C++ language
features that are available to developers at the time of writing. For example,
you won't find many function signatures ending in -> decltype(...)
when C++14 lets us automatically infer the return type. None of the
examples target a particular compiler, but if something doesn’t work with
your chosen compiler,® you'll need to find workarounds.

At certain points in time, I will be referring to other programming
languages such as C# or Kotlin. It is often interesting to note how designers
of other languages have implemented a particular feature. C++ is no
stranger to borrowing generally available ideas from other languages:
for example, the introduction of auto and type inference on variable
declarations and return types is present in many other languages.

On Developer Tools

The code samples in this book were written to work with Modern C++
compilers, such as Clang, GCC, and MSVC. I make the general assumption
that you are using the latest compiler version that is available and thus will
use the latest and greatest language features that are available to me. In
some cases, the advanced language examples will need to be downgraded
for earlier compilers; in others, it might not work out. Naturally, if I use any
experimental language features, they might not work in all compilers until
they catch up to the necessary level of C++ language support.

As far as developer tools are concerned, this book does not focus
on them specifically, so, provided you have an up-to-date compiler, you
should follow the examples just fine: most of them are self-contained

3Plenty of compilers, such as the Intel C++ Compiler, do not make it their goal
to support all features of a particular C++ standard as quickly as possible.
Nevertheless, these compilers do have their own loyal followings because they
shine in areas other than feature-completeness such as optimization.
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single . cpp files, but some examples that involve complex dependencies
or static initialization are spread across several files. Regardless, I'd like

to take this opportunity to remind you that quality developer tools such

as CLion or ReSharper C++ greatly improve the development experience.
For a tiny amount of money that you invest, you get a wealth of additional
functionality that directly translates to improvements in coding speed and
the quality of the code produced.

Preface to the Second Edition

The world is changing. Some of those changes, such as the pandemic that
we're currently experiencing worldwide, are a bit frightening. On the other
hand, some changes are good: the C++20 standard has finally been ratified,
and C++20 language features such as modules and concepts are making an
appearance in popular C++ compilers.

We are, of course, far from having a complete implementation in any
given compiler. For example, even if we are able to use modules in our own
code, we still need to wait in order to have modularized implementations
of the Standard Library, Boost, and other popular libraries. But what
we have right now is already changing the way design patterns are
implemented. For example, if, in the past, we wanted to ensure a template
argument implemented some interface, we would use a static_assert.
But now, with C++20, we can leverage concepts, which are reusable
(avoiding cut and paste) and self-descriptive.

With the never-ending evolution of C++, we can all feel as if we were
on a never-ending journey that keeps getting better and better. The only
challenge is to learn how to leverage all the new functionality, a challenge
for which I hope this book can become a useful tool. Enjoy!
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Important Concepts

Before we begin, I wanted to briefly mention some of the key concepts
of the C++ world that will be referenced in this book. None of them are
particularly advanced, and most of them will be familiar to experienced
C++ developers.

Curiously Recurring Template Pattern

I don’t know if it qualifies to be listed as a separate design pattern, but the
curiously recurring template pattern (CRTP) is certainly a pattern of sorts
in the C++ world. The idea is simple: an inheritor passes itselfas a template
argument to its base class.

struct Foo : SomeBase<Foo>

{

Why would one ever do that? Well, one reason is to be able to access a
typed this pointer inside a base class implementation.

For example, suppose every single inheritor of SomeBase implements
abegin()/end() pair required for iteration. How can you iterate the
object inside a member of SomeBase, rather than inside the inheritor
class? Intuition suggests that you cannot, because SomeBase itself does not
provide a begin()/end() interface. But if you use CRTP, a derived class can
pass information about itself to the base class:

struct MyClass : SomeBase<MyClass>

{

class iterator {
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// your iterator defined here
}
iterator begin() const { ... }
iterator end() const { ... }

}

This means that, inside the base class, you can cast this to a derived
class type:

template <typename Derived>
struct SomeBase

{
void foo()

{

for (autod item : *static_cast<Derived*>(this))

{

When calling foo() on an instance of MyClass, this pointer gets
cast from SomeBase* to MyClass*. We then dereference the pointer
and iterate on it using a range-based for loop which, of course, calls
MyClass::begin() and MyClass::end() behind the scenes.

For a concrete example of this approach, check out Chapter 8,
“Composite.”
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Mixin Inheritance

In C++, a class can be defined to inherit from its own template argument,
that is:

template <typename T> struct Mixin : T

{

This approach is called mixin inheritance and allows hierarchical
composition of types. For example, you can make an instance of
Foo<Bar<Baz>> x; thatimplements the traits of all three classes, without
having to actually construct a brand new FooBarBaz type.

Mixin inheritance is particularly useful together with Concepts
because it allows us to put constraints on the type our mixin inherits from
and lets us deterministically use the base type features without relying on
compile-time errors to tell us we are doing something wrong.

For a concrete example of this approach, check out Chapter 9,
“Decorator.”

Old-Fashioned Static Polymorphism

Imagine you want to build an alert system that notifies someone about
an event by different means: email, SMS, Telegram, etc. Under the CRTP
paradigm, you could implement a base Notifier class similar to the
following:

template <typename TImpl>
class Notifier {
public:
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void AlertSMS(string view msg)

{
imp1().SendAlertSMS(msg);

}

void AlertEmail(string view msg)

{
impl().SendAlertEmail(msg);

}

private:
TImpl& impl() { return static_cast<TImpl&>(*this); }
friend TImpl;

b

Since TImpl is a template argument, we can call methods on it with
impunity, knowing that, even though we’re not explicitly specifying
that TImpl must inherit from Notifier (we’ll do this soon enough), the
compiler will check that the methods AlertSMS() and AlertEmail() do
actually exist.

This allows us to define a method which sends an alert on all channels:

template <typename TImpl>
void AlertAllChannels(Notifier<TImpl>& notifier, string view
msg)

{
notifier.AlertEmail(msg);

notifier.AlertSMS(msg);
}
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Now all that remains is to construct implementations of Notifier. For
example, you can build a no-op (see the Null Object pattern) notifier for
testing:

struct TestNotifier: public Notifier<TestNotifier>
{

void SendAlertSMS(string view msg){}

void SendAlertEmail(string view msg){}

};
And you can use this to do absolutely nothing!

TestNotifier tn;
AlertAllChannels(tn, "testing!"); // just testing!

While this is a workable approach, it has deficiencies, namely:

e We end up having two parallel APIs, that is,
AlertSMS()/SendAlertSMS(). We cannot call those
methods the same because then one would hide
another (and your IDE will complain).

o The whole impl() thing is weird and feels unnecessary.
You'd expect the alert methods to be virtual in base
class and overriding in the implementing class.

o There’s no explicit enforcement that TImpl has any
particular interface; we try to call things to check them
at runtime, but the implementer is not informed about
what we call and where. Concepts can help with this.

10
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Static Polymorphism with Concepts

The solution here is to introduce a concept that requires the presence of

relevant member functions:

template <typename TImpl>

concept IsANotifier = requires(TImpl impl) {
impl.AlertSMS(string view{});
impl.AlertEmail(string view{});

};

Now, we no longer need the base Notifier class: we can simply
construct the AlertAl1Channels method that expects some type that has
all the AlertXxx() methods:

template <IsANotifier TImpl>
void AlertAllChannels(TImpl& impl, string view msg)

{
impl.AlertSMS(msg);

impl.AlertEmail(msg);
}

In this function, the TImpl template argument is required to support
the IsANotifier concept. We can make a class that conforms to this
requirement:

struct TestNotifier

{
void AlertSMS(string view msg) {}

void AlertEmail(string view msg) {}

};

11
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And continue to use it as before. As you can see, we avoid the notion of
a base class altogether.

Properties

Properties are a topic worth mentioning even though they are not part
of the C++ standard. Despite the fact that properties have already proven
themselves over and over in other programming languages, many C++
programming purists continue to believe that they have no business being
part of C++ and are best implemented as a library solution - something
that doesn’t work particularly well, to be honest.

A property is nothing more than a (typically private) field and a
combination of a getter and a setter. In standard C++, a property looks as
follows:

class Person

{

int age;
public:

int get_age() const { return age; }

void set age(int value) { age = value; }
};

Plenty of languages (e.g., C#, Kotlin) internalize the notion of a
property by baking it directly into the programming language. While C++
has not done this (and is unlikely to do so anytime in the future), there is
a non-standard declaration specifier called property that you can use in
most compilers (MSVC, Clang, Intel):

class Person

{

12
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int age_;
public:
int get age() const { return age ; }
void set age(int value) { age_ = value; }
__declspec(property(get=get age, put=set age)) int age;
}s

What happens here is, within __declspec(property(...)) field
declaration, you specify the getter and the setter using the keywords get
and put. This then becomes a virtual field - it doesn’t result in any memory
allocations, but attempts to access this field or write to it are replaced by
the compiler with calls to the getter and setter, respectively.

This can be used as follows:

Person p;
p.age = 20; // calls p.set age(20)

Those not fond of C++ language extensions typically expose properties
as a combination of getter and setter methods, often by keeping the field
private and exposing a pair of identically named (overloaded) methods
with the same name as the field they expose:

class Person
{
int _age;
public:
int age() const { return age; }
void age(int value) { _age = value; }

}

13
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Why is this discussion relevant? In and of themselves, getters and
setters may seem useless: if you have a field that you want people to
modify, expose it as public and be done with it! If, however, you want to
perform additional actions - for example, notifying subscribers that a field
has changed - then the setter is exactly the place where some of the code
should go. This is what we’ll encounter when we talk about the Observer
design pattern.

The SOLID Design Principles

SOLID is an acronym which stands for the following design principles (and
their abbreviations):

o Single Responsibility Principle (SRP)

e Open-Closed Principle (OCP)

e Liskov Substitution Principle (LSP)

o Interface Segregation Principle (ISP)

o Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early
2000s - in fact, they are just a selection of five principles out of dozens that
are expressed in Robert’s books and his blog.* These five particular topics
permeate the discussion of patterns and software design in general, so
before we dive into design patterns (I know you're all eager to see them),
we're going to do a brief recap of what the SOLID principles are all about.

*https://blog.cleancoder.com/
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Single Responsibility Principle

Suppose you decide to keep a journal of your most intimate thoughts. The
journal has a title and a number of entries. You could model it as follows:

struct Journal

{
string title;
vector<string> entries;

explicit Journal(const stringd title) : title{title} {}
};

Now, you could add functionality for adding an entry to the journal,
prefixed by the entry’s ordinal number in the journal. This is easy:

void Journal::add(const stringd entry)
{
static int count = 1;
entries.push_back(boost::lexical cast<string>(count++)

+ "t "+ entry);

And the journal is now usable as

Journal j{"Dear Diary"};
j.add("I cried today");
j.add("I ate a bug");

It makes sense to have this function as part of the Journal class
because adding a journal entry is something the journal actually needs to
do. It is the journal’s responsibility to keep entries, so anything related to
that is fair game.

15
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Now suppose you decide to make the journal persist by saving it in a
file. You add this code to the Journal class:

void Journal::save(const string& filename)
{
ofstream ofs(filename);
for (autod s : entries)
ofs << s << endl;

This approach is problematic. The journal’s responsibility is to keep
journal entries, not to write them to disk. If you add the disk-writing
functionality to Journal and similar classes, any change in the approach
to persistence (say, you decide to write to the cloud instead of disk) would
require lots of tiny changes in each of the affected classes.

I want to pause here and make a point: a situation that leads us to
having to do lots of tiny changes in lots of classes, whether related (as in a
hierarchy) or not, is typically a code smell - an indication that something’s
not quite right. Now, it really depends on the situation: if we’re renaming
a symbol that’s being used in a hundred places, I'd argue that’s generally
OK because ReSharper, CLion, or whatever IDE we use will actually let
us perform a refactoring and have the change propagate everywhere. But
when we need to completely rework an interface... well, this can be a very
painful process!

We therefore state that persistence is a separate concern, one that is
better expressed in a separate class, for example:

struct PersistenceManager

{

static void save(const Journal® j, const string& filename)
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