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Foreword

Residual life prediction and predictive maintenance of complex engineering equip-
ment exist as a significant engineering problem demanding a prompt solution. For the
applications in aviation, aerospace and other related sectors requiring high reliability
and long life, this problem is a very challenging one. In consideration of the high cost
and long lifecycle of this kind of equipment, it is difficult to acquire massive failure
data or life data of the equipment through tests. As a result, the traditional residual life
prediction and optimal maintenance methods based on statistical analysis of failure
distribution become unavailable or unfeasible. While performing R&D, type test,
storage and operation of the equipment, we have accumulated some monitoring and
test data indicating the operation status and performance of the equipment. These data
contain abundant information about the residual life of equipment. Unfortunately,
the existing residual life prediction methods have not applied these data reason-
ably. Fortunately, as early as 2002, the author and his research team have begun to
explore the comprehensive application of life data and degradation data in equipment
history monitoring and inspection information to model the performance degrada-
tion rule, predict the residual life and make optimal maintenance decisions. A great
number of original achievements, such as the first passage time (FPT) distribution
and residual life prediction of nonlinear Wiener degradation process, self-detection
of abrupt changepoint, multi-stage degradation modeling and residual life predic-
tion, evidence reasoning degradation modeling and residual life prediction based on
subjective and objective information, optimal detection strategy of degraded equip-
ment based on life prediction information and cooperative predictive maintenance
of two-component system under limited resources, have been made. These research
results have been published on IEEE Transactions on Reliability, European Journal
of Operational Research, Science China and other top academic journals in the field
and attracted wide attention from peers both at home and abroad. It means that the
theoretical results of this book have produced a wide range of international academic
influence with superiority, systematization and originality. Meanwhile, the author
and his team attach great importance to integrating theory with practice and use
the methods proposed in the book to handle the residual life prediction and mainte-
nance decision of aerospace products, such as gyroscopes and platforms, and obtain
some prediction and decision results more applicable to engineering practices. This
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vi Foreword

book has strong specific applicability and high reference value. In this sense, it is
a rare monograph on equipment residual life prediction and optimal maintenance
decision in recent years. The publication of this book will promote the development
of residual life prediction and maintenance decision technologies for complex engi-
neering equipment based on degradation modeling and also provide an important
theoretical basis for solving major engineering problems related to the residual life
prediction and maintenance decision of complex engineering equipment. Moreover,
this book is an excellent monograph in the fields of reliability engineering, mainte-
nance engineering and management engineering and brings a significant reference
value to numerous scientific workers engaged in the research in related fields.

March 2021 Jiancheng Fang
Academician of Chinese Academy of Sciences

Beijing, China



Preface

Equipment performance degradation and even failure will inevitably occur during
equipment operation. Maintenance has been widely applied as an indispensable
approach to ensure normal system operations. After years of development, main-
tenance has evolved from the breakdown maintenance at the earliest stage to the
condition-based maintenance at the current stage. In recent years, predictive main-
tenance based on condition-based maintenance has attracted wide attention from
researchers. Life prediction, which is known as the core technology for realizing
predictive maintenance, has become one of top priorities for domestic and overseas
researchers. Both the Outline of the National Program for Long- and Medium-Term
Scientific and Technological Development (2006–2020) promulgated by the State
Council in February 2006 and the field of advanced manufacturing technology in
Program 863 have listed the life prediction technology of major products and facili-
ties as one of the cutting-edge technologies for instant development. The traditional
life prediction technology takes class-I products as the research object, and performs
statistical analysis on the life data by statistical methods, and then obtains the life
distribution. However, this method has ignored the influence of environment and
other factors during equipment operation. Therefore, the life distribution obtained by
statistical methods cannot accurately describe the life change of equipment, resulting
in the unreasonable arrangement of maintenance activities. With the development of
science and technology, equipment life is getting longer and longer, and the relia-
bility is getting higher and higher. Therefore, it is difficult to collect massive life
data. This fact will inevitably degrade the accuracy of statistical results.

With the development of sensor technology, it is extremely urgent to evaluate the
residual life of equipment online through data monitoring, which has attracted the
attention of scholars. As a kind of monitoring data, performance degradation data,
which contain a large number of reliable and useful key life-related information,
can directly reflect the performance degradation process of equipment. Degradation
process modeling and prediction using performance degradation data has become an
important research in the field of life prediction.

Starting from the practical engineering requirements of residual life prediction
and optimal maintenance decision of key missile components, this book systemati-
cally discusses the theories and applications of equipment performance degradation
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rule modeling, residual life prediction and optimal maintenance decision based on
historical equipment monitoring data. This book is also a systematic summary of the
research results of the author and his team in this field for more than one decade.
As early as 2002, the author and his team have started researches on the theories
and applications of equipment performance degradation rule modeling, residual life
prediction and optimal maintenance decision. However, the research on residual life
and predictive maintenance of missiles and other aerospace equipment from this
perspective can be seldom found in China, and the related monographs are rare.

This book consists of 12 chapters. Chapter 1 presents an overview of researches on
life prediction and maintenance decision methods. Chapter 2 proposes the real-time
residual life prediction method based on Wiener process for the equipment suffering
nonlinear degradations. With respect to abrupt changepoints during degradation,
Chap. 3 has given the algorithm of abrupt changepoint detection and the real-time
prediction method of residual life. In Chap. 4 and Chap. 5, performance degradation
modeling and residual life prediction methods based on Gamma process and inverse
Gaussian process have been studied, respectively. In Chap. 6, the residual life predic-
tion method based on support vector machine (SVM) is studied for the small sample
size of degradation data. Chapter 7 proposes a fuzzy model identification method
based on relevance vector machine (RVM) and studies the corresponding perfor-
mance degradation modeling and prediction methods. The degradation modeling
of evidence reasoning and the prediction of residual life based on subjective and
objective information are systematically studied in Chap. 8. In Chap. 9, the related
algorithms of particle filter are introduced, and an excellent weight selected particle
filter algorithm is proposed and applied to the residual life prediction of equipment.
Chapter 10 introduces the greymodel theory and its application in performancedegra-
dation modeling and prediction. In Chap. 11, the optimal detection strategy based on
residual life prediction information is studied. In Chap. 12, a cooperative predictive
maintenancemodel is proposed for the equipment with two dependent failuremodes.

The publication of this book is supported by the National Defense Industry Press,
Springer Verlag and partially supported by National Natural Science Fund under
grants 61873273, 61833016, and 61973046. Here, I would like to express my sincere
thanks.

Due tomy limited knowledge, it is inevitable that there is something inappropriate
with the book. Any comment from the readers will be appreciated.

Xi’an, China
March 2021

Changhua Hu



Summary

This book is an academic monograph that systematically discusses the residual life
prediction and optimalmaintenance decisionmethod based on performance degrada-
tionmodeling. It mainly covers the overview of life prediction andmaintenance deci-
sion modeling and optimization, real-time residual life prediction based on Wiener
process for nonlinearly degraded equipment, performance degradation modeling
and remaining life prediction (respectively based on Wiener process with abrupt
changepoint, Gamma process, inverse Gaussian process, support vector machine,
relevance vectormachine fuzzymodel, weight selected particle filter and gray predic-
tion model), performance degradation modeling and reliability prediction based on
evidence reasoning, optimal inspection strategy of degraded equipment based on life
prediction information and cooperative predictive maintenance of two-component
system under limited resources.

This book can provide reference for the great majority of scientific and tech-
nical personnel engaged in theoretical research or applied research on equipment
fault diagnosis and fault-tolerant control, life prediction and maintenance decision,
etc. For the great majority of engineering and technical personnel, teachers, grad-
uates and senior undergraduates engaged in reliability engineering, maintainability
engineering, management engineering, testing and measurement technologies and
instruments, inspection technologies and automation devices, this is a systematic,
innovative andpractical reference bookwith cutting-edgeknowledge andoutstanding
theories.

ix
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Chapter 1
Introduction

1.1 Background

With the high-tech development and increasing global competitions, the modern
industrialization process intends to be more and more extensive and complex [1].
However, the related equipment in the fields of industrial production, transportation,
communication, aerospace and missile weapon system is becoming more and more
advanced.Moreover,most of themare becomingmore andmore complex. The failure
of a tiny component may cause a failure to the whole system and even a great disaster.
For example, on September 8, 1994, a Boeing 737 aircraft of American Airlines
crashed near Pittsburgh due to the non-command deflection of its rudder, and 131
people died [2]. In 2005, due to the blockage of Tower P-102 in the nitration unit
of Jilin Petrochemical Company Aniline Plant, a severe explosion occurred, which
caused great economic losses [3]. Therefore, it is of great significance to ensure the
reliability and security of such complex systems. This also determines the necessity
of repairing these kinds of complex equipment. Maintenance can improve the system
reliability, availability and safety, thus reducing losses and ensuring personnel safety.
But maintenance needs massive financial supports. According to related statistics,
maintenance costs account for 15% of total production costs in the manufacturing
industry and 40% in the steel industry. In the USA, the annual maintenance cost of
enterprises is more than US$ 200 billion [4]. It is estimated that about 30% of the
maintenance cost is caused by low-efficiency maintenance methods [5].

In order to keep maintenance as an effective role in ensuring correct system
operations with the lowest cost, researchers have accomplished massive studies on
maintenance policies. Meanwhile, maintenance has also evolved from the original
breakdown maintenance to scheduled maintenance, and then to the widely used
condition-based maintenance at present. With the rapid development of sensor tech-
nology and prediction technology, the predictive maintenance, as an important solu-
tion, has evolved from condition-based maintenance. At present, the scholars both at
home and abroad have paid close attention to predictive maintenance. Some foreign
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countries have paid attention to predictive maintenance as early as the end of last
century. In China, both the Outline of the National Program for Long- and Medium-
Term Scientific and Technological Development (2006–2020) promulgated by the
State Council in February 2006 and the field of advanced manufacturing technology
in Program 863 have listed the life prediction technology of major products and
facilities as one of the cutting-edge technologies for instant development [6].

Life prediction, which is known as the core technology for realizing predictive
maintenance, has become one of top priorities for domestic and overseas researchers
[7–11]. The traditional life prediction technology takes class-I products as the
research object and performs statistical analysis on the life data by statistical methods
and then obtains the life distribution. However, this method has ignored the influ-
ence of environment and other factors during equipment operation. Therefore, the
life distribution obtained by statistical methods cannot accurately describe the life
change of equipment, resulting in the unreasonable arrangement of maintenance
activities. With the development of science and technology, equipment life is getting
longer and longer, and the reliability is getting higher and higher. Therefore, it is
difficult to collect massive life data. This fact will inevitably degrade the accuracy
of statistical results.

With the development of sensor technology, it is extremely urgent to evaluate
the remaining life of equipment online through data monitoring, which has attracted
the attention of scholars. Jardine et al. [12] summarized the main research results
of life prediction in recent years. They pointed out that the current researches on
remaining life prediction mainly focus on predicting the probability distribution and
expectation, involving statistical method, artificial intelligence (AI) and mechanism
model. Both statistical method and AI are data-driven methods. Xiaosheng Si et al.
systematically reviewed the statistical data-driven remaining life prediction methods
in the reference [13]. According to the types of status monitoring data, the obtained
data are divided into direct monitoring data and indirect monitoring data. Based
on such data classification, the existing methods are divided into direct monitoring
data-basedmethods and indirectmonitoringdata-basedmethods.They also described
and commented all existing prediction methods from the perspective of remaining
life modeling. In this book, the author has made a more comprehensive summary
and comment on the life prediction methods in the following aspects, including
life determination of newly developed equipment, the remaining life prediction of
equipment under working conditions and the storage life of equipment [14].

In particular, the performance degradation path modeling and maintenance
decision modeling and optimization are described as follows.
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1.2 Equipment Life Prediction

1.2.1 Fundamental Concept of Life Prediction

Residual life (RL), usually called remaining useful life (RUL) and also called
remaining service life and remaining life, is the normal operation time of equip-
ment from the current moment. Life prediction refers to the prediction on how much
time is left before one failure (or multiple failures) when the current equipment status
and historical status data are known. In most cases, remaining life is defined as a
conditional random variable [12]:

T − t |T > t, Z(t) (1.1)

where T is the random variable of failure time, t indicates the current operation time
and Z(t) represents the historical monitoring condition up to the current moment.

Since RUL is a random variable, its distribution is very meaningful to gain a full
understanding toward RUL. In relevant references, remaining useful life estimate
(RULE) is defined in two differentways, including the calculation ofRULprobability
distribution and the expectation of RUL in some cases [12]:

E(T − t |T > t, Z(t)) (1.2)

The accurate definition of equipment failure is a significant prerequisite for life
prediction based on performance degradation data. It is generally believed that
a failure occurs when the performance degradation data reach the preset failure
threshold. For example, the equipment suffering fatigue failure is defined as an
incident that the fatigue crack data reach the prescribed threshold.

1.2.2 Literature Review on Life Prediction

1.2.2.1 Life Determination Technology for Newly Developed
Equipment

There are two types of newly developed equipment, including the equipment
upgraded from the existing equipment and the equipment obtained by redesign.
For the former type, the available information mainly comes from similar equip-
ment, so the similar product reasoning method is usually used for equipment life-
time prediction. For the latter type, the available information mainly includes mech-
anism information, component and equipment structure information, information
obtained through accelerated life test and life information in environmental test. The
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corresponding lifetime prediction methods include mechanism analysis, component
reliability synthesis, accelerated lifetime test and environmental factor conversion.

However, most lifetime prediction results obtained through the above methods
are not reliable. Under such circumstance, it is necessary to study other methods that
can realize accurate lifetime prediction. At present, most related researches focus on
model-based methods and data-driven methods.

I. Lifetime prediction method based on similar equipment information

This method makes comprehensive use of the prior information obtained by similar
equipment in the long-term operation and the information in the lifetime test of
newly developed equipment for lifetime prediction. The basic model of this method
is shown as follows:

h(λ) = ρh(λ|H) + (1 − ρ)h(λ|N )

where h(λ) indicates the posterior information related to the reliability of newly
developed equipment, h(λ|H) refers to the information obtained in the operation
process of similar equipment, h(λ|N ) represents the new information obtained during
the test for newly developed equipment, ρ is inheritance factor and reflects the simi-
larity of reliability between new equipment and old equipment and can be determined
by test information or experts and 1 − ρ represents update factor and reflects the
uncertainty caused by the new equipment when improving the old equipment.

II. Lifetime prediction method based on mechanism analysis

When this method is adopted, it needs to analyze the physical and chemical factors
that lead to equipment failure. The relationship between equipment failure and phys-
ical and chemical factors, such as component wear, is established through phys-
ical factor analysis, and physical and chemical factor analysis, thus acquiring the
lifetime evolution rule and predicting the equipment lifetime. This method has the
advantage of predicting the equipment lifetime more accurately. Tanaka and Mura
have proposed a mechanism model that can describe fatigue cracking along slip
band [15]. Mu and Lu further established a three-dimensional simulation model to
describe fatigue cracking and performed lifetime prediction based on the model [16].

However, most engineering equipment is very complex. It is difficult to obtain the
mechanism model, thus restricting the application of this method.

III. Lifetime prediction method based on component reliability synthesis

In this method, the reliability relationship between equipment and its components
is established at first. Then the reliability of the whole equipment is evaluated and
analyzed according to the reliability of components. Reference [17] proposed a reli-
ability evaluation and lifetime prediction method based on reliability competitions
and applied this method to reliability evaluation and lifetime prediction of some
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circuits. Chen et al. improved themethod inReference [17] and applied it to reliability
evaluation and lifetime prediction of aviation power circuits [18].

This method has the disadvantage of establishing the relationship between equip-
ment and all its components. It is difficult to establish such relationship for some
very complex equipment.

IV. Lifetime prediction method based on accelerated lifetime test

If the failure mechanism of equipment under different stress levels remains
unchanged, the lifetime test can be performed at the stress level higher than the
normal, and the lifetime test data can be obtained in a short period of time. The life-
time distribution and environmental factor of equipment under the environment of
accelerated lifetime test can be obtained by analyzing the lifetime data and converted
into the lifetime distribution under normal environment. Thismethod has beenwidely
used in aerospace and other fields [19].

The main difficulties in using this method are as follows: first, how to ensure
the consistency of failure mechanism between accelerated lifetime test and normal
status; second, how to extrapolate the result of accelerated lifetime test to normal
status. It is also difficult to create the model of relationship between accelerated
lifetime test and normal status.

V. Lifetime prediction method based on environmental factor conversion

In this method, it needs to convert the test data in different environments into the
test results under the same environment and use the data for reliability prediction.
Like the method based on accelerated lifetime test, keeping the failure mechanism
under different environments unchanged is a premise of using this method. The
determination of environmental impact factors under different environments plays
a decisive role in this method. The test data under different environments can be
converted, which has expanded the source of available data. However, this method
has the disadvantage that the type of lifetime distribution must be known. In prac-
tical engineering, it is generally assumed that the lifetime of electronic equipment
and mechanical equipment follows exponential distribution and Weibull distribu-
tion, respectively. Based on final products and failure products, Wengeng Pan [20]
discussed the data processing of sampling test for ammunition storage reliability by
using the environmental factor method and performed evaluation before and after
conversion by Bayesianmethod. According to the result of comparisonwith classical
methods, the data after conversion can improve the status of ammunition storage and
avoid waste. Dongpao Hong et al. [21] used the proportional risk model to describe
the relationship between reliability and environmental factor and gave a method of
determining environmental conversion coefficient based on the comprehensive use
of variable environmental test data.
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1.2.2.2 Research Status of Residual Lifetime Prediction of Working
Equipment

The residual lifetime prediction of equipment under working conditions refers to
the RUL prediction of equipment based on relevant information after the equipment
has been operated for a period of time. The aforementioned relevant information
includes historical information during aforementioned operation period, lifetime
information of similar equipment and lifetime information obtained during accel-
erated lifetime test. Furthermore, the aforementioned three types of information are
mainly divided into failure time data and performance degradation amount. Accord-
ingly, the remaining lifetimepredictionmethod canbedivided into remaining lifetime
prediction method based on failure time data, remaining lifetime prediction method
based on performance degradation amount and remaining lifetime predictionmethod
based on multi-source information fusion. Detailed division is shown in Fig. 1.1.

I. Residual lifetime prediction method based on failure time data

If the failure time data of the equipment are obtained, the parameters of equipment
lifetime distribution can be estimated by using statistical inference method based on
the assumed equipment lifetime distribution, and then the remaining lifetime distri-
bution of the equipment after being operated for a period of time can be obtained. The
commonly used lifetime distribution form includes exponential distribution, normal
distribution andWeibull distribution. The suitability of the equipment lifetime distri-
bution directly affects the accuracy of lifetime prediction results. Marshall and Olkin
[22] summarized the commonly used lifetime distribution functions and discussed
themethod of estimating the parameters for the corresponding distribution functions;
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however, this method only applies to the overall lifetime distribution of equipment
and fails to consider the equipment degradation information during the operation
period. Consequently, it cannot well reflect the remaining lifetime distribution of the
equipment after being operated for a period of time.

II. Residual lifetime prediction method based on performance degradation amount

According to the historical operation information of the equipment, the performance
degradation path of the equipment can be established. On this basis, the time when
the equipment performance degradation amount exceeds the failure threshold can be
determined, and then RUL of the equipment can be determined. This method can be
divided into the remaining lifetime prediction based on direct monitoring data and
the remaining lifetime prediction based on indirect monitoring data.

(I) Residual lifetime prediction method based on direct monitoring data

Direct monitoring data mainly refer to monitoring data that can directly reflect the
performance or health status of the equipment. The commonly mentioned perfor-
mance degradation amount such as wear and fatigue crack data fall into this cate-
gory. Therefore, the remaining lifetime prediction based on direct monitoring data
is to predict the time when the monitoring data reach the failure threshold for the
first time. The remaining lifetime prediction method based on direct monitoring data
can be divided into the remaining lifetime prediction method based on time series
modeling and the remaining life prediction method based on stochastic process.

1. Residual life prediction method based on time series modelling

The direct monitoring data obtained at the monitoring time constitute time series.
Therefore, the equipment performance degradation rule can be established by
applying the remaining life prediction method based on time series modeling, and
finally, the time when the equipment performance degradation amount reaches the
failure threshold for the first time can be determined on this basis, so that the
remaining life of equipment can be obtained. The commonly used time series
model includes auto-regressive moving model, gray model, artificial neural network,
support vector machine (SVM) and their combined prediction model. The remaining
life prediction method based on time series modeling has been widely used to predict
the remaining life of bearings, gyroscopes and other equipment; however, such
method cannot reflect the uncertainty of prediction results well since it can only
obtain the amplitude of remaining life instead of the distribution form of remaining
life.

2. Residual life prediction method based on stochastic process

Based on this method, it is considered that the equipment performance degradation
rule can be described by applying stochastic process, and then the distribution of
the time when the performance degradation amount reaches the failure threshold
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for the first time can be determined, so that the remaining life distribution of equip-
ment can be obtained. Different from the remaining life prediction method based
on time series modeling, this method provides the equipment life under the proba-
bilistic framework. Therefore, the probability distribution is obtained, which canwell
reflect the uncertainty of prediction results and provide convenience for subsequent
maintenance decision. Specifically, the stochastic process model commonly used in
this method includes random coefficient model, Gamma process, inverse Gaussian
process, Wiener process and Markov chain.

The random coefficient model is one of the models early used in performance
degradation amount modeling. In 1993, Lu and Meeker [23] firstly proposed the
random coefficient regressionmodel, and then Lu [24] and Tseng [25] developed and
applied such model into the modeling of semiconductor industry and LED bright-
ness degradation. Wang [26] and Bae [27] respectively studied the remaining life
prediction of the same type of equipment with common characteristics under the
modeling and the nonlinear degradation conditions. On this basis, Gebraeel [28–
31] et al. further proposed the remaining life prediction method based on Bayesian
update and used such method to describe the variation in brake pad thickness. Park
[32] et al. analyzed the remaining life prediction based on the accelerated degra-
dation model. If the failure threshold of the equipment is known, then the random
coefficient regression model of the equipment can be easily obtained. The random
coefficient regression model and the statistical analysis method, which are relatively
simple, have been widely applied in industry and chemical fields.

Gamma process is a stochastic process model commonly used for the remaining
life prediction of the equipment. This process is usually used to model the degra-
dation path of monotone data, such as metal wear and crack growth. In 1975,
Abdel-Hameed firstly proposed and used Gamma process to model the continu-
ously monotonous degradation amount [33]. In 2000, Wang et al. applied Gamma
process in the research of remaining life for large pumps [34]. In 2000, Bagdonavi-
cius incorporated the impact of dynamic environment into the degradation model
and proposed a remaining life prediction method based on Gamma process which
considered dynamic environment [35]. In 2004, Lawless and Crowder considered
the parameters in the Gamma process as random variables [36]. In 2009, Noortwijk
summarized the relevant research and application of Gamma process in the field of
life prediction over recent years [37].

The basic idea of inverse Gaussian process is to describe the degradation
process based on the variation in increment by assuming that degradation is strictly
monotonous and that the increment of degradation follows an inverse Gaussian
distribution. Inverse Gaussian process was firstly proposed by Wasan [38] in 1968;
however, it was not until 2010 that the inverse Gaussian process was firstly applied in
equipment degradation modeling by Wang [39]. Inverse Gaussian process was used
to describe the monotonous degradation process. Owing to the connection between
the inverse Gaussian distribution and the Wiener process with linear drift, inverse
Gaussian process can be derived and implemented mathematically in an easier way
and is more flexible and applicable compared with Gamma process.
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The remaining life prediction method based on Wiener process is mainly
applicable to non-monotonic equipment performance degradation process. By this
method, the mathematical models in the forms shown below are mainly used to
describe the degradation process.

X (t) = x0 +
∫ t

0
λ(s)ds + σ B(t)

Wherein: x0 refers to the initial performance degradation amount; λ(t) refers to the
drift parameter; σ refers to the diffusion coefficient; B(t) refers to the standard Brow-
nian motion. After the equipment performance degradation model is obtained, the
remaining life distribution of the equipment can be calculated by using the given
failure threshold and the Wiener process-related theory. In order to realize accurate
and real-time remaining life prediction of the equipment, generally, the remaining life
prediction results can be updated from time to time based on the real-timemonitoring
information of the equipment. Gebraeel et al. [28] firstly established the equipment
degradation model based on Wiener process with linear drift (or linearizability) and
realized the online update of random drift coefficient by assuming that the drift coef-
ficient followed normal distribution and applying the degradation amount observed
in a real-time way and Bayesian inference method. Gebraeel method has a great
influence on the field of life prediction and health management for the equipment;
however, the remaining life prediction results obtained by applying Gebraeel method
are only applicable to the linearly degraded equipment or the equipment of which
the performance degradation amount can be directly linearized.Moreover, the Brow-
nian motion term in the degradation model utilized in this method is only considered
as an observation error. Consequently, the remaining life distribution obtained is
not an accurate solution in the sense of first passage time. Therefore, with regard
to the shortcomings of Gebraeel method, a performance degradation modeling and
remaining life prediction method based on Wiener process with nonlinear drift is
studied in Chapter 2 herein, so as to carry out the remaining life prediction of the
nonlinearly degraded equipment.

The remaining life prediction method based on Markov chain is often used for
the modeling of degradation processes which are characterized by continuous-time
discrete states. It involves two assumptions. In one assumption, the future degradation
state is only depending on the current degradation state (namely, memoryless); in the
other assumption, the monitoring data of the system can reflect the operating state of
the system [40]. In the remaining life prediction method based on Markov chain, the
first passage time can be defined as the time when the degradation process reaches
failure state for the first time, and the remaining life can be calculated based on the
first passage time. From 2003 to 2012, Kharoufeh carried out a series of studies
on this method and proposed a degradation model based on Markov chain which
considered environmental impact [40–43]. In 2010, Lee et al. incorporated Markov
property of degradation process into remaining life prediction based on regression
model [44].
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(II) Residual life prediction based on indirect monitoring data

Indirect monitoring data mainly refer to monitoring data that can only indirectly or
partially reflect the performance or health status of equipment, including vibration
analysis data, oil analysis data, etc. The remaining life prediction methods based on
indirect monitoring data include randomfiltering, proportional hazardmodel (PHM),
hidden Markov model, hidden semi-Markov model, etc.

1. Residual life prediction based on random filtering

This method has become a hot spot in current research and attracted the attention
of many researchers. This method is usually applied to the equipment that has not
been maintained or replaced and has been degrading. In addition, the performance
degradation data of equipment should show a certain trend. The model usually used
in this method is as follows

xt = αxt−1 + εt

yt = βxt + ηt

where xt , yt are the actual performance degradation and performance monitoring
data of equipment at t ; εt , ηt are corresponding noises; α, β are parameters related
to the model. According to expert knowledge and indirect monitoring data, Wang
and Zhang predicted the remaining life of bearings by using random filtering method
[45, 46].

2. Residual life prediction based on proportional hazard model

The proportional hazard model was proposed by Cox in 1972, which was used in the
medical field at first. The proportional hazard model was introduced into the field of
reliability in 1980s and has attracted the attention of researchers since then and has
been widely used in the field of life prediction. Generally, the proportional hazard
model can relate the failure rate function of working equipment with the overall
failure rate function and performance monitoring data of the equipment and then
calculate the remaining life distribution of the equipment according to the failure
rate function of the equipment [47]. On the basis of this model, Jardine studied
the problem of condition-based maintenance decision and determined the optimal
replacement time of equipment [48].

3. Residual life prediction based on hidden Markov model

The hidden Markov model (HMM) is developed on the basis of Markov chain,
which is often used to predict the life of equipment with hidden performance degra-
dation. Bunks et al. [49] proposed a remaining life predictionmethod based onHMM
and expectation maximization algorithm. In order to model complex systems better,
Baruah and Chinnam [50] combined HMM with dynamic Bayesian network and
used it to predict the remaining life.
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4. Residual life prediction based on hidden semi-Markov model

The hidden semi-Markov model (HSMM) is an improved hidden Markov model,
which assumes that the residence time of equipment in a degradation state follows
arbitrary distribution, such as normal distribution. Dong and He [51, 52] applied this
model to the life prediction of equipment and achieved good results. Liu et al. [53]
described the degradation state transition probability of equipment and the residence
time of each state by usingHSMMand then predicted the remaining life of equipment
based on sequential Monte Carlo simulation.

(III) Residual life prediction based on multi-source information fusion

In the life test of equipment, usually only a part of equipment fails within the spec-
ified time, while the other part of equipment can still work normally. At this time,
the data obtained include not only the failure time data of equipment but also the
performance degradation data of non-failed equipment. Although the overall life
distribution of this kind of equipment can be obtained only by using the failure time
data, if the performance degradation data can also be used, amore accurate remaining
life prediction result can be obtained. Therefore, making full use of failure time data
andperformance degradation data to predict the remaining life of equipment ismainly
considered in the remaining life prediction method based on multi-source informa-
tion fusion. By using the characteristic that the first passage time distribution of
Wiener process was inverse Gaussian distribution, Pettit and Young [54] integrated
the failure time data and performance degradation data in Bayesian framework and
predicted the remaining life distribution of equipment. Lee and Tang [55] further
estimated the parameters in the model proposed by Pettit and Young by using EM
algorithm and applied them to predict the remaining life of LED.

1.2.2.3 Research Status of Equipment Storage Life Prediction

As early as 1950s, the USA conducted many storage tests for missiles and obtained a
large number of failure time data and performance degradation data of missiles [56].
In 1980s the Soviet Union also conducted many accelerated life tests for missiles and
improved the missiles so that the missiles could be used normally within ten years
without test [57].

Two aspects of information can be used for equipment in storage. One is the
failure time data of the equipment; the other is the performance degradation infor-
mation obtained during the periodic inspection of equipment. With the development
of science and technology, there is equipment with high reliability and long life,
especially missiles, whose storage life is generally long, which makes it difficult to
obtain enough storage life data in a short time. Therefore, it is often necessary to use
accelerated storage life test or accelerated degradation test to shorten the test time to
obtain storage life data or performance degradation data. According to the different
types of data obtained, the current storage life prediction methods can be divided into
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two categories: one is the storage life prediction method based on failure time data;
the other is the storage life prediction method based on performance degradation
data.

I. Equipment storage life prediction based on failure time data

By statistically analyzing the failure time data of equipment during storage, the
storage life distribution form of equipment can be obtained. Due to the long life of
some of the equipment, it is difficult to obtain enough failure time data in a short
time through field storage test. Therefore, the problem that it is difficult to obtain
failure time data can be solved through accelerated storage life test. Accordingly,
this kind of method can be divided into: the field storage test-based method and the
accelerated storage life test-based method.

(I) Field storage test-based method

Store the equipment under normal conditions until it fails. By analyzing these failure
time data, the life distribution of equipment during storage can be obtained. The
equipment life obtained by this method is very close to the actual life. Therefore,
this method was widely used to predict the storage life of military equipment in the
twentieth century. However, due to slow performance degradation during storage, it
takes a lot of time to obtain enough test data.

(II) Accelerated storage life test-based method

In view of the shortcomings of the field storage test method, people consider using
accelerated storage life test to obtain failure time data and then predict the storage life
of equipment. This method tests the storage life of equipment under the stress level
exceeding the normal storage environment conditions. Since the test environment of
equipment becomes harsh, which accelerates the degradation of equipment, shortens
the test time and reduces the cost, this method has been widely used. For mechan-
ical equipment, van Dorp [58] studied the statistical properties of equipment when
failure data follows exponential distribution and Weibull distribution. Furthermore,
Xiufeng Zhou et al. [59] proposed a new method to predict the storage life of elec-
tronic communication equipment. It should be pointed out that the research object
of accelerated storage life test can be equipment with degradation failure mode or
equipment with sudden failure mode, but the test mainly records the failure time data
of equipment, not the performance degradation data.

II. Storage life prediction based on performance degradation data

The storage life of equipment with degradation failure mode can be obtained by
analyzing the performance degradation data. However, under normal storage condi-
tions, the performance degradation process of equipment is very slow, and the perfor-
mance degradation data do not change obviously, so it is difficult to use them to
predict the storage life. In order to solve this problem, accelerated degradation test
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came into being. The purpose of accelerated degradation test is to study the perfor-
mance degradation rule of equipment, determine the performance degradation path
of equipment and obtain the storage life information of equipment by extrapolation.
This method has been developed rapidly because it does not need a large number
of test samples and does not need to test the equipment until it fails. Nelson first
studied the accelerated degradation test [60]. Padgett et al. extended this method to
equipment such as LED, logic integrated circuits and power supplies [61].

1.3 Maintenance Decision of Equipment

1.3.1 Fundamental Concept and Classification
of Maintenance

Maintenance refers to “all technical and management activities, including moni-
toring, carried out to maintain or restore the state in which the product is capable
of performing specified functions.” Maintenance is short for service and repair [62].
Service refers to all activities taken to keep the system in good working condition
when the system still works normally, including cleaning, wiping, lubricating, oiling,
etc. Repair refers to activities taken after system failure, such as fault detection, trou-
bleshooting and repair. Researchers began to pay attention to this problem in 1950s
and proposed a large number of maintenance models to solve the maintenance prob-
lems of different systems. Until now, there are still a large number of references
related to maintenance every year, which shows that maintenance decision modeling
and optimization are still hot and difficult points at present.

Maintenance can be divided into corrective maintenance (CM) and preventive
maintenance according to the timing of maintenance.

Correctivemaintenance, also known as failuremaintenance, was themainmainte-
nance method before 1940s, which mainly involved repairing the system after it has
failed. Obviously, this kind of maintenance was driven by failure events, which made
people mistakenly think that breakdownmaintenance was a cost-savingmaintenance
method [5]. Later, people gradually realized that the maintenance cost needed would
be higher than that of arranging relevant maintenance operations before failure if
minor faults were allowed to develop until failure. This was because the system
needed to be maintained immediately after failure, which would interrupt the normal
production plan and bring losses. Moreover, since there was no prediction method at
that time, the management personnel could not know when the failure would occur,
which led to the sudden occurrence of failure events and made the enterprises unable
to prepare the materials, tools and maintenance personnel needed for maintenance
in time, which would increase the losses caused by failure to a certain extent [63].
These shortcomings of breakdown maintenance promoted the emergence and devel-
opment of preventive maintenance policy. However, due to the uncertainty of the



14 1 Introduction

failure process, failure usually occurred during the operation of the system. There-
fore, breakdown maintenance was considered in the policy formulation process in
the maintenance theory developed later.

Preventive maintenance refers to finding fault symptoms through inspection and
detection on the premise that the system can still work normally, and taking appro-
priate maintenance actions to eliminate possible faults in the future. According to
the types of information used in maintenance decision, maintenance methods can
be further divided into scheduled maintenance (SM) and condition-based mainte-
nance (CBM). Recently, on the basis of condition-based maintenance, predictive
maintenance has gradually attracted the attention of researchers.

Scheduled maintenance refers to the arrangement of maintenance activities by
management personnel according to the characteristics such as failure rate or life
distribution obtained based on the statistics of failure time data. After the World War
II, there was a shortage of materials and personnel. In order to improve the material
supply capacity, highly automated equipment has been put into use one after another.
Meanwhile, the urgency of war required that the production equipment must be shut
down as little as possible, so the maintenance of the equipment became important.
However, since the traditional failure maintenance was driven by failure events,
maintenance operations aimed at restoring the specified functions of the system
could be carried out only after the system has failed. Obviously, this maintenance
method could no longermeet the needs at that time. In order to prevent the occurrence
of failure, the researchers proposed the idea of preventive maintenance in 1950s [64],
that is, carry out maintenance operations on the system according to predetermined
intervals or specified criteria, so as to reduce the probability of system failure or
prevent the function degradation. It should be pointed out that preventivemaintenance
at this time actually referred to themaintenance arranged according to the time, that is,
time-based preventive maintenance (TBPM), also known as scheduled maintenance.
At that time, China also introduced the scheduled maintenance system from the
Soviet Union and applied it to the power industry [65]. Compared with the failure
maintenance, this maintenance method has the advantage of improving the system
reliability, reducing the frequency of fault and increasing the productivity through
a series of maintenance operations (inspection, repair, replacement, cleaning and
lubricating, etc.).

However, the introduction of scheduled maintenance not only improved the relia-
bility and availability of equipment but also increased the maintenance cost of enter-
prises. According to the survey, domestic enterprises in the USA spent nearly USD
600 billion to maintain their key equipment in 1981, and the number doubled over
20 years [64]. Germany spent 13–15% of its GDP on maintenance, while the Nether-
lands spent 14% [66, 67]. Specifically, 15–70% of enterprises’ total expenditure was
spent on the maintenance of production equipment [68]. More notably, one-third of
the high maintenance cost was wasted in the maintenance implementation process
[5]. Main reasons are described as follows. First, in the implementation of scheduled
preventive maintenance, the maintenance interval is mainly determined by statistical
analysis of the failure time data of the same type of system, without considering the
actual performance of the system during operation, resulting in that the maintenance


