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Chapter 1 ®)
Introduction Check for

Abstract A general introduction about the book ‘Non-Gaussian Random Vibration
Fatigue Analysis and Accelerated Test’ is given, and the contents of chapters are
summarized.

As a common problem in the engineering field, fatigue failure caused by vibra-
tion seriously endangers the safe and reliable operation of important equipment
and structures. Vibration test is an important method for environmental adaptability,
safety, reliability and life assessment of large equipment and structures in the fields
of aviation, aerospace, shipbuilding, and mechanical engineering. How to ensure
that the vibration test performed in the laboratory conforms to the actual service or
transportation vibration environment of the equipment, and avoid under-testing and
over-testing, has become an urgent problem to be solved.

In order to solve the above problem, we first need to understand the description of
random vibration. The most common parameter used to describe random vibration is
Power Spectral Density (PSD). However, PSD is not able to adequately portray all the
characteristics of random vibration. For example, with the same PSD (also the same
Root Mean Square), random vibration signals can have completely different proba-
bility density distribution, as shown in Fig. 1.1. Because the higher-order statistics
over the second order are constantly zero for a Gaussian random process, only using
PSD function or self-correlation function is enough to fully describe the characteris-
tics of Gaussian random vibration. But for non-Gaussian (including super-Gaussian
and sub-Gaussian) random vibration, in addition to PSD, higher-order statistics
(above the second order) are necessary to describe its comprehensive characteristics,
which will be discussed in detail in Chap. 2.

After understanding how to fully describe the characteristics of non-Gaussian
random vibration, the next step is to simulate non-Gaussian random vibration. This
is the key to the reproduction of the actual vibration environment experienced by
the equipment, and it can also be used for structural dynamics and vibration fatigue
simulation analysis. Because non-Gaussian random vibration also often appears in
the form of non-stationary random vibration, in Chap. 3, besides discussing the simu-
lation of non-Gaussian random vibration, the simulation of non-stationary random
vibration is also discussed.
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Fig. 1.1 Gaussian and non-Gaussian vibration signals with the same PSD

After realizing the simulation of non-Gaussian random vibration, using it for input
excitation to act on the structure will produce a dynamic response, which is the root
cause of the structure’s vibration fatigue failure. Therefore, in order to study the
influence of non-Gaussian random vibration on the reliability of the structure, we
must first study the dynamic response of the structure under non-Gaussian random
vibration. This is the main content of Chap. 4.

Chapter 5 mainly studies how to obtain accurate and reliable calculation results
of fatigue life after obtaining the non-Gaussian random stress response. First, the
influence of sampling frequency on the calculation accuracy of fatigue damage is
studied, and a stress signal reconstruction method based on Shannon’s formula is
proposed. Then, based on the rain-flow counting method, the calculation methods of
the fatigue life of the structure under the action of narrowband and wideband non-
Gaussian random stress are, respectively, proposed. Finally, the applicability and
accuracy of the calculation method of non-Gaussian fatigue life are verified through
specific example analysis.

Chapter 6 refers to fatigue reliability evaluation of structural components under
random loadings. The randomness of fatigue damage is treated in two aspects. The
first one is the uncertainty quantification from the external random loading. The
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second one is the uncertainty quantification of the fatigue property of the structural
component. The former is characterized by Gaussian distribution derived from the
rainflow cycle distribution, medium stress-life (S—N) curve, and the linear damage
accumulation rule. The latter is described with the probabilistic stress-life (P—S—N)
curve based on log-normal distribution. The proposed method has colligated these
two aspects together to evaluate the expectation and confidence interval of fatigue
reliability.

In Chap. 7, a novel non-Gaussian random vibration accelerated test methodology
was proposed, which can significantly reduce the test time and the sample size. First,
fatigue life prediction models of Gaussian and non-Gaussian random vibration were
proposed based on random vibration and fatigue theory. Meanwhile a detailed solving
method was also presented for determining the unknown parameters in the models.
Second, a non-Gaussian random vibration accelerated test system was designed.
Third, several groups of random vibration fatigue tests were designed and conducted
with the aim of investigating effects of both Gaussian and non-Gaussian random
excitation on the vibration fatigue. Finally, an application case for the fatigue life
prediction of electronic product structures verified the effectiveness of the above
non-Gaussian random vibration accelerated test method.



Chapter 2 ®)
Statistic Analysis of Non-Gaussian oo
Random Load

Abstract Statistic analysis of non-Gaussian random load underpins the calculation
and reliability analysis of the fatigue life for products under non-Gaussian loads.
Skewness and kurtosis only are insufficient to express the non-Gaussian statistical
properties. In view of this, chapter sets up the mathematical model of probability
density function (PDF) for the symmetrical and oblique non-Gaussian random load
amplitude based on the Gaussian Mixture Model (GMM). Higher-order statistics
are sub-stituted into the math model to determine the parameters and obtain the
analytical expression of non-Gaussian PDF. Validity of this method is verified by
simulation and measured signals. The analytical expression of PDF contributes to a
precise definition of the non-Gaussian random load, and underpins the calculation
and reliability analysis of the fatigue life as well as the testing program.

2.1 Common Non-Gaussian Statistical Parameters

In theory, statistics fully describing the non-Gaussian properties in the random
process include higher moment m,(t;,..., T,—;) or high-order cumulants
cu(tyy oo, T 4l (0 > 2).my (T, ..., Ty—1) and ¢, (T4, . . ., T,—1) are multivariate
functions of the time interval {7, }, which has complicated computation with calcula-
tion errors. Higher-order statistics is rarely applied in the quantitative analysis of non-
Gaussian random load due to its complexity. For the purpose of convenience, static
higher-order statistics, as a result of setting the time interval 7; of m, (71, ..., T,—1)
or ¢, (11, ..., Ty,—1) as 0, is used to express the non-Gaussian properties. The static
higher-order statistics of the random process, in essence, amounts to the higher-order
statistics of the random variable. Normalized 3-order and 4-order static matrix are
called skewness y3 and kurtosis y 4, respectively.

Skewness of the Gaussian random process y3 = 0, and kurtosis y4 = 3; skewness
of symmetrical non-Gaussian random process y3 = 0, and kurtosis y4 > 3 (Strictly,
¥ 4 # 3, but the non-Gaussian random load in practice is usually y 4 >3 [1]). Skewness
and kurtosis of the gaussian random process X (¢) can be estimated by the time series
x(t) of the sample:
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T T
) %[fo x3(f>df] 30,0) %[fo x4(f)df] #4(0,0, 0)
V3= 3 =—>%3 1 n= g = 53 (2.1)
X X X X

Of which, T is time span of the sample. Skewness and kurtosis only are insuffi-
cient to characterize the probability statistics of the non-Gaussian random process,
therefore, higher-order statistics is required for the analytical expression of PDF of
the non-Gaussian amplitude.

2.2 Symmetrical Non-Gaussian Probability Density
Function

2.2.1 Gaussian Mixed Model

Middleton [5] proposed GMM for the probability distribution of the amplitude of
the noise signal with multi-source superimposition in the communication system,
expressed as:

N
o) =) ai fi(x) 22)
i=0

Of which, fng(x) is the non-Gaussian PDF, f;(x) is the PDF of the ith Gaussian
component, N is dimension, «; is weight of the ith Gaussian component, 0 < «; < 1,
> a; = 1. Generally, 2D or 3D GMM can obtain precise non-Gaussian PDF. Here,
we adopt the 2D GMM.

na(x) = afi(xlor) + (1 —a) f2(x|o2) (2.3)

2.2.2 Estimation of Parameters

Since the PDF of the Gaussian component is determined by the standard deviation
o, the 2D GMM of the zero-mean non-Gaussian process X (¢) can be expressed as:

1 x? 1 x2
fNG(.X) = Ol\/ﬂal eXp<_r‘12> + (l — a)m exp<—7‘22> (24)

Of which, o; and o, are standard deviation of the Gaussian component 1 and 2,
respectively; o and 1—« are weight of the Gaussian component 1 and 2, respectively.
Three unknowns in Eq. (2.4) are 0|, 0>, and «. For the zero-mean process X(¢), the
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2nd, 4th, and 6th central moment can be estimated via the time series x(¢) of the
sample:

1 T
My = — / x2(1)ds
T Jo
1 T
My = — / x*(t)dr (2.5)
T Jo

7 lfT o(t)dr
me = — X
6 T )

With sufficient time span T, estimated value m71,, can well approach the truth-value
my, [2]. With 2D GMM (Eq. 2.4), we obtain the the following:

my = otmél) +(1 - ot)méz)

my =am’ + (1 —a)ym (2.6)

me = amg) + (1 — oc)méz)

Of which, mg), mil), and m61 are the 2nd, 4th, and 6th moment of the Gaussian
component 1, respectively; méz), miz), and m(éz) are the 2nd, 4th, and 6th moment of
the Gaussian component 2, respectively. 2-order matrix is quadratic mean. For the

zero-mean gaussian random process, there is the relationship among the moments:

) = o nf = o}
1 2
my" = 3ot m§> =305 2.7)

“) = 1500 m{ = 1509
Equation (2.7) is substituted into (2.6), then:

my = (xalz + (1 - 05)022
my = 3ao} +3(1 —a)oy (2.8)
me = 150(016 + 15(1 — ot)026

The truth-value is replaced by the estimated results of high-order moment of the
non-Gaussian random process given by Eq. (2.5), then:

iy = aoi + (1 — a)o}
fiy = 3ao) +3(1 — a)oy (2.9)
e = 15a0f +15(1 — a)of
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Ternary system of nonlinear equations defined by Eq. (2.9) can be determined
through the calculation software (Matlab symbolic operation). The determined
parameters «, o1, and o, are substituted into Eq. (2.4) to obtain PDF of the symmet-
rical non-Gaussian amplitude of GMM. It can be seen that the PDF of the symmet-
rical non-Gaussian amplitude set by Eqgs. (2.4) and (2.9) considers the 6th moment
of the non-Gaussian random process, unlike the single application of kurtosis, which
improves the description accuracy of non-Gaussian statistical property.

2.3 Asymmetrical Non-Gaussian Probability Density
Function

2.3.1 Gaussian Mixed Model

Uniform expression of GMM is shown by Eq. (2.2), but the math model of asym-
metrical non-Gaussian PDF differs from the symmetrical non-Gaussian PDF. Take
the 2D GMM as example, the Gaussian component f(x) and f>(x) of the symmet-
rical non-Gaussian random load are zero-mean Gaussian PDF while the Gaussian
component f;(x) and f,(x) of the asymmetrical non-Gaussian random process have
different means p and standard deviations o.

fne(x) = afi(x|pr, o1) + (1 — @) fr(x|p2, 02) (2.10)

In this way, the odd higher moment of the asymmetrical non-Gaussian random
process cannot be 0.

2.3.2 Estimation of Parameters

We first presume the analysis based on zero-mean, because the effects of means on
the probability distribution can be solved by translation. By Eq. (2.10), the amplitude
PDF of the asymmetrical non-Gaussian random process can be expanded as:

1 [ (x — p1)?
exXp| —————

B (x — 1)’
fNG(-x) - a\/ﬂo_] 20_12 ]

1
} +( _a)«/ﬂo exp|:— 52
2 2

@2.11)

Of which, o, ando | are weight, mean and standard deviation of the Gaussian
component 1, respectively; 1 —«, i1, and o, are weight, mean, and standard deviation
of the Gaussian component 2. The means | and u, are introduced for GMM to fit
the asymmetrical non-Gaussian PDF curve. Equation (2.11) has five unknowns: p1,
M2, 01, 02, and «. As for the zero-mean, the central moment of the non-Gaussian
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process amounts to the origin moment, hereinafter uniformly referred to as moment;
1st moment is 0.

mgNG) = /00 Xfng(x)dx = o /OO xfi(x)dx + (1 — o) /OO xfa(x)dx

]

2.12)
=apr+ U —a)ur =0

The 2nd moment of the non-Gaussian process equals to quadratic mean.

m{? :/ X% fug(x)dx = oz/ X2 fi(0)dx + (1 — 04)/ x? fo(x)dx

=W () + (1 —a)¥P (x)
(2.13)

Of which, \Ilz(l)(x) and \Ilf) (x) are quadratic mean of the Gaussian component 1
and 2, respectively, also the function of quadratic mean and variance:

{ \llél)(x) = /,L% + (712 (2.14)

v () = i +of

Equation (2.14) is substituted into Eq. (2.13), then the 2nd moment of the non-
Gaussian random process is expanded as:

O = a(ud +of) + (1 = )1 + 03) @15

Similarly, the 3rd moment of the non-Gaussian process is:

my® = foo x° fug(x)dx = a/oo x? fi(x)dx + (1 — ) foo x* fr(x)dx

= oW’ () + (1 — )W (x)
(2.16)

Of which, \Ilél) and \Déz) are the 3rd-moment origin moment of the Gaussian
component 1 and 2, respectively:

v x) =30, WY (X) — 213 = 13 + 3,07
{3<) s (X) =20 = i + 30} o

WP (X) = 3o Wi (X) — 213 = w3 + 320

Equation (2.17) is substituted into Eq. (2.16), then the 3rd moment of the non-
Gaussian random process is expanded as:

m$? = a(u} +3ui07) + (1 — @) (13 + 344207 (2.18)
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Similarly, the 4th and 5th moment of the non-Gaussian random process are shown
in Egs. (2.19) and (2.20):

m{ = aw’ + (1 - 0w @.19)
m{? = awl + (1 - ) w (2.20)

For Eq. (2.19):

WP (X) = 4 WP (X) — 63w (X) + 3t + 30 = pu} + 6ulo? + 307
WP (X) = 4w (X) — 603w (X) 4 3us 4 305 = ui 4 6ud0? + 30
(2.21)

Equation (2.21) is substituted into Eq. (2.19), then the 4th moment of the non-
Gaussian random process is:

m{? = a(u} + 6ulof + 307) + (1 — @) (u3 + 61303 + 307) (2.22)
For Eq. (2.20) :

W =5, 05" — 1020 + 10p3wY — 43 = 13+ 10p302 4 15107

WP = 50,0 — 10202 + 1030 — 43 = 13 + 101302 + 15u00
(2.23)

Equation (2.23) is substituted into Eq. (2.20), then the 5th moment of the non-
Gaussian random process is:

mgNG) = a(u? + 10“?0’12 + 15,u1014) + 1 - a)(ug + 10[1,2022 + 15[1,20';)
(2.24)

In practice, every moment of the non-Gaussian random load is unknown and
usually estimated as per the sample records. Presuming the time series of the sample
for the zero-mean non-Gaussian process is x(¢), then estimation of the ith moment
is:

mNY = E[x'(0], i=1,2,... (2.25)
The estimation is replaced by the theoretical value, then we can obtain a system

of quintic Equations for o, @, ua, o1, 02, based on (2.12), (2.15), (2.18), (2.22),
and (2.24):
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O=apu+ 0 —-a)u,

AN = a (13 +0f) + (1 — @) (43 + 0F)

oc(lh +3M1‘71)+ ( _0‘)(“2 +3,u202)

A(NG) (IM +6M1‘71 _|_3o'1) + (1 —a)(u2+6M262 +302)
(17

=a
=a(u] + 10pjof + 15;“01) +d —o:)(u2 101307 + 15@202)
(2.26)

A (NG)

~ (NG)

Solving the above quintic nonlinear equation s can give estimation of the parame-
ters: (11, fi2, 01, 02, and &. Substituting the estimation into the Eq. (2.11) can get the
expression of the PDF of non-Gaussian random load. The above nonlinear equation
s can be solved by means of the numerical method or symbolic operation software.
It can be seen that, compared with skewness and kurtosis only, the skewness non-
Gaussian PDF considers the 5th moment of the non-Gaussian random process, thus
improving the description accuracy for the non-Gaussian statistical property.

2.4 Case Analysis

2.4.1 Case of Symmetrical Non-Gaussian Random Process

Two cases are given in the study to verify the validity of the method proposed:

1. Simulated non-Gaussian random signal with small kurtosis;
2. Measured non-Gaussian random vibration signal of vehicle with big kurtosis;

The PDF of the four non-Gaussian random signals (two are simulation signals, and
other other two are measured signals) are estimated by GMM. The method proposed
is compared with other methods for a quantitative verification of the validity and
accuracy.

24.1.1 Simulated Signal

The non-Gaussian random signals with symmetrical distribution are obtained by
simulation. Figure 2.1 shows that mean . = 0, variance 02=1.1976 x 10°, skewness
y3 =0, kurtosis y4 = = 8.1394. Figure 2.1a is the time series of the sample; Fig. 2.1b
is PSD, a typical broadband non-Gaussian random process.

The sample series shown in Fig. 2.1a is substituted into (2.5), then we can obtain:

iy = 1.1976 x 10°
s = 1.1673 x 107 (2.27)
g = 2.5042 x 10!



