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Preface

TheWorld Atlas of Submarine Gas Hydrates in Continental Margins is a comprehensive global
compilation of geophysical evidence for the presence of natural gas hydrates in the seafloor.
Gas hydrates represent a major carbon reservoir in the Earth system that traps vast amounts of
methane below the seafloor. Hydrates form through the capture of gas molecules in water
molecule cages when there is sufficient water and free gas and if temperature and pressure
conditions are met. Favorable conditions for gas hydrate formation can usually be found
beyond the shelf edge and within the top few hundred meters below the seafloor. Because the
kinetics of gas hydrate formation and dissociation are fast compared to many other geologic
processes, this reservoir is dynamic and sensitive to climatic and tectonic perturbations. Thus,
the gradual warming of the seafloor may destabilize gas hydrates, leading to gas blowouts and
possible destabilization of the seafloor. The process of mapping the distribution of gas hydrates
is therefore critical for the evaluation of offshore geohazards. As methane is the main com-
ponent of natural gas, the methane in gas hydrates is also considered a future energy source,
especially for countries that lack conventional hydrocarbon reservoirs. In the absence of
photosynthesis, bacteria that feed on methane are one base of the food chain in the deep ocean.
Gas hydrate formation, dissociation, and bacterial activity are important modulators for the flux
of methane to the seafloor. For all these reasons, gas hydrate research has played a prominent
role in the field of marine geology and microbiology over the past three decades.

As the most striking geophysical observation linked to gas hydrates is the bottom simu-
lating reflector (BSR), we initially considered calling this book “The Atlas of Bottom Sim-
ulating Reflectors.” A gas hydrate-related BSR shows a phase reversal compared to that of the
seafloor. It is caused by an abrupt change in acoustic impedance at the boundary between the
gas hydrate-bearing sediments above the BSR and the sediments containing free gas below.
The BSR thus represents the base of the gas hydrate stability zone (GHSZ) and can be used to
infer subseafloor temperature and pressure conditions as well as the presence or absence of gas
hydrates and free gas. The atlas fills a major gap in the literature of geophysical exploration
through the compilation of typical shapes and seismic expressions for almost all ocean areas
where gas hydrates have been reported or suspected. This covers vastly different geological
settings, including volcanic and non-volcanic passive margins as well as oceanic and conti-
nental subduction zones. By summarizing the main findings for each of these areas, the book
both provides an overview of the occurrence of gas hydrate-related BSRs in different geo-
logical settings and with different types of geophysical data. It also provides new insight into
the processes and time scales that affect gas hydrates.

Observations of BSRs in 2D and 3D seismic reflection data, combined with detailed
analysis of P- and S-wave velocity and attenuation, electrical resistivity imaging, and gas
hydrate stability zone (GHSZ) modeling, aid researchers in both academia and the hydro-
carbon industry in understanding the potential extent and volume of gas hydrates in a wide
range of tectonic settings on continental margins. Sub-seabed imaging techniques provide
insight into the controlling mechanisms for the distribution and migration of gas as it enters
and moves through the gas hydrate stability zone. Repeated imaging at the same site uncovers
new details regarding the dynamic behavior of these systems. Over the past few decades,
drilling campaigns such as the Deep Sea Drilling Project (DSDP), the Ocean Drilling program
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(ODP), and the International Ocean Drilling/Discovery program (IODP) have allowed for the
direct sampling of gas hydrates. They have been instrumental in constraining the geological
and physical boundary conditions necessary for the formation of natural gas hydrates in
continental margins and lakes. This volume summarizes these results and discusses the geo-
physical observations in this context.

The World Atlas of Submarine Gas Hydrates in Continental Margins is aimed at students,
researchers, governmental organizations, and professionals from the hydrocarbon industry.
Some familiarity with seismic data and some basic understanding of geological and tectonic
processes will be required to get the most out of this volume. Apart from presenting a short
overview of gas hydrate science (e.g., geology, geophysics, modeling), its main aim is to provide
a global perspective on the variable geophysical observations related to gas hydrates in different
parts of theworld.With comprehensive references to key papers covering each location, it should
also provide a good starting point for those who are new to a particular gas hydrate province. It
will also provide ample teaching material for classes in marine geology and geophysics.

The atlas consists of fourteen parts containing a total of 43 peer-reviewed articles written by
esteemed researchers from universities and government agencies around the world. The
articles provide both new data and reviews of previously published data. Geophysical inter-
pretations are discussed in the context of drilling and coring results when possible to ground
truth the geophysical findings. The majority of contributions describe and discuss geophysical
data from gas hydrate systems worldwide. These contributions are organized by geographic
area (see map) and may serve as a reference for documenting future changes. Future
researchers may use this comprehensive compilation of gas hydrate stability zone data to
further investigate questions such as: What is the gas hydrate inventory for active and passive
margins? Where are the most climatically sensitive gas hydrate reservoirs on Earth and how
fast can they respond to geological and oceanographic perturbations? Which gas hydrate
occurrences should be considered geological hazards? How do the geophysical characteristics
of BSRs differ in various geological settings?

Each of the 14 parts of the atlas cover topics of international interest in documenting gas
hydrates:

I A History of Gas Hydrate Research (Chaps. 1–3)
II Gas Hydrate Fundamentals (Chaps. 4–6)
III Gas Hydrate Drilling for Research and National Resources (Chaps. 7–16)
IV Arctic (Chaps. 17–21)
V Greenland and Norwegian Sea (Chaps. 22–23)
VI North Atlantic (Chaps. 24–27)
VII South Atlantic (Chaps. 28–31)
VIII Pacific (Chaps. 32–35)
IX Indic (Chap. 36)
X Mediterranean Sea (Chap. 37)
XI Black Sea (Chap. 38)
XII Lake Baikal (Chap. 39)
XIII Antarctic (Chap. 40–42)
XIV Where Gas Hydrate Dissociates Seafloor Microhabitats Flourish (Chap. 43)

We are grateful to all our colleagues who contributed to this atlas documenting the char-
acteristics of gas hydrate systems on continental margins.

Tromsø, Norway Jürgen Mienert
Kiel, Germany Christian Berndt
Corvallis, USA Anne M. Tréhu
Sgonico, Italy Angelo Camerlenghi
Taipei, Taiwan Char-Shine Liu
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1Gas Hydrate Research: From the Laboratory
to the Pipeline

Jose G. Delgado-Linares and Carolyn A. Koh

Abstract

Gas hydrates have been the subject of intensive research
over the past several decades. Complications created by
hydrate formation and the plugging of gas and oil
flowlines has been the main driver in the development
of predictive models based on experimental observations.
The multiscale approach discussed in this article is based
on many years of systematic investigations; phenomena
related to gas hydrate formation are considered at the
microscale to the macroscale. The processes surrounding
hydrate nucleation, growth and agglomeration are critical
to designing strategies for hydrate plug avoidance and
management. An overview of the main key experimental
techniques used in hydrate research will be presented,
with special emphasis on how those techniques may
provide valuable input in improving integrated hydrate
models in different flow assurance scenarios.

1.1 General Aspects

Gas hydrates are solid inclusion compounds in which a
hydrogen-bounded water network (the host) encapsulates
small gas molecules (the guests). Common varieties of
hydrate guests, also known as ‘formers’, include small
hydrocarbons (e.g. methane, ethane), noble gases (e.g.
xenon), diatomic gases (e.g. nitrogen), and fluorinated
compounds (e.g. CH2FCF3) (Sloan and Koh 2007).

Although formation conditions are specific to a particular
guest, hydrates are always stable at high pressure and low
temperature (Sloan and Koh 2007). On a microscopic level,
hydrates can form three different crystalline structures; these
are known as Structure I (sI), Structure II (sII) and

Structure H (sH). Structures sI and sII are of special interest
as they can trap the small gas molecules found in both
natural and industrial systems. In all three of the crystal
configurations, the hydrogen-bounded water molecules form
molecular cages, as shown in Fig. 1.1. The 512 cage is
considered a basic building block of these structures (Gia-
varini and Hester 2011; Jeffrey 1984; Koh et al. 2011;
Warrier et al. 2016).

It is the size of the guest that determines which of the
three structures will be created. Thus, gases smaller than 6
Å (e.g. methane, ethane, and carbon dioxide) induce the
formation of Structure I, molecules between 6–7 Å (e.g.
propane and isobutane) form Structure II, and molecules
larger than 7 Å (e.g. iso-pentane, combined with a small
guest such as methane) promote the formation of Structure H
(Sloan and Koh 2007).

The increasing interest in gas hydrates is largely due to their
potential as an energy resource. They are a non-conventional
fossil fuel able to store up to 164 m3 of methane gas for each
cubic meter of hydrate, which is a high value of energy density
compared to conventional fuel sources (Demirbas 2010).
Another advantage of hydrates as a prospective fuel source is
their abundance in nature, representing over half of the total
reserves of organic carbon on Earth (Mahajan et al. 2007).
Further research on natural methane hydrates motivated by
implications for climate change, submarine geohazards, and
geo-microbiological processes at the seafloor exist but are
outside the scope of this article.

Gas hydrates have potential application in several tech-
nological areas, as shown in Table 1.1. In some cases, gas
hydrate occurrence is not only desirable but critical in
accomplishing a process goal (e.g. gas separation, desali-
nation). On the other hand, the plugging of flowlines by gas
hydrates in conventional offshore oil/gas operations repre-
sents a flow assurance problem, which can reduce or even
stop the hydrocarbon flow. A similar problem can also occur
in the extraction of gas from naturally occurring hydrate
sources. Thus, significant effort and expense have been put
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into effect to develop practical strategies for hydrate avoid-
ance and management in production systems (Creek 2012;
Sloan and Bloys 2000).

Beginning in 1810 with the discovery of gas hydrates by
Sir Humphrey Davy (1811), the evolution of its research has
been guided by several critical events, including detection of
the formations in pipelines (1934) and later in natural
environments (1965). The complications that gas hydrates

create in the flow assurance of pipelines has been a driving
force in the study of phenomena related to hydrate behavior.
In this sense, a cross-disciplinary approach based on
microscopic and macroscopic observations has been used
alongside the development and implementation of predictive
tools, giving rise to major advances in hydrate science.
Many of these advances can be applied both within pipelines
and in the natural environment (Sloan 2004).

Fig. 1.1 Main gas hydrate
structures. Number of cages and
water molecules per unit is
indicated (reproduced with
license granted by AIP Publishing
from Warrier et al. 2016)

Table 1.1 Summary of hydrate applications

Hydrate
application

Guest/structure type Focus areas References

Hydrates in
nature

Methane/sI (biogenic); natural gas mixtures
(thermogenic

Resource exploration and assessment; gas production; geomechanics;
Environmental impacts

Boswell et al. (2020)
Collett (2019)
Moridis et al. (2018)
Ruppel and Kessler
(2017)

Flow
assurance

Typically sII, natural gas mixtures Thermodynamics; LDHI-KHIs & AAs; Non-plugging
oils; reaction limitations; multiphase flow

Sloan and Koh
(2007)
Kelland (2016)
Sjöblom et al.
(2010)
Turner and Grasso
(2017)
Wang et al. (2018)

Energy storage sI (methane); sII (hydrogen and natural gas) Stability/capacity—NG
Stability—H2

Rapid formation

Stern et al. (2003)
Florusse et al.
(2004)
Veluswamy et al.
(2016)

Gas separation sI, sII Gas selectivity Warrier et al. (2018)

Desalination sI, sII Salt exclusion; crystal morphology Khan et al. (2019)
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One of the most important factors contributing to the for-
mation of hydrates in flowlines is the relative amount of each
phase present (e.g. gas, oil, or water). Thus, themechanism for
hydrate formation in oil-dominated systems is different from
that of gas-dominated systems, even if some phenomena are
common in both systems. Most research on the effect of gas
hydrates on flow assurance in pipelines use large-scale
observations as a starting point (Sloan 2004). There is a
necessity to perform experimental work on a smaller scale
using equipment and experimental techniques in the labora-
tory to obtain more detailed information on specific phe-
nomena (e.g. viscosity, adhesion etc.) related to gas hydrates.

As mentioned, gas hydrates are commonly known to form
within both gas- and oil-dominated systems, creating
blockages that lead to flow problems. The conceptual model
for hydrate formation and plugging in gas-dominated sys-
tems is shown in Fig. 1.2. It can be summarize as follows:
(1) hydrates start to nucleate at the pipe surface, (2) after
nucleation, hydrates grow rapidly and cover the circumfer-
ence of the pipe, (3) the effective diameter of the line is
reduced because of hydrate growth, (4) part of the deposit
can detach from the wall (sloughing) due to fluid shear, and
(5) hydrate particles can accumulate in other parts of the line

(e.g. flow restriction) and lead the system to jam (Lingelem
et al. 1994; Sloan et al. 2010; Sum et al. 2012; Zerpa et al.
2012).

Figure 1.3 depicts the conceptual model of hydrate
plugging in an oil-dominated system (Majid et al. 2018). The
relatively high proportion of oil and water typically makes
the entrainment and emulsification of water into the oil phase
a determinant step for hydrate formation. In this case, a
hydrate film grows quickly around the water droplets, cre-
ating hydrate shells (5–30 µm thick) with a water core;
finally, the hydrate-coated particles agglomerate to plug the
flowline (Sloan et al. 2009, 2010).

Figure 1.3 shows that phenomena such as viscosification,
film growth, deposition, bedding, and jamming can occur
simultaneously. In contrast to gas-dominated systems
(shown in Fig. 1.2), the oil chemistry of oil-dominated
systems is a primary factor that can assist or restrict hydrate
agglomeration and plugging (Costa Salmin et al. 2019;
Fadnes 1996; Leporcher et al. 1998; Sjöblom et al. 2010;
Zerpa et al. 2011).

To build and quantify conceptual models like those in
Figs. 1.2 and 1.3, many observations and measurements are
required in different experimental setups and at different

1 2 32 42 52 

Fig. 1.2 Conceptual picture of
hydrate formation and plugging in
gas-dominated systems. The
green color represents the gas and
the white color represents the
hydrates (modified from
Lingelem et al. 1994 and
reproduced with license granted
by Elsevier from Zerpa et al.
2012)

Fig. 1.3 Conceptual picture of
hydrate formation and plugging in
an oil-dominated system
(reproduced with license granted
by Elsevier from Majid et al.
2018)
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scales; furthermore, phenomena such as hydrate nucleation,
growth, inter-particle adhesion, wettability and jamming
must also be considered. Once the microscopic phe-
nomenology is developed, the next step consists of per-
forming experiments at a pilot scale to obtain information on
the system behavior in more realistic conditions before
advancing towards field applications. It is important to keep
in mind that an increase in the experimental scale also
generates an increase in the volume of fluids required, while
the control of experimental conditions diminishes. The final
goal of gas hydrate research in flow assurance is to build a
comprehensive model capable of predicting hydrate forma-
tion and plugging in certain conditions so that hydrate
prevention/management strategies can be efficiently applied.

The main objective of this article is to present a general
overview of the main experimental techniques and appara-
tuses used for hydrate research, with emphasis on the mea-
surement principles, operation conditions and major
outcomes.

1.2 Experimental Hydrate Research

1.2.1 Multiscale Approach

The formation of gas hydrates is a complex process that
depends on many factors, including the types of phases
present and the conditions under which those phases interact.
While discussions presented here are limited to the flow
assurance problems created by gas hydrates in flowlines,
some generalization can be made to the formation of
hydrates in other applications.

A hydrocarbon flowline is generally dominated by crude
oil, water, gas and/or condensate. Thus, once pressure–
temperature conditions are met, the potential for hydrate
formation and subsequent plugging will primarily depend
upon the relative amount of each phase present. Several
other parameters may also play a part, such as hydrodynamic
conditions (e.g. flow rate), viscosity, chemical composition
of the fluids (e.g. gas composition, water salinity, natural
surfactants in the oil, added chemicals, etc.), and flow pat-
terns among others. The formation of hydrate blockages has
been conceptualized in four main models: (1) oil-dominated,
(2) gas-dominated, (3) gas condensate and (4) high-water cut
systems (Sloan et al. 2010). All of these types of blockages
are impacted by certain physical phenomena, ranging in
scale from microscopic hydrate particle/film formation to
macroscopic agglomeration and plugging.

Significant efforts have been made to develop practical
tools capable of predicting hydrate formation. The general
workflow can be summarized in three main steps: (1) small
scale experiments, (2) pilot plant tests and (3) field appli-
cations and modelling. In general, laboratory experiments

require only a few micro- or milli-liters of sample material
and allow for the study of physical phenomena in great detail
under rigorous environmental control. When increasing the
experimental scale towards pilot plant tests such as flow loop
experiments, conditions become more realistic and the
consumption of fluids and chemicals increases significantly;
liters and even barrels of water, oil and gas are normally
required to obtain datapoints.

Once the phenomenon is sufficiently understood, the next
step is to test the physical/mathematical models developed at
the pilot plant level on real-world field cases with the help of
industrial companies. As a part of the field application,
physical models are integrated with predictive tools to assess
the risk of hydrate formation and plugging in real scenarios.
For example, the predictive tool CSMHyK can be coupled
with the transient multiphase flow simulator OLGA®, and
the combination can then be used to predict hydrate for-
mation and transportability in pipelines (Boxall et al. 2009;
Zerpa et al. 2012).

Figure 1.4 is an illustrative summary of the multiscale
approach used in hydrate research. It lists the main phe-
nomena involved in hydrate formation and plugging and
further identifies the equipment/techniques used at each
scale; the brown text identifies factors applying exclusively
to oil-dominated systems.

It is worth noting that the multiscale scheme presented in
Fig. 1.4 may not only be used in gas hydrate formation
studies but also as a practical tool to evaluate the efficiency of
both natural and commercial chemicals in the management of
gas hydrates in oil and gas flowlines (Dapena 2019; Hu 2019).
The physics behind each experimental technique is the main
factor to be considered in defining its specific application.

1.2.2 Overview of Experimental Techniques

The number of published works found on gas hydrates is
enormous, implying a correspondingly high number of
equipment/techniques applied in hydrate research, as shown
elsewhere (Sloan and Koh 2007). Depending on the goal of
each experiment, a setup is designed or adapted to collect a
specific kind of data and the experimental conditions are
fixed accordingly. Key experimental techniques given in
Fig. 1.4 are briefly described, and their importance as a part
of the conceptual models in Figs. 1.2 and 1.3 is highlighted.

1.2.2.1 Small (Laboratory) Scale
Autoclave-type reactor. The first technique covered is the
use of batch reactors such as autoclave-type reactors/cells
(Giavarini and Hester 2011). They are primarily used to
determine pressure and temperature conditions as well as the
kinetics under which hydrates are formed/dissociated. The
cell, equipped with a stirrer, is connected to a gas reservoir
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and placed in a thermal bath to reach the conditions neces-
sary to form hydrates. Sensors are placed inside the cell to
determine pressure and temperature, as well as optical
devices such as Particle Video Microscope (PVM) and
Focused Beam Reflectance Measurement (FBRM) probes, if
available, to monitor the evolution of particle size over time
(Costa Salmin 2019). Autoclaves can be designed to operate
at pressures up to 5,000–10,000 psi (Sloan and Koh 2007),
although the PVM/FBRM probes have an operation limit of
around 1,000 psi. An example of this type of reactor and its
main components is shown in Fig. 1.5a.

Autoclaves can be used to quantify the kinetics of hydrate
formation in both oil-dominated systems as well as water/gas
systems. They are also useful in evaluating the effectiveness
of various hydrate inhibitors, such as thermodynamic
hydrate inhibitors (THIs), kinetic hydrates inhibitors (KHIs)
and anti-agglomerates (AAs). Further, they are capable of
gathering information on the flowability properties of the
hydrate slurry, namely its viscosity and particle size distri-
bution (Akhfash et al. 2017; Chen et al. 2014; Majid et al.
2014; Salmin et al. 2017; Sun et al. 2015). Figure 1.5b
shows a comparison between systems that display

Fig. 1.4 A multiscale approach
for hydrate research. Techniques
and phenomena appearing in
brown apply only to
oil-dominated systems

Fig. 1.5 a Schematic of a high-pressure autoclave reactor. Main
components: (1) Video probe (PVM), (2) thermocouple, (3) motor shaft
(stirrer), (4) laser-scanning probe (FBRM), (5) impeller and (6) baffles

(Costa Salmin 2019). b Illustration of typical motor current variation as
a function of hydrate volume fraction for systems with and without
hydrate agglomeration
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agglomeration versus systems that do not. The absolute
motor current as it relates to system viscosity is illustrated as
a function of the hydrate volume fraction, and it increases in
systems where agglomeration is found.

High-pressure differential scanning calorimetry.
Another technique often used in hydrate laboratories is
called differential scanning calorimetry (DSC), which is
based on the measurement of the enthalpy variation as a
function of temperature during heating and cooling cycles.
The thermogram recorded by a DSC allows for the identi-
fication of phase transformations, such as hydrate formation
and dissociation. These instruments are designed to operate
at pressures of up to around 5,000 psi and at temperatures in
the range of 230–400 K, with the advantage of using a very
small amount of sample. Important information such as
hydrate dissociation temperature, heat capacity, heat of dis-
sociation, hydrate agglomeration and emulsion stability with
and without hydrates may be obtained through this technique
(Dalmazzone et al. 2003; 2009a, b; Delgado-Linares et al.
2013; Giavarini and Hester 2011; Lachance et al. 2008;
Palermo et al. 2005; Sloan and Koh 2007).

A typical thermogram for a HP-DSC hydrate experiment
is shown in Fig. 1.6, where temperature and heat flow as a
function of time are plotted. The peaks in the heat flow trace
correspond to hydrate formation and hydrate dissociation
(Lachance 2008).

Rheometer. One of the most important properties con-
sidered when dealing with flow assurance problems is the
viscosity of the liquid phase. An increase in the system’s
viscosity generally requires more vigorous pumping and
increases the likelihood of plugging. Several studies have
placed focus on evaluating the rheological behavior of
hydrate suspensions, using flow loops and rheometers at low
and high pressures (Delahaye et al. 2008; Majid et al. 2019;
Sinquin et al. 2004; Webb et al. 2012). The use of
high-pressure rheometers has aided the development of some
empirical and semi-empirical models to predict the viscosity

variations of emulsions and hydrate suspensions and slurries
at different conditions of pressure and temperature (Camargo
and Palermo 2002; Majid et al. 2017; Qin et al. 2018).
Pioneering research in this field has explained the aggrega-
tion of hydrate particles in oil-dominated systems through
the formation of inter-particle water bridges that generate
attractive capillary forces (Camargo and Palermo 2002). An
empirical equation used to predict the viscosity of stable
water-in-crude oil emulsions has been recently proposed as a
tool for analyzing the effect of hydrate particles on the vis-
cosity of slurries (Majid et al. 2017).

Figure 1.7a is a schematic diagram of a high-pressure
rheometer used in the study of hydrates. Figure 1.7b shows a
typical viscosity-versus-time curve and the corresponding
pressure and temperature profiles present for a system in
which hydrates are formed in a water-in-oil emulsion. Four
regions may be observed in this kind of system, as identified
in the figure: (1) initial viscosity increase due to the cooling
process, (2) viscosity remains constant, (3) viscosity rises
suddenly and (4) viscosity decreases gradually.

The increase in the system viscosity in region 3 is the
result of several combined factors, including the conversion
of water droplets to hydrate particles, the depletion of

Fig. 1.6 An illustration of a typical thermogram of a water-methane
system indicating hydrate formation and dissociation

Fig. 1.7 a Schematic of
high-pressure rheology
(reproduced with license granted
by the American Chemical
Society from Majid et al. 2017).
b Illustration of typical
temperature, pressure and
viscosity profiles for hydrates
formed in a water-in-oil emulsion
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methane in the liquid phase, and the formation of capillary
bridges between partially/fully converted hydrate particles.
The viscosity reduction in region 4 may be explained
through two main hypotheses. One is the re-saturation of the
liquid phase with methane (gas former), reducing the vis-
cosity of the hydrate suspension. The other involves the
breakup and rearrangement of hydrate aggregates in the
liquid phase (Majid et al. 2017; Webb et al. 2012).

Cohesive/adhesive force apparatus. As can be seen in
Figs. 1.2 and 1.3, the aggregation of gas hydrate particles is a
critical step in the plugging of pipelines. A mi-
cro-mechanical force (MMF) apparatus has been used to
measure the interaction forces among hydrate particles and
to quantify the interactions between hydrate particles and
solid surfaces at ambient and high pressures (Aspenes et al.
2010a; Hu and Koh 2017; Lee and Sum 2015; Taylor et al.
2007; Yang et al. 2004). The experimental procedure for
measuring hydrate interaction forces consists of 4 steps
(Aman et al. 2012a; Hu and Koh 2017): (1) two water
droplets are each attached to a glass fiber cantilever and
converted to hydrate particles, (2) the particle on the top is
moved against the bottom particle in order to provide a
preload force for a specific period of time (3) the particle on
top is raised at constant velocity, and (4) the movement is
stopped when the particles are broken apart at a distance Dd.
Hook’s Law is then applied to calculate the cohesive force
(Fa), as follows:

Fa ¼ kDd ð1:1Þ

where k is spring constant of the glass fiber.
The MMF technique measures the impact of important

operational parameters on the interaction of hydrate parti-
cles, such as subcooling, annealing time, contact time, and
nature of dominant phase. In oil- and gas-dominated sys-
tems, hydrate interaction forces mainly originate from the

formation of water capillary bridges between hydrate parti-
cles; on the other hand, in water dominated systems, the
hydrate interactions are the product of solid–solid cohesion.
It has also been shown that an increase in contact time may
induce the sintering of hydrate particles and thus signifi-
cantly increase the cohesive forces (Aman et al. 2011; Aman
et al. 2012a; Hu and Koh 2017). A schematic of a
high-pressure MMF apparatus and its main components are
depicted in Fig. 1.8a. Figure 1.8b shows the general trend of
the variation of cohesive force as a function of contact time
for a pair of gas hydrate particles in a hydrocarbon liquid
phase at high pressure (Hu and Koh 2017).

Measurements of cohesive forces have also been used to
evaluate the effectiveness of natural and commercial AAs in
oil-dominated systems, taking into account experimental
parameters such as additive concentration, salinity, contact
time and oil nature. Results indicate that the better the
anti-agglomerant, the lower the interactions between hydrate
particles (Aman et al. 2012b; Dieker et al. 2009; Hu and Koh
2020; Morrissy et al. 2017; Wang et al. 2020).

Contact angle. As depicted in Fig. 1.4, there are some
techniques and setups applicable almost exclusively to sys-
tems with a significant amount of oil; the first of these is
measuring the contact angle. Measurements of the contact
angle (h) of a water droplet placed on a hydrate
surface/particle (see Fig. 1.9a) will give an indication of the
wettability of the hydrate surface, thus a higher contact angles
may be correlated to hydrophobic surfaces (Brown et al.
2018). This finding is very important considering that hydrate
plugging in oil-dominated systems has been associated with
the occurrence of water-wet hydrates at a low contact angle
(Aspenes et al. 2010b). The contact angle technique has also
been used to determine the hydrate-philicity of metal surfaces
(Fig. 1.9b). According to the criterion mentioned above,
higher contact angles account for low affinities between
hydrates and solid surfaces (Brown et al. 2017). It has been

Fig. 1.8 a Schematic of a high-pressure MMF apparatus (reproduced
with license granted by the American Chemical Society from Hu and
Koh 2017). b Illustration of typical variation of cohesive forces versus

contact time for gas hydrate particles in a hydrocarbon liquid phase at
high pressure
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recently demonstrated using contact angle measurements,
among other experimental techniques, that the application of
coatings and surface chemical treatments can efficiently
reduce hydrate adhesion to metal surfaces (Brown et al. 2017;
Das et al. 2019; Pickarts et al. 2019).

Rocking cells. A rocking cell apparatus is one of the most
common devices used for flow assurance studies, and is
another item used exclusively in oil-dominated systems. As
the name suggests, it consists of a relatively small
high-pressure visual cell coupled with a rocking mechanism.
These are generally designed to operate at pressures of up to
5,000 psi and are often equipped with a metal ball to facil-
itate the mixing of phases; in some devices, the time required
for the ball to travel from one end of the cell to the other end
is recorded by two run-time sensors. Pressure and tempera-
ture may be recorded, which allows induction time, gas
consumption, water conversion to hydrates and hydrate
agglomeration to be determined (Chua and Kelland 2013;
Dong et al. 2017; Frostman 2000; Sloan and Koh 2007).
Rocking cells have been widely used to evaluate the per-
formance of AAs as well as THIs; the visual assessment of
hydrate agglomeration is based on the size and flowability of
hydrate particles so that the results may vary from a “pass”
to a “fail” test with one or more intermediate grades (Costa
Salmin et al. 2019; Delgado-Linares et al. 2020; Gao 2008,
2009; Gupta et al. 2011). The effect of variables such as
water cut, salinity, AA concentration and subcooling on
hydrate agglomeration can be determined by using this kind
of apparatus.

Some authors have proposed a variation of the rocking
cell concept to study hydrates at different flowing conditions
(e.g. a 1–5 L rock-flow cell larger than the conven-
tional *35 mL rocking cell) with capabilities to modify the
rocking angle/speed to provide different flow regimes (Sa
et al. 2019).

Bottle test. The final technique covered here exclusive to
oil-dominated systems is the bottle test, which is used to
evaluate the stability of emulsions. In the classical bottle test,
the volume of the phases when separated from an emulsion
is recorded over time. For water-in-crude oil emulsions, the
volume of the internal phase (water) that has separated is

registered, as well as other aspects related to the separation
such as appearance of the interface and clarity of the sepa-
rated water. Due to its simplicity, bottle tests enable field
operators to obtain information about the kinetics of emul-
sion separation in a relatively short period of time. This
technique has also been successfully used to evaluate the
performance of commercial demulsifiers in the oil industry
(Delgado-Linares et al. 2016; Goldszal and Bourrel 2000;
Leopold 1992; Salager 1990; Smith and Arnold 1987;
University of Texas 1990). Published works have suggested
a relation between the stability of water-in-oil emulsions and
gas hydrate transportability in crude oil systems; as a con-
sequence, the bottle test is an important tool for potentially
evaluating natural hydrate anti-agglomeration (i.e. naturally
occurring surfactants responsible for the stabilization of
crude oil emulsions may play a key role in gas hydrates
dispersion) (Costa Salmin et al. 2019; Delgado-Linares et al.
2020; Lachance 2008; Salager and Forgiarini 2012; Sjöblom
et al. 2010). The main limitation of this technique is that it is
generally not performed at the high pressures of gas hydrate
formation.

1.2.2.2 Pilot Scale
Flow loop. Industrial and research institutions have con-
structed pilot-scale flow loops to simulate the flow behavior
in pipelines, and can thus obtain results closer to those in
real-world conditions, as shown in Fig. 1.4. These appara-
tuses control the temperature and track hydrate formation
kinetics by observing gas consumption at constant pressure
and/or volume, pressure drops, and visually using windows/
particle probes. Data acquisition systems record data from
thermocouples, pressure sensors, flow meters, in-situ imag-
ing probes, and windows for visual observation (Costa Sal-
min 2019; Sloan and Koh 2007). The total volume of flow
loops is variable, but it may be in the range of 80–670 L, with
a required volume of oil between 28 and 445 L (Costa Salmin
2019). Some of the flow loops used in hydrates studies
worldwide include the ExxonMobil Friendswood flow loop
in Texas (U.S.A) with 93 m length and 9.7 cm of internal
diameter, the IFP flow loop in Solaize (France) with 140 m
length and 5 cm of internal diameter, the University of Tulsa

Fig. 1.9 Contact angle measurements a between a water droplet and a hydrate particle; b between a hydrate particle and a solid surface
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flow loop in Tulsa (U.S.A.) with 49 m length and an internal
diameter of 7.6 cm, and the flow loops at SINTEF Mul-
tiphase Flow Laboratory in Trondheim (Norway) with three
loop facilities, namely one of small scale (50 m length with
2.54 and 5.08 cm of internal diameters), one of medium scale
(50 m length with 6.35, 7.62 and 10.16 cm of internal
diameters) and one of large scale (800 m length and
20.32 cm of internal diameter) (Anon 2020; Boxall 2009;
Giavarini and Hester 2011; Sloan and Koh 2007). Fig-
ure 1.10 displays a schematic of the ExxonMobil flowloop
and its main components (Joshi et al. 2013).

Flow loop tests have been carried out to evaluate the
hydrate transportability for oil- and gas-dominated systems;
the formation of agglomerates and deposits are detected by
an increase in pressure drop (Di Lorenzo et al. 2014; Majid
et al. 2016). Hence, flow loops can be a valuable tool to
evaluate the effectiveness of hydrate AAs (Dapena et al.
2017; Lachance et al. 2012).

Wheel loop. An apparatus smaller than an industrial flow
loop is a wheel loop. It is commonly comprised of a
wheel/torus of 2–5 inch pipe at a diameter of 2 m, with a
rotation velocity of 0.3–5 m/s when filled with gas and
liquid (<50% liquid loading). Hydrate formation is deter-
mined visually or by a sharp increase in the torque required
for rotation (Sloan and Koh 2007). The torque data may be
used to evaluate the effect of AAs on the hydrate plugging
potential of oil-dominated systems (Hemmingsen et al.
2008; Kelland et al. 2006).

1.3 Final Considerations

Gas hydrates have become a major topic of research for
industry and academia during the last several decades,
mainly due to their enormous potential as an energy resource
and the necessity to avoid/manage them in oil and gas

flowlines. Much effort has been dedicated to understanding
how hydrates form and behave in different systems where
the dominant phase may be liquid or gas, and where the flow
conditions are variable.

This multiscale approach has been developed by the
Center for Hydrate Research (Colorado School of Mines)
after many years of intensive research on gas hydrates in
flow assurance. The vision outlined here will allow for the
incorporation of the described phenomena/mechanisms
studied at microscale into integrated models developed to
explain and predict hydrate behavior in real-world condi-
tions. It is, however, a large task given the high numbers of
parameters to consider. The unification and scaling-up of
microscopic models to robust predictive models applicable
in field situations will be the key challenge for hydrate
researchers in upcoming years.
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