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Preface

In the literature of control science and engineering, we are more concerned with
convergence of the states of any dynamic multi-input-multi-output systems, then
pay attention to academically challenging and practically relevant finite-time conver-
gence where finite-time control drives the states to converge within a certain time
moment, and finally solve the important and critical issue in solving how each state
element converges as demanded in many accurate, precise, and delicate operations
in many applications including robotic autonomy, manufacturing operations, and
exploration in oceans and space.

This monograph develops and introduces various fundamental and basics of time-
synchronized control and its stability because of the demand for precise and dedicated
operations in practice. Interconnections with finite-time control and sliding mode
control are explored. The work forges ahead beyond the well-established notions
and outcomes of standard “Finite-Time Stability”, and investigates and develops
results and outcomes for a newer (and in various important instances,more impactful)
notion of “Time-Synchronized Stability”. This work is oriented towards researchers,
engineers, and students who dedicate themselves for the best control system design
in practice yet with sound theoretical support by seamlessly integrating or fusing
academic exploration and engineering regulations.

Specifically and importantly, under time-synchronized control, all the state
elements of a target system converge to the origin exactly at the same time, called
time-synchronized convergence. The associated time-synchronized stability is built
on top of the well-known standard notion of finite-time stability, but adds to it the
further notion of time-synchronized convergence. In this monograph, we underscore
and discover important outcomes and properties associated with finite-time stability,
and then define a notion and concept of a control system—ratio persistence. All
of these together contribute to time-synchronized stability. Ratio persistence is an
essential property that keeps each pair of the closed-loop system state elements being
constant. Note that even the classical proportional control (P control) can appropri-
ately enable a control system to be ratio persistent. Thus, P control can be seen as a
very special type of time-synchronized control, where its synchronized settling time
is t → ∞. Of course herein, our explorations and attained outcomes are much more
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impactful beyond this in consequence. The results and outcomes here pertain to real-
izing this ratio persistence, and time-synchronized control with finite-time stability
as well.

Time-synchronized control can be viewed as offering coordination of different
states of the system in time for different applications in the sense that, as time
passes, the system state elements converge to the equilibriumwhile always preserving
a constant ratio among them. These unique nature and property make time-
synchronized control highly attractive in providing not only time-synchronized
convergence, but also more nice properties for this interesting time-synchronized
convergence property attained such as a smooth systemoutput, a short state trajectory,
reduced energy consumption, improved convergence accuracy, among others.

Themain content of this book includes time-synchronized stability and its relevant
Lyapunov theorems, time-synchronized control design for different types of systems
with practical considerations, and explorations in time-synchronized consensus.

In Chap. 2, time-synchronized stability, fixed-time-synchronized stability, and
predefined-time stability as well as their respective Lyapunov-like theorems are
proposed. Fixed- and predefined-time-synchronized stability are regarded as special
types of time-synchronized stability.

In Chap. 3, quasi-continuous and continuous time-synchronized sliding modes
are introduced to facilitate the achievement of time-synchronized stability. Their
convergence rate, singularity issue, types of continuity are properly discussed.

In Chaps. 4–6, time-synchronized controllers are proposed for affine systems,
Euler-Lagrange systems, and general MIMO systems under matched and unmatched
disturbances, where time-synchronized or fixed-time-synchronized convergence is
achieved.An importantmatter of singularity avoidance is suitably addressed. Further,
we introduce the concept of “the least upper bound of synchronized settling time” to
accurately estimate the synchronized settling time. An extension to predefined-time-
synchronized control is further addressed.

In Chap. 7, the time-synchronized consensus problem is defined and solved. It
shows that all the state elements of the multi-agent system are capable of achieving
consensus time-synchronously when the graph theory is properly invoked with the
proposed time-synchronized consensus controller.

In Chaps. 8 and 9, (practical) time-synchronized control is proposed for disturbed
spacecraft under multiple practical constrains with hardware-in-loop experiments.

In Chap. 10, pertinent conclusions are drawn with interesting but challenging
possible future directions.

Budding and Genesis

The genesis and mulling of this monography were very much inspired and motivated
by many excellent scientific works including Linear Controller Design: Limits of
Performance by S. Boyd and C. Barratt, Optimal Control by F. L. Lewis, D. Vrabie
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and V. L. Syrmos, Sliding mode control: theory and applications by C. Edwards, S.
Spurgeon, and many excellent works presented at TCCT Workshop on Cooperative
Control and Multi-Agent Systems under the leadership of Jie Chen, Beijing. As we
investigated different control performance specifications for multi-agent systems,
we further investigated the description and usage of two different versions of the
signum function—the usual standard version and a norm-normalized version, i.e. one
defined by the signum element and the other by the standard unit vector as illustrated
in Adaptive Neural Network Control of Robotic Manipulators by S. S. Ge, T. H.
Lee and C. J. Harris. We explored that this norm-normalized version had that special
property (essentially of ratio persistence) to assure, what we had termed at that initial
stage, “Simultaneous Arrival To Origin” (SATO) convergence (despite rather simple
underlying mathematical analysis, that is actually, time-synchronized convergence).
Motivated by this interesting property, we determined to seek a revisit of existing
outcomes in “Finite-Time Stability” and “Sliding Mode Control” to explore SATO
convergence in depth. In 2018, we had managed to successfully develop some early
promising results along this line, where time-synchronized controls were designed
to achieve time-synchronized convergence for simple first-order systems. In 2019,
we further developed this work andmanaged to synthesize methodologies improving
the outcomes, where more types of time-synchronized stability and more practical
control systems were considered. With the journal manuscripts submitted, review
comments came back which additionally benefited our work. It is indeed pleasant
on how all the pieces have now fallen nicely in place; here this book/monograph
is available to all who had expressed their great interest, and also to many others
who, we hope and trust, will appreciate the great potential of the concepts and results
here. We welcome interested excellent individuals to further push the boundary well
beyond.

Please enjoy reading!

Beijing, China
Singapore, Singapore
Singapore, Singapore

Dongyu Li
Shuzhi Sam Ge
Tong Heng Lee
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Chapter 1
Introduction

Abstract This chapter briefly recalls and re-collects the history of finite-time con-
trol, and the budding and genesis of key ideas and developments in the further notion
of time-synchronized control. Time-synchronized control is, in fact, a unique type
of finite-time control; which already meets all the requirements of finite-time sta-
bility, and additionally drives all the system state elements to the equilibrium at the
same time. The merit of this noteworthy and so-termed time-synchronized control
consists in not only the synchronized property on the convergence time, but also the
abilities to smooth the system output, shorten the state travel length, and reduce the
energy consumption. Finally in the chapter, the overall book organization is shown
in a summary of the content of the remaining chapters.

1.1 Finite-Time Control

With the developments of powerful sensors, actuators, control processors, and com-
puter hardware, sophisticated control algorithms outperform simple ones that have
sufficed in the past [9]. Finite-time control, as an important control systems method-
ology, had emerged and grown in interest in modern control systems design to cater
to the growing requirements in a wide range of progressive control tasks; to address
the high-precision and fast-response performance. As the notion implies, finite-time
stabilization offers a control system convergence in finite-time [21]; under which,
more specifically, the situation is such that before a certain time instant, all the state
elements are assured to reach the origin (or a bounded neighborhood of the origin).
Its wide applications include satellite stabilization [14, 54, 61], manipulator tracking
[18, 24, 58], multi-agent consensus [10, 29, 39, 52], state estimation [5, 16, 42, 44],
control of network systems [8, 29, 34, 55, 56, 62], control under practical constraints
[23, 25, 46, 47, 59], among others.

Dating back to the 1950s in the initial instances of its development, the early idea
of finite-time control likely first appeared in [28, 30, 31]. In the 1960s, the concept
of finite-time control is further polished in [13, 53]. Again in the 1960s, another
instance of optimal control design presented a similar concept of finite-time control
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in [17], which was called the Fuller effect therein.We here briefly introduce the main
essential elements in [17]. Consider thus a second-order system

ẍ = u(x, ẋ), (1.1)

where x, u ∈ R denote the system state and the control input under the constraints
|u| ≤ 1. Under the cost function J = ∫ ∞

0 x2dt , the optimal scheme is

u = − sign(s), (1.2)

s = x + cẋ |ẋ |, (1.3)

where a positive constant c is chosen such that the system output crosses the sur-
face s = 0 at a countably infinite number of points but located within a finite-time
interval. From analysis, the time intervals will decrease as a geometric progression,
contributing to a finite accumulation point called Zeno behavior: regarding a system
jumps an infinite number of times in a finite amount of time. This further infers
finite-time convergence since it has finite settling time (as also summarized in [50]).

To prove finite-time stability, one can find a Lyapunov function V (x) satisfying

V̇ (x) + cV (x)α ≤ 0, (1.4)

where constants c > 0, α ∈ [0, 1). Then, we have V (x) = 0 for ∀t ≥ T (x0), where
x0 is the initial system state, and the settling time is bounded by [6]

T (x0) ≤ V (x0)
1−α

c(1 − α)
. (1.5)

Another method to prove finite-time stability is given by first proving asymptotic
stability and verifying homogeneity of the closed-loop system [7].

Finite-time control drives the system state to the origin within a bounded settling
time subject to the initial state [21]. Fixed-time stability is then introduced, where
the solution of a system is globally finite-time stable and the bounded settling time
is regardless of any initial conditions [43]. To prove fixed-time stability, it requires a
Lyapunov function V (x) to satisfy a stronger condition,

V̇ (x) ≤ − (
αV p(x) + βV g(x)

)χ
, (1.6)

where positive constants α, β, p, g and χ satisfy pχ < 1 and gχ > 1. The corre-
sponding settling time T (x0) is bounded as

T (x0) ≤ 1

αχ(1 − pχ)
+ 1

βχ(gχ − 1)
. (1.7)

Different from finite-time control and other existing control techniques, the merit of
fixed-time control lies in the capability of forcing the system state to the equilibrium
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in fixed time. This decisive characteristic allows a system engineer to manipulate
the set-point value after a priori calculated settling time with disregard of initial
states [2].

Recently, predefined-time control is proposed based on time-varying high-gain
feedback, which likewise achieves global finite-time convergence with predefined
settling time that explicitly selected as a control parameter [40, 60]. For example,
given a first-order system ẋ = u ∈ R, the following controller is capable of realizing
predefined-time convergence,

u =
{ −k(ex−1)

ex(t f −t)
, if 0 ≤ t < t f ,

0, otherwise,
(1.8)

where k is a positive control gain, and t f is the predefined settling time. Basically,
we have u → ∞ as t → t f , which ensures convergence at t f (the detailed proof is
already provided in [40]).

1.2 Time-Synchronized Control

Before introducing time-synchronized control, we first briefly recall the history of
finite-time control for the single-input single-output (SISO) system and the multi-
input multi-output (MIMO) system.

For a SISO system, a simple relay controller is able to drive all the system state
to the origin in finite time, i.e., a relative degree one sliding mode [57]. However, the
extension of finite-time control from SISO systems to MIMO systems is non-trivial.
In the MIMO case, instead of the selection and combination of multiple individual
SISO sliding modes [51], elegant controllers are designed to drive all partial state
elements to the equilibrium simultaneously by treating the state vector as a whole,
the sliding mode control for multivariable uncertain systems [19, 20, 32], the unit
vector control for multivariable systems [15] (Sect. 3.6, The Unit Vector Approach),
the unit controller for MIMO affine systems in [49] (Sect. 3.5, Unit Control), the
integral sliding mode in [22], the stabilization control of mechanical systems in [45],
the quasi-continuous MIMO sliding mode in [33], to name a few.

In contrastwithfinite-timecontrol, the designoffixed-timecontrol andpredefined-
time control are more complicated due to the inherent complexity in their stability
analysis. For theSISOsystem (or theMIMOsystemdivided intomultiple scalar SISO
systems), fixed-time control and predefined-time control are explored and investi-
gated [1, 27, 40, 43, 60]. Similar to the evolution of finite-time control, some recent
approaches extend the fixed-time control to MIMO systems via super-twisting-like
algorithms [3, 4, 41].

Actually, the performance of practical control systems not only stands on when
the system state converges, but also depends largely on when and how each state
element converges. Despite the superior convergence property of finite-time control
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(including fixed-time and predefined-time control), for some applications, standalone
finite-time control is not sufficient, when a MIMO system is expected to reach all (or
some of) the target values of the state elements time-synchronously (at the same time).
It happens in practice when one requires a MIMO system (or a system with diversi-
fied/networked subsystems) to accomplish multiple time-synchronized actions. Con-
sidering a robotic hand, to stably grasp an object’s surface/contour, its finger joints
are to reach the target angles time-synchronously, otherwise the object may escape
or slip during the manipulation. By treating a multi-agent system as a whole, its
state elements are often required to reach desired locations time-synchronously in
cooperative attack, transport, and formation missions [26]. Especially in the field
of space offense and defense, it may be even catastrophic when some synchronous
criteria are not satisfied during practical applications.

Motivated by the above, the time-synchronized control problem is defined. Nat-
urally, time-synchronized control is usually designed for MIMO systems. It ensures
that all the system state elements converge to the equilibrium at the same time,
which has unique performance advantages including smoothing the system output
trajectory, alleviating the chattering phenomenon, reducing the energy consumption
and improving the convergence accuracy. In general, if we use a sliding mode to
guarantee theoretically exact compensation of matched disturbances, the chattering
phenomenon is impossible to be fully eliminated. However, this chattering could be
alleviated when time-synchronized control is applied with the usage of proper sign
functions. The concept of time-synchronized control was first put forward in public
by the authors of this book together, in a plenary speech at the 2019 International
Conference on Automatic Control (CACS 2019, Keelung, Taiwan), called “New
Theoretical Developments in Fundamental Signum Functions Applicable in Con-
trol Systems”, which reveals the time-synchronized control design of an extremely
simple first-order system.

In [36], several effective controllers are proposed for different types of systems
to achieve simultaneous-arrival-to-origin convergence introduced therein (which is,
in fact, time-synchronized convergence). This approach revisits the sign functions
well-applied in control design. It shows that when a norm-normalized sign function is
properly invoked in the sliding-mode control, simultaneous-arrival-to-origin conver-
gence can be expected. Next, to deeply articulate the time-synchronized convergence
property and to formulate the stability associated, time-synchronized stability and its
Lyapunov-like theorems are formally defined in [38]. Time-synchronized stability
is built on top of finite-time stability. As introduced previously, finite-time stability
requires all the system state elements to reach the equilibrium before a certain time
instant ignoring how each state element converges. In contrast, time-synchronized
stability requires all the system state elements (with non-zero initial values) to reach
the equilibrium at exactly the same time. Similar to the various types of finite-time
stability, special types of time-synchronized stability include: (1) fixed-synchronized
stabilitywhere the upper bound of the synchronized settling time is invariant with any
initial state; and (2) predefined-time-synchronized stability where the upper bound
of the synchronized settling time is selected as a control parameter in advance. In
summary, we have the following mapping:
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Finite−Time Stability ⇒ Time−Synchronized Stability

Fixed−Time Stability ⇒ Fixed−Fime−Synchronized Stability

Predefined−Time Stability ⇒ Predefined−Time−Synchronized Stability

Other Types of Finite−Time Stability ⇒ Other Types of Time−Synchronized Stability

Time-synchronized and fixed-time-synchronized control schemes are also pro-
posed in [38]. These control methods naturally reduce the energy consumption and
provide the shortest output trajectory due to the inherent properties of ratio per-
sistence. Ratio persistence is a critical component of the sufficient conditions of
time-synchronized stability. In general, the solution of a system is ratio persistent
if the ratio of the closed-loop state elements (non-zero) is time-invariant in forward
time. Straightforwardly, since the ratio is constant, the ratio persistent trajectory is
the shortest path between any initial state and the equilibrium, which is optimal in
terms of its travel length. For example, if the system state is ∈ R

2 or R3 Euclidean
space, the output trajectory is a straight line. In addition, ratio persistence likewise
reduces the energy consumption by aligning the direction of the control signal with
the direction of the error vector.

Despite the establishment of time-synchronized stability in [38], the time-
synchronized controllers therein are confined to the assumption that the system
model is ideally accurate and suffers from no external disturbances. This inevitably
degrades the time-synchronized performance in possible practical implementations.
In [37], under external disturbances and model uncertainties that can be lumped
into disturbances, robust time-synchronized controllers are proposed. Further, based
on time-synchronized stability, for a time-synchronized stable system, its analytical
solution is derived in [37], providing a quantitative way to explicitly preview and
predesign the time-synchronized performance of the closed-loop system.

The discussion in [37, 38] points out that many known control schemes in the
existing results (e.g. [15, 19, 22, 33, 45, 48, 49]) already meet or partially meet the
Lyapunov conditions of time-synchronized stability. Although many of their numer-
ical results may not directly reflect time-synchronized convergence, they have the
potential to achieve such a convergence property after some modifications following
the proposed theorems in [37, 38]. It evidently approves the feasibility and generality
of the presented conditions of time-synchronized stability, as they widely exist in the
state of the art literature although such convergence property and stability results are
not studied there.

Despite the time-synchronized convergence attained in [37, 38], they study only
one single MIMO system (under some practical considerations). In real-world appli-
cations, multi-agent missions depend greatly on how andwhen the networked system
states converge, e.g., for cooperative missile attacks [26], synthetic-aperture radar
satellite lineup [11], and spacecraft formation-flying (PROBA-3, EXO-S, SWIFT,
etc. [12]), the networked systems are usually required to reach a target or to achieve
a spacial configuration synchronously. An extension of time-synchronized control
from one single system to the multi-agent system is addressed in [35]. The concept
of time-synchronized consensus is formally defined and formulated, where all the
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elements of all the agent states achieve consensus at exactly the same time. It can be
extended to time-synchronized formation control problems by forming a consensus-
based spatial configuration synchronously.

1.3 Why Time-Synchronized Control

In this section, we use an extremely simple but representative time-synchronized
controller to explain the rationale rather than dig deeply into the mathematical anal-
ysis.

For a vector x = [x1, x2, . . . , xn]T ∈ R
n , we define the classical sign function

signc and the norm-normalized sign function signn

signc (x)
�= [

sgn (x1) , sgn (x2) , . . . , sgn (xn)
]T

, (1.9)

signn (x)
�=

{ x
‖x‖ , x 
= 0,
0, x = 0,

(1.10)

where for i = 1, 2, . . . , n,

sgn (xi )
�=

⎧
⎨

⎩

+1, xi > 0,
0, xi = 0,

−1, xi < 0,
(1.11)

For a single-integrator system ẋ = u in R
n , where x = [x1, x2, . . . , xn]T ∈ R

n ,
we propose a time-synchronized controller un = − signn(x). The analytical solution
of the closed-loop system is

x(t) = (‖x0‖ − t)
x0

‖x0‖ , t ≤ ‖x0‖ , (1.12)

and x(t) = 0, t > ‖x0‖.
In summary, the advantages of time-synchronized control are expected from the

following view.

i. Guarantee Time-Synchronized Convergence: Naturally and straightforwardly,
from (1.12), all the state elements xi converge to the origin time-synchronously
at t = ‖x0‖, which guarantees time-synchronized stability.

ii. Smooth and shorten the output trajectory: The state trajectory in (1.12) is a
straight line (at least in R

2 and R
3 Euclidean space), optimal concerning the

travel length. Note that for other time-synchronized controllers, it is not neces-
sary for them to also generate a straight-line trajectory, especiallywhen uncertain
and disturbed systems are considered. But in general, compared with other exist-
ing control laws, time-synchronized controllers smooth and shorten the system
output to a certain degree with a similar rationality as show in (1.12).
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Direction of
the state

Direction of
Direction of

Direction of 
wasted control input

The red arrow: the system state 

The blue arrow: the control input 
generated by the classical sign function

The green arrow: the control input 
generated by the NN sign function 

The black arrow: the control input 
wasted by the classical sign function 

Fig. 1.1 How energy is saved by the norm-normalized (NN) sign function

iii. Reduce the Energy Consumption: For a time-synchronized controller designed
by the norm-normalized sign function, its energy consumption is in general
less than other controllers designed by the classical sign function. The rational
could be found in Fig. 1.1. The control object is to drive the system state x ∈
R

2 in Fig. 1.1 to the origin. A classical sign function-based controller (e.g.,
uc = −signc (x)) will produce an input in the direction of the blue arrow; while
a norm-normalized sign function-based controller e.g., un = −signn (x)) will
produce an input in the direction of the green arrow. Clearly, the classical sign
function-based controller wastes a part of the energy by additionally producing
the control input in the direction of the black arrow (perpendicular to the negative
direction of the system state x), while the time-synchronized controller based
on the norm-normalized sign function does not.
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Chapter 2
Time-Synchronized Stability

Abstract In this chapter, time-synchronized stability is formally introduced as a
unique type of finite-time stability. Its special branches include fixed-time-
synchronized stability and predefined-time-synchronized stability, where stronger
requirements of the synchronized settling time are imposed. Relevant Lyapunov-
like theorems and respective sufficient conditions of these stability formulations
are likewise suitably proposed. Among these sufficient conditions, the concept of
ratio persistence is one of the key components. A system state is called to be ratio
persistent when the ratio of each pair of the state elements is a constant except at
the equilibrium. A similar but milder condition is called ratio restriction, requiring
only time-varying but bounded ratios, rather than constant ratios. Compared with
the classical sign function, we introduced a so-called norm-normalized sign func-
tion to facilitate ratio persistence (also ratio restriction) of a system state. Given a
state vector x with n dimension, the norm-normalized sign function incorporates
the normalization computation of the state x with its norm, while the classical sign
function provides only n individual decoupled scalars. Concerning these embedded
attributes, it is evidently possible to expect stringent time-synchronized performance
from a system design involving the norm-normalized sign function rather than the
classical one.

2.1 Properties of Sign Functions

In the literature, the classical sign function is often defined as

signc (xi )
�=

⎧
⎨

⎩

+1, xi > 0,
0, xi = 0,

−1, xi < 0,
(2.1)

where its vector form and exponential form are defined as

signc (x) = [
signc (x1) , . . . , signc (xn)

]T
, (2.2)

sigα
c (x) = [

signc (x1) |x1|α, . . . , signc (xn) |xn|α
]T

. (2.3)
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