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0

Introduction

Among Riemannian manifolds, the most interesting and most important for applica-
tions are the symmetric ones. From the local point of view, they were introduced
independently by P. A. Shirokov [Shi 25] and H. Levy [Le 25] as Riemannian mani-
folds with covariantly constant (also called parallel) curvature tensor fieldR, i.e., with

∇R = 0, (0.1)

where ∇ is the Levi-Civita connection [L-C 17]. An extensive theory of symmetric
Riemannian manifolds was worked out by É. Cartan in [Ca 26]. He showed that a
Riemannian manifold M has parallel R if and only if every point x has a normal
neirhbourhood such that all geodesic symmetries with respect to x are isometries.

If for each point x ∈ M there exists an involutive isometry sx of M for which x is
an isolated fixed point, then M is called a (globally) symmetric space. The closure of
the group of isometries generated by {sx : x ∈ M} in the compact-open topology is a
Lie group G that acts transitively on the symmetric space; hence the typical isotropy
subgroup H at a point of M is compact, and M = G/H .

The classical examples are connected complete Riemannian manifolds with con-
stant sectional curvature c, called space forms (see [Wo 72], Section 2.4).

Later, a similar development took place in the geometry of submanifolds in space
forms, where a fundamental role is played by the first (or metric) form g (as the
induced Riemannian metric) and the second fundamental form h. Besides the Levi-
Civita connection ∇, with ∇g = 0, a normal connection ∇⊥ is also defined. The
submanifolds with parallel fundamental form, i.e., with

∇̄h = 0, (0.2)

where ∇̄ is the pair of ∇ and ∇⊥, deserve special attention. Due to the Gauss identity,
each of them is intrinsically a locally symmetric Riemannian manifold.

The first result here was given by V. F. Kagan [Ka 48], who showed that in
Euclidean space E3, the surfaces with parallel h are open subsets of planes, round
spheres, and circular cylinders S1 × E1. All of these have nonnegative Gaussian

Ü. Lumiste, Semiparallel Submanifolds in Space Forms,
DOI 10.1007/978-0-387-49913-0_1, © Springer Science+Business Media, LLC 2009 



2 0 Introduction

curvature. The surfaces of negative constant Gaussian curvature in E3 are there-
fore examples of submanifolds which are intrinsically locally symmetric, but have
nonparallel h.

The hypersurfaces with parallel h in En were determined by U. Simon and
A. Weinstein [SW 69]. Some new examples of surfaces with parallel h in E4 were
given by C.-S. Houh [Ho 72]: the Clifford tori S1×S1 and the Veronese surfaces. The
general theory of submanifolds Mm with parallel h in En was initiated by J. Vilms
[Vi 72], who showed, in particular, that each of them has totally geodesic Gauss
image. Normally flat submanifolds with parallel h in Euclidean spaces and spheres
were classified by R. Walden [Wa 73].

A properly developed theory was worked out by D. Ferus [Fe 74, 80]. He proved
that a submanifold Mm with parallel h in En has the property of local extrinsic sym-
metry, in the sense that every point has a neighborhood invariant under reflection of
En with respect to the normal subspace at this point; also conversely, an Mm with
this property has parallel h. This was proved in general, for Mm in a Riemannian
manifold Nn, by W. Strübing [St 79]. Therefore, the submanifolds with parallel h,
especially the complete ones, were called symmetric submanifolds by Ferus (and then
by others); here extrinsically was meant, but often not explicitly stated. The other
important result of Ferus was that a general symmetric submanifold in En reduces
to a product of irreducible symmetric submanifolds, each of which (except possi-
bly a Euclidean subspace) lies in a sphere, is minimal in it, and can be obtained as
the standard immersion of a Riemannian symmetric R-space. Conversely, each such
standard immersion gives a symmetric submanifold; and the products of these immer-
sions (possibly including a Euclidean subspace) exhaust all symmetric submanifolds
in En. These results gave a classification of such submanifolds in terms of special
chapters of the theory of Lie groups and symmetric spaces. All of these submanifolds
can be considered as symmetric orbits.

This classification was then extended to submanifolds with parallel h in space
forms by M. Takeuchi [Ta 81], who found it more suitable here to use the term
parallel submanifolds. This term has become more popular, especially when the
local point of view has been considered.

The theory of parallel submanifolds is concisely treated in recent monographic
works by B.-Y. Chen [Ch 2000] (Chapter 8), Ü. Lumiste [Lu 2000] (Sections 5–7),
and by J. Berndt, S. Console, and C. Olmos [BCO 2003] (Section 3.7: “Symmetric
submanifolds’’).

Already in the first investigations of symmetric Riemannian manifolds [Shi 25]
and [Ca 26], it was noted that these manifolds must also satisfy the integrability
condition

R(X, Y ) · R = 0 (0.3)

of the differential system ∇R = 0. (Here X and Y are tangent vector fields, and
R(X, Y ) is considered as a field of linear operators, acting on R.) Riemannian man-
ifolds with this point-wise condition were considered separately by É. Cartan in [Ca
46]. His investigations were continued by A. Lichnerowicz [Li 52, 58] and R. Couty
[Co 57]. The term semisymmetric for Riemannian manifolds M satisfying this con-
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dition was introduced by N. S. Sinyukov [Si 56, 62], who showed the importance
of this condition in the theory of geodesic mappings of Riemannian manifolds (see
[Si 79], Chapter 2, Section 3).

Afruitful impulse for investigations of manifolds of this class was given by K. No-
mizu in [No 68], who conjectured that all complete irreducible n-dimensional Rie-
mannian manifolds (n ≥ 3) satisfying R(X, Y ) · R = 0 are locally symmetric, i.e.,
that they must also satisfy ∇R = 0. This conjecture was supported by the result that
for a Riemannian manifold, ∇kR = 0 with k > 1 implies ∇R = 0, proved for the
compact case in [Li 58], and for the complete case in [NO 62]; and this is also valid
in general (cf. [KN 63], Vol. 1, Remark 7). However, Nomizu’s conjecture was even-
tually refuted. Namely, in [Ta 72] a hypersurface in E4 was constructed satisfying
R(X, Y ) · R = 0 but not ∇R = 0. A counterexample of arbitrary dimension was
given in [Sek 72].

Semisymmetric Riemannian manifolds were classified by Z. I. Szabó, locally, in
[Sza 82]. He showed that for every semisymmetric Riemannian manifold M , there
exists an everywhere dense open subset U of M , such that around every point of U ,
the manifold is locally isometric to a space that is the direct product of an open subset
of a Euclidean space and of infinitesimally irreducible simple semisymmetric leaves,
each of which is either (i) locally symmetric, or (ii) locally isometric to an elliptic,
a hyperbolic, a Euclidean, or a Kählerian cone, or (iii) locally isometric to a space
foliated by Euclidean leaves of codimension 2 (or to a two-dimensional manifold, in
the case dimM = 2).

These classification results of Szabó were presented briefly in the book [BKV 96],
whose main purpose was to summarize recent results on semisymmetric Riemannian
manifolds of subclass (iii); these are now called Riemannian manifolds of conullity
two, and may be considered the most interesting among semisymmetric Riemannian
manifolds.

Parallel submanifolds were likewise later placed in a more general class of sub-
manifolds, generalizing the parallel ones in the same sense as locally symmetric
Riemannian manifolds (i.e., with ∇R = 0) were generalized by semisymmetric Rie-
mannian manifolds (i.e., with R(X.Y ) · R = 0). Namely, the integrability condition
of the differential system ∇̄h = 0 is

R̄(X, Y ) · h = 0, (0.4)

where R̄ is the curvature operator of the connection ∇̄ = ∇⊕∇⊥, andX, Y are tangent
vector fields, as above. This condition in fact already came up in [Fe 74a] and then in
[BR 83]. The general concept of submanifolds in En satisfying (0.4) was introduced
by J. Deprez [De 85], who called them semiparallel. He proved that all of them
are, intrinsically, semisymmetric Riemannian manifolds and gave a classification of
semiparallel surfaces inEn. In [De 86], he also classified semiparallel hypersurfaces,
and in [De 89], summarized these first results.

The investigation of semiparallel submanifolds was continued by the author in
[Lu 87a, 88a, b, 89a–c, 90a–e], etc., then by F. Dillen in [Di 90b, 91b], [DN 93],
and A. C. Asperti in [As 93], [AM 94]. The first summaries were published in [Lu
91f] and then in the monographic article [Lu 2000a] (whose review in Mathematical
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Reviews (see [MR 2000j: 53071]) is concluded by A. Bucki as follows: “The author’s
contribution to the theory of submanifolds with parallel fundamental form with his
more than forty papers on the subject is colossal’’). Currently the monograph [Lu
2000a] is no longer completely up to date; several new results have been added to the
theory since then.

The present book will give a more complete survey of the theory of semiparallel
submanifolds and of some generalizations in space forms. Semiparallel submanifolds
are treated here mainly as second-order envelopes of symmetric orbits.

The book consists of twelve chapters. The first three chapters are preparatory in
character. In Chapter 1, the necessary background for subsequent chapters is given
using frame bundles (i.e., the Cartan moving frame method) and exterior differential
calculus, together with vector and tensor bundles. Basic facts from the theories of
space forms and of symmetric and semisymmetric Riemannian manifolds are covered.

In Chapter 2, the general theory of smooth submanifolds in space forms is devel-
oped. The second fundamental form h is introduced, together with its higher-order
generalizations, their fundamental identities, and the corresponding normal and os-
culating subspaces are covered. This is done by using orthonormal frames suitably
adapted to the submanifold.

In Chapter 3, the theory of parallel submanifolds is developed. Here the specifics
of their Gauss maps, their local extrinsic symmetry, Ferus’s decomposition theorem
and its connection with symmetric R-spaces are presented. The most important
examples of complete parallel submanifolds are also given: Segre, Plücker, and
Veronese submanifolds.

All of this is in preparation for the main subject, which is the investigation of
semiparallel submanifolds. These are introduced in Chapter 4, where some char-
acterizations for their class and several subclasses are given. It is emphasized that
(0.4) is a pointwise condition and therefore can be treated purely algebraically. The
decomposition theorem for semiparallel submanifolds is also dealt with in the same
manner. The analytic fact, that these submanifolds are characterized by the integrabil-
ity condition of the differential system (0.2) for parallel submanifolds, is interpreted
geometrically in the theorem from [Lu 90a], stating that every semiparallel subman-
ifold is a second-order envelope of parallel submanifolds; such envelopes are found
for Segre submanifolds, as examples (extending the result of [Lu 91a]).

Chapter 5 is devoted to normally flat semiparallel submanifolds. This class in-
cludes all semiparallel submanifolds of principal codimension 1, in particular hy-
persurfaces, and also semiparallel submanifolds of principal codimension 2 in space
forms of nonpositive curvature. Ageneral geometric description is given for normally
flat semiparallel submanifolds as immersed warped products of spheres.

Semiparallel submanifolds of low dimensions are considered in Chapters 6 (sur-
faces) and 7 (three-dimensional submanifolds). They are all classified; the sub-
manifolds of the most general class are described as second-order envelopes of
Veronese submanifolds. It is shown that each two-dimensional holomorphic Rie-
mannian manifold can be immersed isometrically into (pseudo-)Euclidean space of
dimension ≥ 7, as a surface of this most general class of semiparallel surfaces; but this
does not generalize to three dimensions. Some general classes of semiparallel three-
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dimensional submanifolds are investigated, consisting of second-order envelopes of
three-dimensional Segre submanifolds (logarithmic spiral tubes) and of products of
Veronese surfaces and plane curves of constant curvature.

In Chapter 8, the decomposition theorems are given: for general parallel and semi-
parallel submanifolds, for normally flat 2-parallel submanifolds, and for submanifolds
with flat van der Waerden–Bortolotti connection. Here the concept of main symmetric
orbit is introduced; this is a standardly imbedded symmetric R-space and is minimal
in some sphere. The most general semisymmetric submanifold in Euclidean space is
locally the second-order envelope of products of main symmetric orbits, some circles
and a plane. This is a consequence of the result of [Lu 90a] and of Ferus’s famous
results [Fe 80].

In Chapter 9, the concept of umbilic-like main symmetric orbit is introduced
and studied. A main symmetric orbit is said to be umbilic-like if every second-
order envelope of submanifolds congruent or similar to this orbit is a single such
orbit; a sphere is an elementary example. Here all known results about umbilic-
like main symmetric orbits are presented; the Segre orbits were already investigated
from this point of view in Section 4.6 (see Theorem 4.6.1). For the second-order
envelope of the family of these main orbits, a differential system is formulated, and
then investigated by Cartan’s method of differential prolongation. This investigation
for Plücker orbits, showing their umbilic-likeness, is carried out in detail. For the
other symmetric orbits of the Plücker action, the unitary orbits, this investigation is
technically very complicated; only the general scheme is given here and illustrated
completely for a model case. For them-dimensional Veronese orbit, it is shown that in

Euclidean space E
1
2m(m+3)+1, this orbit is not umbilic-like. For the other symmetric

orbit of the Veronese action, the Veronese–Grassmann orbit, its umbilic-likeness is
asserted, but space and technical complications preclude giving all the details. The
general scheme of proof is given, some essential intermediate results are obtained,
and the complete proof is illustrated for a model case.

In Chapter 10, it is proved first that a product of umbilic-like main symmetric orbits
in Euclidean space is also umbilic-like. This result gives the possibility of extending
the description of normally flat semiparallel submanifolds as warped products of
spheres to general semiparallel submanifolds, i.e., considering them also as warped
products.

Chapter 11 is devoted to semiparallel immersions of semisymmetric Riemannian
manifolds, and seeks answers to the problem: can such a manifold be immersed
isometrically as a semiparallel submanifold? The answer is positive for dimension
m = 2, as already shown in Chapter 6. The problem is investigated for dimensions
m > 2. First, it is proved that if an m-dimensional semiparallel submanifold in En is
generated by (m− 2)-dimensional planes, then it is intrinsically a Riemannian mani-
fold of conullity two of the planar type; the other types (i.e., hyperbolic, parabolic, or
elliptic type) are not possible. Also, for normally flat semiparallel submanifolds Mm

in En, it is shown that if such a submanifold is intrinsically of conullity two, then it is
of planar type. The same holds for all semiparallel three-dimensional submanifolds.
Therefore, it can be conjectured that perhaps this assertion is true in general. The
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chapter concludes with a theorem that makes this conjecture very plausible. At least, it
is certain that there exist semisymmetric Riemannian manifolds, namely of conullity
two, that cannot be immersed into Euclidean space as semiparallel submanifolds.

In Chapter 12, some generalizations are considered. First, the k-semiparallel sub-
manifolds for k > 1 are introduced and studied. Their relation to envelopes of order
k of some family of k-parallel submanifolds is investigated. It is proved that there
exist 2-semiparallel submanifolds that are nontrivial, i.e., not parallel and not locally
Euclidean; namely, every normally flat semiparallel submanifold (see Chapter 5)
turns out to be 2-semiparallel. However, the study of k-semiparallel (in particular
2-semiparallel) submanifolds is still in its initial phase; a complete classification is
given only for 2-semiparallel surfaces in space forms (see Section 12.3).

Two other generalizations, namely, the recurrent and the (recently introduced)
pseudoparallel submanifolds are discussed briefly in Section 12.4.

Some generalizations have been made by extending the semiparallel condition
from the second fundamental formh to some tensor fields (including mixed fields) that
are derived from h and the metric form g by some tensor calculus operations. Results
of V. Mirzoyan are presented, where the idea of enveloping by corresponding parallel
submanifolds is used. These results are illustrated with examples involving surfaces
with parallel or semiparallel mean curvature vector field, or normal curvature tensor
field, or Ricci tensor field, etc. Hypersurfaces with semiparallel Ricci tensor field are
studied in particular, mainly in connection with the famous Ryan’s problem: do there
exist any hypersurfaces Mm in Em+1 with semiparallel Ricci tensor field, that are
not intrinsically semisymmetric Riemannian manifolds? It is shown that Mirzoyan’s
classification result in [Mi 99] covers all known results about this problem, including
an affirmative answer for dimension m ≥ 5 (see [Lu 2002b]). Some special results
about the extended Ryan’s problem for normally flat submanifolds are also given.
The book concludes with a proof that, among the submanifolds of codimension 2 in
En, there exist normally flat submanifolds that are intrinsically semisymmetric but
not semiparallel. This gives additional support to the conjecture stated above (cf.
Chapter 11).

The author is grateful to the Estonian Science Foundation for support during the
research work; results are summarized in this book. He also expresses his sincere
gratitude to Jaak Vilms for valuable help with editing the text of the book and to
grandson Imre for technical assistance.

July 2007 Ülo Lumiste
University of Tartu, Estonia
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Preliminaries

1.1 Real Spaces with Bilinear Metric

Let A be a point set and G a group with identity element e. A map A × G → A,
(x, g) �→ x ◦ g with x ◦ e = x, (x ◦ g1) ◦ g2 = x ◦ (g1g2) defines a (right) action
of the group G on A, also called a (right) G-action on A. One also says that G acts
on A as a transformation group. The action is effective if e ∈ G is the only element
of G with the property: x ◦ g = x for arbitrary x ∈ A; transitive, if for every two
x1, x2 ∈ A there exists an element g ∈ G, so that x2 = x1 ◦ g; simply transitive, if
this g is unique for every (x1, x2) ∈ A × A.

The set Hx = {h ∈ G | x ◦ h = x} is a subgroup of G, called the isotropy
subgroup of x ∈ A. Obviously Hx◦g = g−1Hxg.

The set Gx = {y ∈ A | ∃g, y = x ◦ g} is called the orbit of x under the G-action
on A. The orbits are equivalence classes: x1 ∼ x2 ⇔ ∃g ∈ G, x2 = x1 ◦ g. They
form the factor set of this equivalence, called the orbit set. AG-action on A induces
a transitive G-action on every orbit. Obviously, transitivity of the G-action means
that there is only one orbit.

Let G be the additive group of vectors of an n-dimensional real vector space V n

and let there be given an effective transitive and simply transitive action of this G on
A. This means that

1. if x ∈ A, v ∈ V n, there exists y = x ◦ v ∈ An (one also denotes this by v = xy),
2. (x ◦ v) ◦ w = x ◦ (v + w) = x ◦ (w + v) = (x ◦ w) ◦ v (i.e., if xy = wz, then

xw = yz),
3. for x, y ∈ A there exists a unique v ∈ V n so that v = xy.

Then A is called a real n-dimensional affine space, denoted by An, and V n is said to
be the vector space of An.

Let T be an m-dimensional vector subspace of V n. The above action of V n on
An induces an action of T on An. Every orbit of the latter action is called an m-
dimensional affine subspace of An, or briefly, an m-plane in An. Intrinsically it is
an m-dimensional affine space, and T is called the direction vector subspace of this
m-plane.

Ü. Lumiste, Semiparallel Submanifolds in Space Forms,
DOI 10.1007/978-0-387-49913-0_2, © Springer Science+Business Media, LLC 2009 
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Let V n ×V n → R, (v1, v2) �→ 〈v1, v2〉 be a nondegenerate bilinear form, called
a bilinear metric or, equivalently, a scalar product. Two vectors v1 and v2 are said
to be orthogonal, if 〈v1, v2〉 = 0. This is denoted by v1⊥v2.

If T is an m-dimensional vector subspace of V n and the scalar product induces
a nondegenerate bilinear form on it, then T is called a regular subspace, otherwise
a singular subspace. For a regular subspace T the set T ⊥ = {v | v⊥w for every
w ∈ T } is also a regular subspace, called the orthogonal complement of T ; here
V n = T ⊕ T ⊥, thus T ⊥ is (n − m)-dimensional.

A real n-dimensional affine space An whose vector space V n is equipped with a
scalar product as above is called a space with bilinear metric. If the scalar product
is symmetric, i.e., 〈v1, v2〉 = 〈v2, v1〉 for arbitrary (v1, v2) ∈ V n × V n, the space is
called (pseudo-)Euclidean space sE

n; here s is the number of negative coefficients
in the canonical representation of the quadratic form 〈v, v〉. In particular, if this
form is positive definite, then the space is Euclidean space En(= 0E

n), otherwise
pseudo-Euclidean space sE

n, s > 0 (as is seen, in the latter case without the round
brackets around “pseudo-’’).1 In particular, 1E

n is Lorentz space, for n = 4 also
called Minkowski space, the spacetime of the special relativity theory.

An m-plane in sE
n is said to be regular if its direction vector subspace is regular,

otherwise it is said to be singular, in particular isotropic, if the scalar product vanishes
identically.

In pseudo-Euclidean space sE
n a regular m-plane can be Euclidean or pseudo-

Euclidean. In relativity theory, especially the case s = 1, such m-planes are also
called, correspondingly, spacelike or timelike, and a singular m-plane is called light-
like.

In general, if the bilinear form is not nondegenerate but is symmetric, then An

is called a semi-Euclidean space; for instance, every singular m-plane in pseudo-
Euclidean space sE

n is an example of such a semi-Euclidean space.

1.2 Moving Frames

Let An be a real affine space with vector space V n. Let ε0 = (e0
1, . . . , e

0
n) be a basis

of V n and o a point of An. The pair (o, ε0) is called a frame of An with origin o

and basis vectors e0
I , I ∈ {1, . . . , n}. Every basis ε0 determines an isomorphism

V n → R
n, v �→ (v1, . . . , vn) with v = vI e0

I . (Henceforth the Einstein summation
convention is used, that is, the right-hand side actually means that

∑n
I=1 v

I e0
I =

v1e0
1 + · · · + vne0

n.) Every frame determines a homeomorphism An → R
n, x �→

(x1, . . . , xn) with ox = xI e0
I .

Considering the set of all frames (x, ε) of An one defines a (right) action of the
general linear group GL(n,R) (i.e., the multiplicative group of all real nonsingular
n×n-matrices A = (AJ

I )) on this set by (x, ε) ◦A = (x, εA); here εA is the product

1 Note that some authors use slightly different terminology, e.g., in [Ra 53] (pseudo-)Euclid-
ean spaces are called Euclidean, Euclidean spaces are called properly Euclidean; in [KN 63,
69] pseudo-Euclidean spaces are called indefinite Euclidean.
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of 1 × n- and n × n- matrices ε and A, i.e., (εA)I = eJA
J
I . This introduces on this

set a principal bundle structure with base An and structural group GL(n,R) (see [KN
63], Chapter I, Section 5). Every fibre (i.e., orbit of the action) is the set of all frames
having the same origin x. This principal bundle is called the frame bundle of An and
realizes the idea of a moving frame of É. Cartan (an arbitrary element of this bundle
is considered here as a moving frame in An; see [IL 2003]).

With respect to a fixed frame ε0, every moving frame ε in An is determined by
the coordinates xI of its origin x, according to ox = xI e0

I , and by the elements XJ
I

of the matrix in eI = e0
JX

J
I , where I, J, · · · ∈ {1, . . . , n}.

Note that the differential d( ox) does not depend on the choice of the origin o,
because ́ox and ox differ only by the constant vector oó. Therefore, d( ox) can be
denoted simply by dx. Also, the point x ∈ An can be identified with its radius vector
ox from the fixed origin o.

One can calculate
dx = eIω

I , deI = eJω
J
I , (1.2.1)

where

ωI = (X−1)IJ dx
J , ωJ

I = (X−1)KI dX
J
K, (X−1)KJ X

J
I = δKI . (1.2.2)

The formulas (1.2.1) are called the infinitesimal displacement equations of the moving
frame. The differential 1-forms (1.2.2), called the infinitesimal displacement 1-forms,
satisfy the equations

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K, (1.2.3)

which are obtained by exterior differentation from (1.2.1) (see [Ste 64], Chapter III,
Section 1; [IL 2003], Section B.2) and thus are necessary and sufficient conditions for
the complete integrability of (1.2.1). Here (1.2.3) are called the structure equations
of An.

In a real space with bilinear metric one can introduce for every frame the matrix
g = (gIJ ), where gIJ = 〈eI , eJ 〉. By differentiation, one obtains the relation

dgIJ = gKJω
K
I + gIKω

K
J . (1.2.4)

If the space is sE
n, the frame bundle can be reduced to the principal bundle of

orthonormal frames, characterized by gIJ = εI δIJ , where εI is −1 for s values of
I and 1 for the remaining n − s values of I , and δIJ is the Kronecker delta. The
structural group of the above bundle is the pseudo-orthogonal group sO(n,R); in the
cases s = 0, s = 1, and s = n−1, respectively, this is the orthogonal group O(n,R),
and the Lorentz groups 1O(n,R) and n−1O(n,R) (the last two are isomorphic; see
[Wo 72], Section 2.4).

For the bundle of orthonormal frames, the relation (1.2.4) reduces to

εJω
J
I + εIω

I
J = 0 (no sum!). (1.2.5)

In the case of En, i.e., when s = 0, the matrix ωJ
I is skew-symmetric and gives

an arbitrary element of the Lie algebra of the orthogonal group O(n,R). For 1E
n,

when s = 1, one obtains the same for the Lorentz group 1O(n,R).
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1.3 (Pseudo-)Riemannian Manifolds

The (pseudo-)Euclidean space sE
n is a special case of the more general concept of

a (pseudo-)Riemannian manifold sN
n. This is a real n-dimensional differentiable

manifold with a smooth field g of symmetric scalar products in the tangent vector
spaces. Here the constant natural number s has the same meaning as in sE

n. For a
local section

(x, ε) = (x; e1, . . . , en)

of the frame bundle on sN
n and two tangent vector fields, X = eIX

I and Y =
eJ Y

J , one has 〈X, Y 〉 = gIJX
IY J , where gIJ = 〈eI , eJ 〉 are the components

of the metric tensor field on sN
n, denoted also by g. In the particular case when

〈X,X〉 is positive definite, the (pseudo-)Riemannian manifold Nn(= 0N
n) is called

a Riemannian manifold, otherwise, a pseudo-Riemannian manifold (cf. footnote 1).
A linear connection ∇ on a (pseudo-)Riemannian manifold (see, e.g., [KN 63],

Chapter III), which has the property that g is covariantly constant with respect to ∇,
i.e., ∇g = 0, is called a (pseudo-)Riemannian (in particular Riemannian, or pseudo-
Riemannian) connection. Componentwise, the last condition is

∇gIJ ≡ dgIJ − gKJω
K
I − gIKω

K
J = 0, (1.3.1)

where ω = (ωJ
I ) is the matrix field of connection 1-forms of ∇. It is well known that

every (pseudo-)Riemannian manifold has a unique (pseudo-)Riemannian connection
∇ without torsion, called the Levi-Civita connection.2

The elements {ωI } of the coframe bundle on sN
n and the connection 1-forms ωJ

I

of the Levi-Civita connection satisfy the structure equations

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K + �J
I , (1.3.2)

where
�J
I = −RJ

I,KLω
K ∧ ωL (1.3.3)

are the curvature 2-forms of the Levi-Civita connection ∇. Here the coefficients
RJ
I,KL are the components of the curvature tensor field R of ∇. By exterior differen-

tiation of (1.3.1), one obtains via (1.3.2) the equality

�IJ + �JI = 0, (1.3.4)

where �IJ = gIP�
P
J = −RIJ,KLω

K ∧ ωL and so RIJ,KL = gIPR
P
J,KL. Then

exterior differentiation of (1.3.2) yields the relations

ωJ ∧ �I
J = 0, d�J

I = �J
K ∧ ωK

I − ωJ
K ∧ �K

I , (1.3.5)

2 In some recent books, e.g., [Pe 98], historical terminology is disregarded and the Levi-
Civita connection is called simply the (pseudo-)Riemannian connection. Sometimes these
two terms are considered as equivalent, and then the (pseudo-)Riemannian connection as
defined above is called the metric connection (see, e.g., [KN 63], Chapter IV; also [Li 55],
Section 52; [He 62], Chapter I, Section 9).
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which are equivalent to the identities

RI
J,KL + RI

K,LJ + RI
L,JK = 0, ∇PR

I
J,KL + ∇KR

I
J,LP + ∇LR

I
J,PK = 0 (1.3.6)

(the Bianchi identities), where (∇PR
I
J,KL)ω

P = ∇RI
J,KL and

∇RI
J,KL = dRI

J,KL − RI
P,KLω

P
J − RI

J,PLω
P
K − RI

J,KPω
P
L + RP

J,KLω
I
P . (1.3.7)

The first identities (1.3.6) and the consequences RIJ,KL + RJI,KL = 0 from
(1.3.4) imply

RIJ,KL = RKL,IJ . (1.3.8)

A(pseudo-)Riemannian manifold sN
n of dimension n > 2 is said to be a manifold

of constant curvature if its curvature forms can be represented as�J
I = cgIKω

J ∧ωK .
Then from (1.3.5) it follows that dc∧ωJ ∧ωK = 0, and since dc = cIω

I this gives
cIω

I ∧ ωJ ∧ ωK = 0. Due to the supposition n > 2, for every value of I there
exist values of J and K such that ωI ∧ ωJ ∧ ωK �= 0. Therefore, cI = 0, and thus
c = const. This constant c is called the curvature of such a sN

n (cf. [Wo 72], 2.2.7).
The structure equations for a Riemannian manifold of constant curvature c are,

due to (1.3.2),

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K + cgIKω
J ∧ ωK. (1.3.9)

1.4 Standard Models of Space and Spacetime Forms

The space sE
n is the simplest n-dimensional (pseudo-)Riemannian manifold of zero

curvature.
A connected complete Riemannian manifold of constant curvature c is called a

space form (see [Wo 72], Section 2.4). Their standard models, denoted by Nn(c), are
as follows:

• for c = 0, the Euclidean space En,
• for c > 0,

Sn(c) = {x ∈ En+1 | 〈 ox, ox〉 = r2},
which is the sphere with a real radius r = 1/

√
c and with center at the origin o,

• for c < 0, a connected component of

Hn(c) = {x ∈ 1E
n+1 | 〈 ox, ox〉 = −r2},

which is the sphere in Lorentz space 1E
n+1 with imaginary radius r = i/

√|c|
and with center at the origin o.

Note that Hn(c) consists of two connected components, each of which is a hy-
perbolic (or Lobachevsky–Bolyai) space.
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The Minkowski space 1E
4 (the special case of Lorentz space for n + 1 = 4),

which is the spacetime of the special relativity theory, is a simple case of pseudo-
Riemannian space sN

n of constant curvature c, namely, the case of s = 1, n = 4,
c = 0.

In general a connected complete pseudo-Riemannian space sN
n of constant cur-

vature c is called a spacetime form and is denoted by sN
n(c). The standard models

are sE
n and the connected components of sSn(c) and sH

n(c), where the latter two are
defined similarly to Sn(c) and Hn(c), with En+1 and 1E

n+1 replaced, respectively,
with sE

n+1 and s+1E
n+1 (see [Wo 72], Section 2.4).

Here the special cases are de Sitter spacetime sS
n(c) and anti-de Sitter spacetime

sH
n(c), which for n = 4 and s = 1 (resp. s = 2) are the simplest nonflat spacetime

models for general relativity theory (see [HE 73], [PR 86]).
The moving frame bundle of σE

n+1, where σ is s or s + 1, can be adapted to a
standard (pseudo-)Riemannian model sNn(c) as follows.

For every frame it is supposed that

(1) x ∈ sN
n(c), i.e., 〈 ox, ox〉 = c−1 = const,

(2) en+1 ‖ ox, i.e., en+1 = −√|c| ox and therefore gn+1,n+1 = 〈en+1, en+1〉 =
|c|c−1 = sign c,

(3) e1, . . . , en are orthogonal to en+1, therefore tangent to sN(c), so that gI,n+1 = 0
(I = 1, . . . , n).

Differentiation of the equality in (1) gives 〈dx, en+1〉 = 0; henceωn+1 = 0. Similarly
from the equalities in (2) and (3) one obtains

ωn+1
n+1 = 0, ωI

n+1 = −√|c|ωI , ωn+1
I = sign c

√|c|gIKωK, (1.4.1)

where I, J, . . . are in {1, . . . , n} and the last relation holds due to (1.2.4) and the
equality in (3).

For such a frame bundle adapted to sN
n(c), the relations (1.2.1) and (1.2.3) imply

(writing them for dimension n + 1 and using (1.4.1)) that

dx = eIω
I , deI = eJω

J
I − xcgIKω

K, (1.4.2)

dωI = ωJ ∧ ωI
J , dωJ

I = ωK
I ∧ ωJ

K + cgIKω
J ∧ ωK, (1.4.3)

where now I, J, · · · ∈ {1, . . . , n} and (1.2.4) hold. Recall that the radius vector ox
from the center o of the sphere sS

n(c) (resp. sHn(c)) is being denoted here simply
by x, and so 〈dx, dx〉 = gIJω

IωJ .
For the (pseudo-)Euclidean space sE

n ⊂ sE
n+1 one must take en+1 = const.

This leads to the particular case of the formulas (1.4.2) and (1.4.3), obtained by c = 0
(and thus to (1.2.1) and (1.2.3)). So the formulas above are universal for all standard
models of space and spacetime forms.

Remark 1.4.1. The standard models of spacetime forms sN
n(c) can also be treated

by means of projective geometry as follows.
Every such model lies in σE

n+1 with fixed origin at the center of the model
sN

n(c); here σ = s or s + 1. There is a one-to-one correspondence between R
n+1



1.5 Symmetric (Pseudo-)Riemannian Manifolds 13

and σE
n+1. The projectivization of R

n+1 gives the real projective space Pn(R) and
then the asymptotic cone of sN

n(c) gives the absolute quadric sQ
n−1 ⊂ Pn(R),

which determines the projective metric of curvature c. Two vectors of σE
n+1 are

orthogonal iff the corresponding points of Pn(R) are polar with respect to sQ
n−1.

The q-dimensional totally geodesic submanifolds of sNn(c) (the q-dimensional great
spheres) can then be interpreted as projective q-planes of Pn(R). This simplifies the
understanding of the geometry of sN

n(c) and will be used often below. Note that a
projective q-plane is the intersection of the model sphere sN

n(c)with a (q+1)-plane
through the origin in σE

n+1.

1.5 Symmetric (Pseudo-)Riemannian Manifolds

A vector field X = eIX
Ion a (pseudo-)Riemannian manifold sN

n is said to be
parallel along a curve in sN

n, if ∇X = 0 on this curve, where ∇X = eI (∇XI ) and
∇XI = dXI + XJωI

J . A curve in sN
n is a geodesic if its tangent vector field is

parallel along the curve. It is well known that a geodesic with nonzero arclength s,
defined by ds2 = gIJω

IωJ , is locally a curve of stationary length between any two
of its points.

A (pseudo-)Riemannian manifold sN
n is said to have parallel curvature tensor

fieldR if ∇R = 0 on sN
n, or more explicitly, if ∇RI

J,KL = 0 (i.e., if (0.1) is satisfied),
where the left side is defined by (1.3.7).

Let Ux0 be a normal neighborhood of a point x0 ∈s N
n, i.e., every point x ∈ Ux0

is connected to x0 by only one geodesic of sNn which lies in Ux0 . Suppose this curve
to be nonisotropic (i.e., with nonzero arclength) and take on it the point x′, which is
at the same real or imaginary distance from x0 as x, but on the other side, one gets the
geodesic symmetry map with respect to x0. A pseudo-Riemannian manifold sN

n is
locally symmetric if each of its points x0 has a normal neighborhood whose geodesic
symmetry map with respect to x0 is an isometry.

É. Cartan proved the following relationship between these properties (also in the
more general case of affinely connected manifolds).

Theorem 1.5.1 ([Ca 26] and [He 62], Chapter IV, Section 1). A (pseudo-)Riemann-
ian manifold sN

n is locally symmetric if and only if its curvature tensor field R is
parallel on sN

n.

A Riemannian manifold Nn is said to be globally symmetric if every point x0 is
an isolated fixed point of an involutive isometry sx0 ofNn; here involutive means that
s2
x0

= Id. It follows that x0 has a normal neighborhood on which sx0 is a geodesic sym-
metry map (see [He 62], Chapter IV, Section 3). Thus a globally symmetricNn is also
locally symmetric, and vice versa, every complete simply connected locally symmet-
ric Riemannian manifold is globally symmetric (see [He 62], Chapter IV, Section 5).
More generally, for every point x0 of a locally symmetric Riemannian manifold Nn

there exist a globally symmetric Riemannian manifold Ñn, an open neighborhood
Ux0 of x0 in Nn, and an isometry ϕ mapping Ux0 onto an open neighborhood of the
point ϕ(x0) in Ñn.
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The manifold Ñn is diffeomorphic to the homogeneous space G/K , where G is
the identity component of the Lie group of isometries of Ñn and K is the compact
subgroup of isometries with fixed point x0; the diffeomorphism G/K → Ñn is given
by gK �→ g ◦ x0, g ∈ G (see [He 62], Chapter IV, Section 3).

In turn, let G be a connected Lie group, K a closed subgroup with compact
AdG(K), and γ an analytic automorphism of G such that (Kγ )0 ⊂ K ⊂ Kγ , where
Kγ is the set of fixed points of γ and (Kγ )0 is its identity component. Then for
every G-invariant Riemannian structure on G/K this G/K is a globally symmetric
Riemannian manifold (see [He 62], Chapter IV, Section 3). In this case (G,K) is
called a Riemannian symmetric pair.

These results reduce the study of globally symmetric Riemannian manifolds Ñn

to the study of Riemannian symmetric pairs (G,K) by means of Lie group theory.

Remark 1.5.2. In general, symmetric pseudo-Riemannian manifolds have not been
studied so thoroughly as the Riemannian ones. É. Cartan [Ca 26] had noted that these
types of manifolds with solvable isometry group exist. The case of dimension 4 was
then studied in [Wal 46] and [Wal 50] (see also [Ab 71]). In [Ro 49b], [Fed 56], [Fed
59] symmetric pseudo-Riemannian manifolds with simple groups of isometries were
classified; in [Be 57] the case of semisimple groups was also included. The classifi-
cation problem for four-dimensional symmetric Einsteinian spaces with Lorentzian
signature and of the first type was solved by A.Z. Petrov [Pe 66]. In [CML 68], all
symmetric four-dimensional spaces of signature ±2 were listed. A complete classifi-
cation of the spaces of signature 2 with solvable transvection group was given in [CP
70]; see also [Ast 73].

Example 1.5.3. Comparing the structure equations (1.3.2) and (1.4.3), one sees that
for the standard models sN

n(c) of spacetime forms the curvature 2-forms are

�J
I = cgIKω

J ∧ ωK, c = const.

Thus RJ
I,KL = −cgIKδ

J
L. From (1.2.4) ∇gIK = 0; also ∇δJL = dδJL − δJPω

P
L +

δPLω
J
P = 0, and this leads to ∇RJ

I,KL = 0. Hence, every sN
n(c) is a locally symmetric

(pseudo-)Riemannian manifold; actually it is also globally symmetric (see [Wo 72],
Chapter 11).

Example 1.5.4. The manifold of allq-dimensional vector subspaces of ap-dimension-
al real vector space R

p is called the Grassmann manifold and denoted by G(q,Rp)

(see, e.g., [Sha 88], Chapter 1, Section 4). Let a pseudo-Euclidean metric of index
k be given in R

p by the metric tensor gλµ and consider the manifold of all regular
q-dimensional vector subspaces of index l. This manifold is called the Grassmann
manifold of regular subspaces and is denoted by l,kG

q,p.
For an element of l,kG

q,p considered as a subspace, the orthonormal basis {eλ}
in R

p (1 ≤ λ ≤ p) can be chosen so that ea and eu (1 ≤ a ≤ q; q + 1 ≤ u ≤ p) are
vectors belonging to this subspace and to its orthogonal complement, respectively.
Thus the subspace is determined by the simple q-vector e1 ∧ e2 ∧ · · · ∧ eq .

Let ∧q(Rp) be the space of antisymmetric (q, 0)-tensors (see [Ste 64], Chapter I,
Section 4). This∧q(Rp) is a vector space, for which the simpleq-vectors eλ1∧· · ·∧eλq
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with λ1 < · · · < λq form a basis. From the infinitesimal displacement equations
(1.2.1) it follows that

d(e1 ∧ e2 ∧ · · · ∧ eq) =
∑
a,u

(e1 ∧ · · · ∧ ea−1 ∧ eu ∧ ea+1 ∧ · · · ∧ em)ω
u
a, (1.5.1)

because for an orthonormal basisωa
a = 0 (no sum; see (1.2.5)), so that the 1-formsωu

a

play the role of ωI in the first formula of (1.2.1). Now the argument used in [Lu 92a],
[Maa 74] can be applied. There it is shown that the pseudo-Riemannian structure on
l,kG

q,p is given by
ds2 = gabguvω

u
aω

v
b,

where 1 ≤ a, b ≤ q; q + 1 ≤ u, v ≤ p (see also [Ha 65]) and that it is Einstein
of constant scalar curvature; for k = l = 0 this is established in [Le 61]. Thus ωu

a

generates a moving coframe on l,kG
q,p and for this the first structure equations (1.3.2)

must hold. On the other hand,

dωu
a = ωb

a ∧ ωu
b + ωv

a ∧ ωu
v = ωv

b ∧ (−ωb
aδ

u
v + δbaω

u
v ),

so that the role of ωI
J in (1.3.2) is played by the 1-forms in the last parentheses above.

Since dωI
J is now

d(−ωb
aδ

u
v + δbaω

u
v ) = −(ωc

a ∧ ωb
c + ωw

a ∧ ωb
w)δ

u
v + δba(ω

c
v ∧ ωu

c + ωw
v ∧ ωu

w)

and ωK
J ∧ ωI

K is

(−ωb
cδ

w
v + δbcω

w
v ) ∧ (−ωc

aδ
u
w + δcaω

u
w) = −ωc

a ∧ ωb
cδ

u
v + ωw

v ∧ ωu
wδ

b
a,

the curvature 2-forms �I
J in (1.3.2) for l,kG

q,p are

−ωw
a ∧ ωb

wδ
u
v + δbaω

c
v ∧ ωu

c .

Now (1.2.5) implies that ωb
w = −εbεwω

w
b , so that these curvature 2-forms are

(δda g
bcgwxδ

u
v − δbag

cdgvwδ
u
x )ω

w
d ∧ ωx

c ,

where gbc = εbδ
bc, gvw = εvδvw, etc., and the indices w, x and c, d run through

the same values as u, v and a, b, respectively. The reduced coefficients are the
components of the curvature tensorRI

J,KL of l,kGq,p. This and the above expressions

forωI
J imply that for the pseudo-Riemannian connection ∇G of l,kGq,p the equations

∇GRI
J,KL = 0 hold (cf. (1.3.7)).

Consequently, the following statement holds.

Theorem 1.5.5. The Grassmann manifold l,kG
q,p of regular subspaces is a locally

symmetric pseudo-Riemannian manifold, which is Einstein of constant scalar curva-
ture.
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In the particular case q = 2, this l,kG
2,p is called the Plücker manifold .

The same conclusion also holds for k = 0 (thus also l = 0); then “pseudo-’’
is to be omitted and the corresponding Grassmann manifold is denoted simply by
Gq,p. A projective space treatment of most of these results for Grassmann manifolds
with polar normalization can be found in [AG 96], Chapter 6, Section 6.6; see also
[Ro 49a].

Grassmann manifolds are also globally symmetric, as shown in [Wo 72] (for the
Riemannian case, see Section 9.2, where a corresponding Riemannian symmetric pair
is used; for the pseudo-Riemannian case, cf. Section 12.2).

Remark 1.5.6. Some generalizations of symmetric Riemannian spaces have been
made by Fedenko [Fed 77] and Kowalski [Kow 80]. In [KoK 87] Kowalski’s ap-
proach is transferred to the geometry of submanifolds Mm in En; in [CMR 94] the
same is for Mm in Nn(c).

Another generalization is made by Deszcz in [Des 92] and for submanifolds in
[ALM 99, 2002], [LT 2006] (see Section 12.4).

1.6 Semisymmetric (Pseudo-)Riemannian Manifolds

According to Theorem 1.5.1 the class of locally symmetric pseudo-Riemannian man-
ifolds is analytically characterized by the system of differential equations ∇R = 0
for the components of the curvature tensor field R (cf. with (0.1)). More explicitly,
due to (1.3.7) this system is

dRI
J,KL − RI

P,KLω
P
J − RI

J,PLω
P
K − RI

J,KPω
P
L + RP

J,KLω
I
P = 0. (1.6.1)

The integrability condition of this system can be obtained by exterior differentiation,
using the structure equations (1.3.2), which leads to the equations

RI
P,KL�

P
J + RI

J,PL�
P
K + RI

J,KP�
P
L − RP

J,KL�
I
P = 0. (1.6.2)

Replacing�P
J with the expressionsRP

J,QSω
Q∧ωS given in (1.3.3), and collecting the

terms before ωQ∧ωS , one obtains a system of purely algebraic (quadratic) equations
for the components ofR. Contracting the left sides of these equations with coordinates
of two linearly independent tangent vectors X = eQX

Q, Y = eSY
S and considering

RP
J,QSX

QYS = RP
J (X, Y ) as the entries of the matrix of a linear operator R(X, Y )

acting on R, this algebraic system can be written concisely as (cf. with (0.3))

R(X, Y ) · R = 0. (1.6.3)

The system (1.6.2), or the equivalent system (1.6.3), was already found as the
integrability condition of (1.6.1) in the first investigations by P. A. Shirokov and
É. Cartan about symmetric spaces (see [Shi 25], [Ca 26]). A natural generalization of
these spaces was considered by É. Cartan, who in [Ca 46] introduced the Riemannian
manifolds satisfying (1.6.3). His investigations were continued by A. Lichnerowicz
[Li 52], [Li 58] and R. Couty [Co 57].
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What follows is a short survey of the results about the Riemannian manifolds sat-
isfying (1.6.3). More detailed information can be found in the monograph [BKV 96].

The term semisymmetric for manifolds satisfying the condition (1.6.3) was intro-
duced by N. S. Sinyukov [Si 56, 62], who showed the importance of this condition
in the theory of geodesic mappings of Riemannian manifolds (see [Si 79], Chapter 2,
Section 3).

Afruitful impulse for investigations of manifolds of this class was given by K. No-
mizu, who in [No 68] conjectured that all complete, irreducible n-dimensional Rie-
mannian manifolds (n ≥ 3) satisfying R(X, Y ) · R = 0 are locally symmetric, i.e.,
they also satisfy ∇R = 0. This conjecture was supported by the result that for a
Riemannian manifold ∇kR = 0 yields ∇R = 0, which was proved for the compact
case in [Li 58] and for the complete case in [NO 62] (and it is also valid in general; cf.
[KN 63], Vol. 1, Remark 7). However, Nomizu’s conjecture was eventually refuted.
Namely, in [Ta 72] a hypersurface in E4 was constructed satisfying R(X, Y ) ·R = 0
but not ∇R = 0; and a counterexample of arbitrary dimension was given in [Sek 72].
Nevertheless, by adding some further conditions to R(X, Y ) · R = 0, the conjecture
becomes true; such additional conditions were given in [ST 70], [Tan 71], [Fu 72].
For instance, it is shown in these papers that it suffices to add ∇C = 0, S = const,
where C is the tensor of conformal curvature and S is the scalar curvature (cf. also
[Sek 75], [Sek 77]).

For pseudo-Riemannian manifolds the term semisymmetric was used (for the case
of Lorentzian signature) by V. R. Kaigorodov [Kai 78] in the course of investigations
on the curvature structure of spacetime (cf. also [Kai 83]).

Let a (pseudo-)Riemannian space be a direct product of the same kind of spaces.
Then the frame bundle can be adapted so that the basis vectors are successively tangent
to the mutually orthogonal components of the product. Then RI

J,KL are zero if two
of the indices I, J,K,L are indices of basis vectors tangent to different components.
A straightforward calculation shows that if (1.6.2) is satisfied for every component,
then it is also satisfied for the direct product. The same holds if (1.6.2) replaced by
∇R = 0, i.e., by (1.6.1). Thus the direct product of semisymmetric (resp. symmetric)
(pseudo-)Riemannian manifolds is a semisymmetric (resp. symmetric) (pseudo-)Rie-
mannian manifold.

The local classification of semisymmetric Riemannian manifolds was given by
Z. I. Szabó, locally in [Sza 82] and then globally in [Sza 85]. First he proved by
means of the infinitesimal or the local holonomy group that for every semisymmetric
Riemannian manifold Mm there exists a dense open subset U such that around the
points ofU the manifoldMm is locally isometric to a direct product of semisymmetric
manifoldsM0×M1×· · ·×Mr , whereM0 is an open part of a Euclidean space and the
manifolds Mi , i > 0, are infinitesimally irreducible simple semisymmetric leaves.
Here a semisymmetric M is called a simple leaf if at each of its points x the primitive
holonomy group determines a simple decomposition TxM = V

(o)
x +V

(1)
x , where this

group acts trivially on V
(0)
x and there is only one subspace V (1)

x that is invariant for
this group. A simple leaf is said to be infinitesimally irreducible if at least at one point
the infinitesimal holonomy group acts irreducibly on V

(1)
x .
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The dimension ν(x) = dim V
(0)
x is called the index of nullity at x and u(x) =

dimM − ν(x) the index of conullity at x.
The classification theorem of Szabó asserts the following (according to the for-

mulation given in [BKV 96]).

Theorem 1.6.1. For every semisymmetric Riemannian manifold there exists an ev-
erywhere dense open subset U such that around every point of U the manifold is
locally isometric to a space that is the direct product of an open part of a Euclidean
space and of infinitesimally irreducible simple semisymmetric leaves, each of which
is one of the following:

(a) if ν(x) = 0 and u(x) > 2, then locally symmetric (hence locally isometric to a
symmetric space);

(b) if ν(x) = 1 and u(x) > 2, then locally isometric to an elliptic, a hyperbolic or a
Euclidean cone;

(c) if ν(x) = 2 and u(x) > 2, then locally isometric to a Kählerian cone;
(d) if ν(x) = dimM − 2 and u(x) = 2, then locally isometric to a space foliated by

Euclidean leaves of codimension 2 (or to a two-dimensional manifold, this in the
case when dimM = 2).

The following examples give more detailed descriptions (according to [Sza 82]
and [BKV 96]) of these product components, some of them in the general (pseudo)-
Riemannian situation.

Example 1.6.2 (for case (a)). Every symmetric (pseudo)-Riemannian space is also
semisymmetric.

Indeed, the condition (1.6.1) yields (1.6.2), and thus (1.6.3) too, because they are
the integrability conditions of (1.6.1).

Example 1.6.3 (for case (b)). Consider R+ × R
n−1 with the standard coordinate sys-

tem (x0, x1, . . . , xn−1) and the Riemannian metric given by

ds2 = (dx0)2 + (x0 + C)2[(dx1)2 + · · · + (dxn−1)2].

This Riemannian manifold is called the Euclidean cone and it is semisymmetric.

Example 1.6.4 (for case (b)). Let Sn−1(c) be a sphere with center o in En and v a
point in En+1 such that the straight line ov is orthogonal to En ⊂ En+1. The elliptic
cone is a hypersurface in En+1 described by the straight half-lines emanating from
v (the vertex) and intersecting the points of Sn−1(c). With its induced metric, this
hypersurface is intrinsically an n-dimensional Riemannian manifold that turns out
to be semisymmetric. This induced metric has an expression similar to the metric
in the previous example: in the square brackets one takes here the standard metric
of Sn−1(c).

Example 1.6.5 (for case (b)). Let the expression in square brackets be replaced by the
standard metric of the (n − 1)-dimensional hyperbolic space. Then the Riemannian
manifold with this metric is called the hyperbolic cone.
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This space can also be represented in the following way. Let Hn−1(c) be a sphere
with center o and imaginary radius i/

√|c| in 1E
n ⊂ 1E

n+1. Its connected component
is intrinsically a hyperbolic space (see Section 1.3). Choose a point v in 1E

n+1 so
that the straight line ov is orthogonal to 1E

n, and consider the hypersurface in 1E
n+1

defined by the straight half-lines emanating from v and intersecting the points of a
connected component of Hn−1(c). This hypersurface is in fact a hyperbolic cone.

Example 1.6.6 (for case (c)). The Kählerian cones are the complex analogs of Exam-
ples 1.6.4, 1.6.5 and 1.6.6 (see [BKV 96]).

Example 1.6.7 (for case (d)). Every two-dimensional (pseudo-)Riemannian manifold
is semisymmetric.

Indeed, if n = 2, then (1.3.4) and (1.3.8) imply that RIJ,KL is nonzero only if
(IJ,KL) = (12, 12) or a permutation of (12, 12). This easily yields (1.6.3).

Example 1.6.8 (case (d) in general). In the Szabó classification a special role is played
by the n-dimensional Riemannian manifolds foliated by (n − 2)-dimensional Eu-
clidean spaces. They are characterized as those manifolds, whose tangent vector
spaces are orthogonal products V (0)

x + V
(1)
x , where V (1)

x are of dimension 2 at every
point, and V

(0)
x define a foliation of dimension (n − 2) with Euclidean spaces as

leaves.
These foliated manifolds were treated implicitly in [Sza 82], without considering

any explicit expressions for their metrics. They were considered as solutions of a
certain integrable system of nonlinear partial differential equations. A more detailed
analysis was given by Kowalski in [Kow 96] for the three-dimensional case (n = 3);
see also [BKV 96].

In [BKV 96] (cf. the remark concluding Chapter 8) the situation was described
as follows. The general solution of the basic system of partial differential equations
given by Szabó depends formally on 1

2 (n− 2)(n+ 3)+ 4 arbitrary functions of two
variables and 1

2 (n − 2)(n + 3) arbitrary functions of one variable. In dimension 3,
this means seven functions of two variables and three functions of one variable. But
a more detailed analysis has shown that in fact three arbitrary functions of two vari-
ables suffice to parametrise the corresponding spaces. The exact number of arbitrary
functions of two variables that parametrise local isometry classes of foliated semisym-
metric manifolds in dimension n remained an unsolved problem in [BKV 96]. It was
noted only that the first explicit examples depending on one arbitrary function of
two variables were constructed in [KoTV 90] and [KoTV 92]. The new approach,
given by O. Kowalski in dimension 3, was then generalized by E. Boeckx [Bo 95]
to arbitrary dimension n. These results are summarized in [BKV 96], where these
manifolds are called Riemannian manifolds of conullity two, motivated by case (d).

Remark 1.6.9. For four-dimensional semisymmetric Riemannian manifolds an ele-
mentary classification can be given independently from Szabó’s (which is indirect
and relies on some essential results from other sources, for instance, a theorem of
Kostant). This elementary classification is given in [Lu 96e], [Lu 96f]. The result is
as follows.
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Theorem 1.6.10. Locally, every four-dimensional semisymmetric Riemannian man-
ifold is one of the following:

(a) a locally Euclidean manifold,
(b) a space of nonzero constant curvature,
(c) a locally symmetric space other than (a) and (b),
(d) the direct product of two two-dimensional spaces,
(e) locally isometric to an elliptic or hyperbolic cylinder (i.e., direct product S3 × R

or H 3 × R) or to a Euclidean, elliptic or hyperbolic cone,
(f) space foliated by two-dimensional totally geodesic and locally Euclidean leaves

that are transversally flat along themselves and normally flat in sections normal
to them.

The proof is given in [Lu 96f] and is based on an elementary algebraic classi-
fication of semisymmetric curvature operators [Lu 96e]. Chern bases are used to
minimize the number of nonzero components of the curvature tensor. This consid-
erably simplifies the semisymmetric condition as a system of quadratic equations on
these components.

Note that in the pseudo-Riemannian case the problem of detailed classification of
semisymmetric manifolds is currently still open, to the author’s knowledge.

Remark 1.6.11. In [Kow 96] (and then in [BKV 96]) the following terminology is
used for semisymmetric Riemannian manifolds of types (a)–(d): the manifolds of
type (a) are said to be of “trivial’’ class, types (b) and (c) of “exceptional’’ class, and
of type (d) “typical’’ class.

For three-dimensional manifolds of this last class, O. Kowalski introduced (in
a preprint of 1991 and published afterwards in [Kow 96]) the geometric concept
of asymptotic foliation, which was generalized by E. Boeckx [Bo 95] to arbitrary
dimensions.

An (m− 1)-dimensional submanifold Mm−1 of a manifold Mm of conullity two
is called an asymptotic leaf if it is generated by (m−2)-dimensional Euclidean leaves
of Mm and if its tangent spaces are parallel along each Euclidean leaf with respect to
the Levi-Civita connection ∇ of Mm.

An asymptotic distribution on Mm is an (m− 1)-dimensional distribution that is
integrable and whose integral submanifolds are asymptotic leaves. The integral man-
ifolds of an asymptotic distribution determine a foliation ofMm, called an asymptotic
foliation.

For anMm of conullity two, the adapted frame bundle and corresponding coframes
can be chosen so that the Euclidean leaves are determined by ωa = 0, a, b, · · · ∈
{1, 2}. Since this last differential system is totally integrable, dω1 and dω2 must
vanish as an algebraic consequence of ω1 = ω2 = 0 (due to the Frobenius theorem,
second version; see [Ste 64]). This together with the fact that Euclidean leaves are
totally geodesic, because M is a simple leaf, yields, due to (1.3.2),

ω1
u = Auω

1 + Buω
2, ω2

u = Cuω
1 + Fuω

2; (1.6.4)



1.6 Semisymmetric (Pseudo-)Riemannian Manifolds 21

where u, v, · · · ∈ {3, . . . , m}.
Let the unit vectorX = e1 cosϕ+e2 sin ϕ be taken so that span{X, e3, . . . , em} is

the tangent plane of an asymptotic leaf. Then, ∇euX = ∇Xeu + [eu,X] must belong
to the tangent plane of this asymptotic leaf for every value of u. Since the tangent
distribution of these leaves is a foliation, this tangent plane contains [eu,X]. Thus
this plane must also contain

∇Xeu = ∇e1eu cosϕ + ∇e2eu sin ϕ = (ωk
u(e1)ek) cosϕ + (ωk

u(e2)ek) sin ϕ.

Hence
(Aue1 + Cue2) cosϕ + (Bue1 + Fue2) sin ϕ

must belong to span{X, e3, . . . , em} and therefore must be a multiple of X =
e1 cosϕ + e2 sin ϕ. This last condition is equivalent to

Bu sin2 ϕ + (Au − Fu) cosϕ sin ϕ − Cu cos2 ϕ = 0.

But along the asymptotic leaf, ω1 sin ϕ = ω2 cosϕ, so that the above condition
reduces to

Cu(ω
1)2 + (Fu − Au)ω

1ω2 − Bu(ω
2)2 = 0.

According to [Kow 96], [BKV 96] a foliated M is said to be planar if it admits
infinitely many asymptotic foliations. If it admits just two (or one, or none, respec-
tively) asymptotic foliations, it is said to be hyperbolic (or parabolic, or elliptic,
respectively).
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Submanifolds in Space Forms

2.1 A Submanifold and Its Adapted Frame Bundle

Submanifolds will be considered in the context of differentiable manifolds of class
C∞ (see [Ste 64], Chapter II; [KN 63], Chapter I), or more precisely, in the context
of (pseudo-)Riemannian manifolds (see [KN 69], Chapter VII; [Ch 73b], [Ch 2000],
[BCO 2003]). It is worth mentioning that the introduction of [Ch 2000] contains a
brief survey of the long history of the differential geometry of submanifolds.1 Recent
developments in submanifold theory are described in the introduction of [BCO 2003].

Let f : Mm → sN
n(c) be an isometric immersion of class C∞ of an m-

dimensional (pseudo-)Riemannian manifold into an n-dimensional space form (or
spacetime form, if s > 0), n > m, taken as the standard model sN

n(c) (see Sec-
tion 1.4). Then f (Mm) is a submanifold in sN

n(c) (see [KN 63], Chapter VII, also
[Ch 73b] and [Ch 2000], for the case of Riemannian manifolds). Such a submanifold
will be denoted simply by Mm, i.e., f is considered as the inclusion map.

For such a submanifold Mm its tangent vector space TxMm at an arbitrary point
x ∈ Mm is a regular vector subspace of Tx(sNn(c)) and therefore has an orthogonal
complement T ⊥

x Mm in the latter, which is an (n − m)-dimensional regular vector
space, called the normal vector space of the submanifold Mm at x.

If, for the case s > 0 and at an arbitrary point x ∈ Mm, the tangent vector space
TxM

m is spacelike (resp. timelike), then the submanifold Mm in sN
n(c) is also said

to be spacelike (resp. timelike).
If c �= 0 then sN

n(c) ⊂ σE
n+1 (recall that σ = s for c > 0 and σ = s + 1 for

c < 0). Thus an orthogonal complement T ∗⊥
x Mm of TxMm in Tx(σEn+1) is defined,

called the outer normal vector space of Mm at x; obviously T ∗⊥
x Mm is the span of

T ⊥
x Mm and of x = −(

√|c|)−1en+1, which are mutually orthogonal. If c = 0, then
Nn(0) = En and the designation outer is superfluous.

1 One should note, however, that omitted in this survey are some newer historical investi-
gations shedding light, in particular, on the emerging role of M. Bartels, F. Minding, and
K. Peterson of the 19th century differential geometric school at the University of Tartu
(Dorpat) (see [Stru 33], [GLOP 70], [Rei 73], [Ph 79], [Lu 96g], [Lu 97a], [Lu 99b]).

Ü. Lumiste, Semiparallel Submanifolds in Space Forms,
DOI 10.1007/978-0-387-49913-0_3, © Springer Science+Business Media, LLC 2009 
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The union of all tangent (normal or outer normal) vector spaces constitutes the
tangent (resp. normal or outer normal) vector bundle ofMm, denoted by TMm (resp.
T ⊥Mm orT ∗⊥Mm). Its sections are the tangent (resp. normal or outer normal) vector
fields on Mm.

In this book the method of frame bundles and exterior differential calculus is used.
For a submanifold Mm in sN

n(c) the frame bundle adapted to sN
n(c) can be reduced

to the subbundle of frames adapted to Mm as follows (see [KN 69], Chapter VII,
Section 1). Let x ∈ Mm, let the first m basis vectors e1, . . . , em (in general, ei , where
i, j, · · · ∈ {1, . . . , m}) belong to TxMm and the next n−m basis vectors em+1, . . . , en
(in general, eα , where α, β, · · · ∈ {m+ 1, . . . , n}) to T ⊥

x Mm. Then giα = 0, and due
to (1.2.4)

gβαω
β
i + gikω

k
α = 0, (2.1.1)

dgij = gkjω
k
i + gikω

k
j , dgαβ = gγβω

γ
α + gαγ ω

γ
β . (2.1.2)

Since the differential dx of the radius vector of the point x ∈ Mm (recall that
it is also denoted by x) belongs to TxM

m, the first equation of (1.4.2) reduces to
dx = eiω

i , which means
ωα = 0. (2.1.3)

The submanifold Mm can be considered as an integral submanifold in sN
n(c) of this

differential system (2.1.3).
From (1.4.3) and (2.1.3) it follows that ωi ∧ ωα

i = 0, and now Cartan’s lemma
(see [Ste 64], Chapter I, Section 4; [BCGGG 91], p. 320; [IL 2003], p. 314) gives

ωα
i = hαijω

j , hαij = hαji . (2.1.4)

Therefore, from (1.4.2)

dei = ejω
j
i + (eαh

α
ij − xcgij )ω

j , (2.1.5)

and so for an arbitrary vector field X = eiX
i in the tangent vector bundle TMm

one has
dX = ei(dX

i + Xjωi
j ) + (eαh

α
ij − xcgij )X

iωj ,

where the right-hand side is a sum of a tangent component and an outer normal
component. Now if the point x is considered fixed, so that dx = 0 and thus allωi = 0,
one must also have dX = 0. Hence in the tangent component, the expressions in
the first set of parentheses must be linear combinations of these ωj . In other words,
dXi + Xjωi

j = ∇jX
iωj . The expression ∇jX

i is the covariant derivative of the

(1,0)-tensor field Xi on Mm with respect to the Levi-Civita connection ∇ of Mm, and
thus ωi

j are the connection 1-forms of ∇.
In the normal component, the coefficients hαij , taken from (2.1.4), constitute a

mixed tensor field, called the second fundamental tensor of Mm in sN
n(c). This

mixed tensor field determines the second fundamental form (denoted by h) of Mm in
sN

n(c) with values in T ⊥
x Mm.
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To describe the relationship between this tensor and form, let another tangent
vector field Y = ejY

j be given on Mm and let t be the parameter of its integral curve
such that dx/dt = Y . Then ωj = Y jdt , and in the normal component of dX/dt
with respect to sN

n(c) one has h(X, Y ) = eαh
α
ijX

iY j (cf. [KN 69], Chapter VII,
Section 3 and [Ch 73b], Chapter 2, Section 1).

With respect to σE
n+1 the normal component of dei has the vector-valued coef-

ficients
hij − xcgij = h∗

ij , (2.1.6)

where hij = eαh
α
ij , so that (2.1.5) is

dei = ejω
j
i + h∗

ijω
j . (2.1.7)

The coefficients h∗
ij define a bilinear symmetric form with values in T ∗⊥

x Mm,
called the outer second fundamental form of Mm and denoted by h∗, i.e.,

h∗(X, Y ) = h(X, Y ) − xc〈X, Y 〉,
where 〈X, Y 〉 = gijX

iY j is the scalar product of X and Y .
The usual lowering and raising of indices can be used by means of gij , gαβ and gij ,

gαβ , where gikgkj = δij , gαγ gγβ = δαβ . For instance, if one defines hiαk = gijh
β
jkgβα ,

then hiαkξ
α gives the shape (or Weingarten) operator Aξ of Mm in Nn(c), which can

also be defined by 〈Aξ(X), Y 〉 = 〈ξ, h(X, Y )〉 (see, e.g., [KN 69], Chapter VII,
Section 3, [BCO 2003], 2.1).

For the normal basis vectors eα of the frame adapted toMm one has, due to (1.4.2),
(2.1.1), and (2.1.4),

deα = ei(−hiαkω
k) + eβω

β
α ;

hence, for a normal vector field ξ = eαξ
α ,

dξ = eα(dξ
α + ξβωα

β) − eih
i
αkω

kξα.

Here in the normal component of dξ the coefficients dξα + ξβωα
β = ∇⊥ξα give

the covariant derivative of the normal (1,0)-tensor field ξα on Mm with respect to
the normal connection ∇⊥ of Mm in Nn(c), with the connection 1-forms ωα

β . From
(1.4.3) one obtains

dω
j
i = ωk

i ∧ ω
j
k + �

j
i , dωβ

α = ωγ
α ∧ ωβ

γ + �β
α, (2.1.8)

where
�
j
i = ωα

i ∧ ωj
α + cgikω

j ∧ ωk, �β
α = ωi

α ∧ ω
β
i (2.1.9)

are called the curvature 2-forms of ∇ and ∇⊥, respectively. Making substitutions
from (2.1.1) and (2.1.4) and denoting

R
j
i,pq = (〈hi[p, hjq]〉 + cgi[pδ

j

q]) = 〈h∗
i[p, h

∗j
q] 〉, Rβ

α,pq = hiα[ph
β

q]i (2.1.10)


