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Preface

Computer simulation is an important research tool for more than seven decades, and
evolves together with the evolution of computer hardware. At the very beginning,
the simulations have been used by some “gurus” and specialists. Then, more user-
friendly software tools have been developed. In recent years, there are so many
software packages and simulation languages, that nearly everybody can simulate
anything. However, more professional simulation tasks cannot be separated from
model building. To create valid models, the researcher must dominate several
disciplines, like mathematics, physics, computer science, and others. Modeling
and simulation require from the researcher certain interdisciplinary and generalized
insight on complex systems to be modeled.

This book is a continuation of the research described in the book “Interacting
Complexities of Herds and Social Organizations” (Raczynski S., Springer Nature,
2019). However, here we concentrate on the phenomena of catastrophes, unex-
pected, and spontaneous events that are neither explicitly coded in the model nor
provoked by external impulses. A short reference to the known theory of catastro-
phes is done. The classic examples of catastrophes in that context refer rather to
mathematical descriptions of events that occur while solving differential equations.
An example of such catastrophe is described in Chap. 1. In this book we understand
“catastrophes” in more general sense, as events that appear in models of complex
populations. As for the complexity, there is not completely clear when a model is
complex or not. Complexity should not be confused with the system size. Huge
systems can be quite simple, and some small ones more complex. MacMillan
dictionary defines complexity as “features of something that make it confusing or
difficult to deal with.” The Oxford Learner’s Dictionary says that the complexity is
“the state of being formed of many parts; the state of being difficult to understand.”
There are many similar definitions. In a book of Meyers “Mathematics of Complex-
ity and Dynamical Systems” (Springer, 2011), we can read “Complex systems are
systems that comprise many interacting parts with the ability to generate a new
quality of collective behavior through self-organization, e.g. the spontaneous for-
mation of temporal, spatial, or functional structures.” The main topic of the present
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book is somewhat related to the last definition, namely to spontaneous formation of
structures and generation of macro-behavior patterns. Comparing to populations of
individuals in the real world, our models are rather simple. However, from the point
of view of model building, they are not trivial and generate, like the complex
systems, structures and interesting behavior patterns.

In Chap. 1, there are some remarks on the classic mathematical approach to
catastrophes, and the overview of agent-based modeling. Chapter 2 is dedicated to
the simulation package BLUESSS, used in the rest of the book. In Chap. 3, we
discuss the model of an artificial society where the individuals consume resources,
move and interact with each other. The simulations show unexpected events that
appear spontaneously in the model, when it seems to reach a steady state. Chapter 4
deals with an extended prey–predator system of multiple species, where the model
dynamics is quite different from the classic Lotka–Volterra continuous model.
Chapter 5 contains simulations of possible catastrophic events in a stock market
model. Chapter 6 describes a model of epidemics that is itself a kind of catastrophe.

Here, I would like to express some personal view on epidemic models. First of all,
it should be emphasized that the presented model is not any attempt to simulate the
recent epidemy of covid-19. As stated in Chap. 6, we should appreciate all effort
done to simulate this epidemy, related in numerous publications. However, we
should remember that one of the most serious errors in scientific research is to
look for something that does not exist. To construct a simulation model, first we
should know if the model exists at all. Many researchers forget this stage of model
building. This may lead to wrong and confused results. In the case such as covid-19,
this is extremely important because an invalid model can be used to take wrong
strategical decisions about epidemy treatment and provoke millions of deaths. It is
important to remember that dealing with new kind of disease with unknown dynam-
ics, we cannot just modify any existing epidemics model, and use known modeling
paradigms. Anyway, this is also a question of ethics in computer simulation
profession.

In Chap. 7, you can find a model of a growing organism that evolves and may
reveal some degeneration like a cancer in a living body. There are some remarks on
the DNA and RNA mechanism in living organisms. However, we do not pretend to
simulate the extremely complex DNA functions. Instead, we use the abbreviation
EOB to denote the genetic information included in each model agent (living cell).
Further research on this kind of models could give us hints to better understand the
growth of cells in living organisms.

Chapter 8 contains the description of a model of a population of agents that are
working and obtain salaries. The work effort increases the common pool of goods in
the society. The salary may depend on the amount and quality of work done by the
agent. This may result in differences and inequality between agents. The amount of
inequality is measured using the Gini inequality index. The increased income
motivates the agent to intensify his work. This is a feedback that influences the
inequality, the level of common goods and welfare. The dynamics of the population
is simulated.
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In Chap. 9, we simulate some examples of populations with waiting lines. It is
pointed out that certain queuing models may reveal a considerable “catastrophic”
and irregular growth of queues.

Finally, in Chap. 10, there are some remarks about possible simultaneous events.
This is not a simulation of big populations, but rather of some special cases when the
simultaneous events in the model may lead to ambiguity and wrong results. The
general conclusion of this chapter is that the discrete-event models form a singularity
in the space of models. An alternative paradigm named semi-discrete events is
proposed.

Mexico City, Mexico Stanislaw Raczynski
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Chapter 1
Catastrophes and Agent-Based Models

Abstract Some general remarks on the term catastrophe are presented. A short
recall of the concept of catastrophes in mathematics is given and examples are
provided. The catastrophes discussed in this book are understood in some more
general terms, quite different from the mathematical point of view. We rather discuss
unexpected events that occur during computer simulation and that have not been
explicitly inserted in the model algorithm and code. The main modeling tool used
here is the agent-based modeling. An overview of this methodology and related
software is provided in this chapter.

Keywords Catastrophe theory · Discrete-event simulation · DEVS · Agent-based
modeling

1.1 Catastrophes

The Merriam-Webster dictionary defines catastrophe as “A momentous tragic event
ranging from extreme misfortune to utter overthrow or ruin.” Other meanings are
defined as “A violent and sudden change in a feature of the earth” or “the final event
of the dramatic action especially of a tragedy.” The word catastrophe is also used in
somewhat more general sense, denoting a sudden change in the behavior of an object
under investigation, without the “tragic” attribute. Thus, we can consider of being
catastrophe an earthquake, as well as a discontinuity in the trajectory of a computer-
simulated dynamic system. This last meaning of catastrophe has been adopted by
mathematicians to denote strange or irregular behavior of mathematical objects. This
meaning was the subject of the theory of catastrophes developed by Thom (1975)
and Zeeman (1976). In mathematics, catastrophes are closely connected to the
bifurcation phenomenon when a small change of a model parameter may cause a
sudden qualitative change in its behavior, see Luo (1997).

A good example in the theory of catastrophes is the cusp catastrophe. Consider
the following function:
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V xð Þ ¼ x4 þ ax2 þ bx ð1:1Þ

Figure 1.1 shows the graphs of this function for a ¼ �1, b changing from �0.83
to 0.83, and � 1 < x > 1. The graph of the function is continuous, and its shape
changes continuously with respect to a and b. It might appear that the other
properties of V(x) should also change continuously. However, this is not true.

Consider two properties: (a) The number of local minima and (b) The position of
the global minimum with respect to the variable x. These two properties change
abruptly when b changes. Observe that the curve for b ¼ �0.8 has one local (and
global) minimum, while the curve for b¼�0.32 has two local minima. The position
of the global minimum changes, with discontinuity at b ¼ 0, as shown as the
function P(x), in Fig. 1.2.

Now, if we use the function V(x) as a part of a mathematical model of a dynamic
system, we may observe a catastrophic change of model behavior like the loss of
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stability, for even very small changes of parameter b oscillating around zero. For
example, if V(x) is used as a potential function in the equation

dx
dt

¼ � dV xð Þ
dx

then the solution can become ambiguous or unstable. Such catastrophes may also
occur in ODE models of heartbeat and nerve impulse, or in the behavior of stock
exchange market.

The catastrophes in social systems are frequently related to conflict and aggres-
sion. In Kadar et al. (2019) we can find a good review of this approach. The authors
describe an analytic model that includes violations of the moral order, principles and
ideologies, breaches of moral norms, conflict, and aggression. The model reflects
“the relationship between various methodologies through which one can examine
morality and the moral order in the context of language conflict and aggression.”

In multiple publications of Konrad Zacharias Lorenz (for example, Lorenz (1964,
1981, 2002), we can find an exhaustive source of works about aggression, social
system behavior and related catastrophes, known as Lorenzian Theory of Catastro-
phes. Lorenz is recognized as the founder of ethology science. He asserts that
“centrally coordinated sequences of endogenously generated impulses, have
evolved phylogenetically and are very resistant to any individual modification. A
fixed motor pattern’s most important distinction from motor patterns that are not
fixed and, simultaneously, the cogent argument for its being genetically
programmed, consists in its taxonomic distribution.” The Lorenzian theory can be
used in advanced agent-based models of social behavior. The catastrophes result
from the appearance of aggression in the groups of individuals. Lorenz provides the
bases to create models of catastrophes of these types that perhaps could be used to
predict future catastrophic events (Weaver 1980).

The aggression in the Lorenzian theory can be treated as a kind of catastrophe.
For more results on this approach to catastrophes see Kim (1976) and Baron (1977).
For newer works on aggression simulation, see, for example, Danaf et al. (2015).

Computer simulation of aggression is not new. Coe (1964) presents a report on
computer simulation of aggression simulated on IBM 650 computer, machine with
rotating drum memory of up to 4000 words. The simulation programs running on
such machines have been already quite complex. Of course, the huge exponential
growth of hardware in present days makes it possible to carry out greater and more
sophisticated simulations. However, the complexity and capability of the software
depend not only on the power of used hardware. Simulation programs that ran on
IBM650 or ICL1900 in the sixties were not trivial.

We do not intent to provide a strict definition of catastrophe, different from these
mentioned above. Roughly speaking, we denote as “catastrophic” events that occur
in the model behavior that can abruptly change the model state or the behavioral
pattern, like the presence and magnitude of oscillations, if any. This includes also
other, relevant and unexpected events along the model trajectory. By “unexpected”
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we mean events that occur spontaneously and which were not explicitly, or in other,
hidden way, implanted into the model while it was created.

There are many other examples of mathematical catastrophes provided in the
literature. However, this, classic mathematical catastrophe theory is not the topic of
the present book. Here, we use the discrete-event, agent-based models, mainly the
models of artificial populations of moving objects, instead the models given by
ordinary (ODE) or partial differential equations. The ODE models appear in the
methodology of system dynamics (SD-models) that has been widely used and
applied in modeling of a variety of real systems, during the last six decades
(Forrester 1958). Our point is that not everything that happens in the real world
can be modeled using the ODE or SD methodology. Thus, we rather use the agent-
based models, where all the necessary model specification is reduced to a logical
description of object behavior and simple arithmetic, with no mathematics at all. In
the post-mortem model analysis, the only mathematics is the eventual use of
statistics to analyze the results.

1.2 Discrete Events and Agent-Based Models

Looking at the annals of the development of computer simulation methodology, we
can see a clear division between continuous and discrete modeling and simulation.
As for the continuous simulation (Raczynski 2003) observe that the only machines
that supported such kind of simulation were the analog computers of 1950s. In a
digital computer nothing is continuous. So, any numerical method implemented on
digital computer provides an approximation to the real continuous process. Of
course, such methods have reached a high level of sophistication, and permit the
simulation of continuous systems with a satisfactory accuracy.

The models used in continuous simulation are based on ordinary or partial
differential equations. If the model time is discrete and the model state is a real
variable, difference equations are used. The system dynamics methodology
(SD) uses the ordinary (ODE) or difference equation models (Forrester 1958).

In the discrete simulation, both the model time and model state “jump” from one
value to another in, theoretically, time interval zero. Some of the recent simulation
tools also support combined simulation (see BLUESSS package, Chap. 2 of this
book). BLUESSS is an object-oriented simulation package that carried out discrete-
event simulation, but also supports continuous models given in form of the ODEs,
Bond Graphs, or Signal Flow Graphs.

In Raczynski (2009, 2019, see also Chap. 9) you can find a description of a new
simulation tool that uses the graphical user interface almost identical to that used by
the system dynamics packages. This interface is used to define the model. However,
behind the interface, the simulation is carried out using discrete-event method. This
discrete simulation machine is transparent to the user and runs automatically.
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1.2.1 Discrete Events and DEVS

By the model time we understand the time variable that is controlled by the
simulation program during the simulation run. The real time represents the time of
our (or computer) physical clock. For example, simulating the movement of a
galaxy, we simulate several millions of model time years. On a fast computer, his
simulation may take several minutes in the real time.

There are many real systems, where we can define events that consist in changing
the state of the system. For example, the events may describe the start or the end of a
service process, a birth or death of a model entity, or taking place in a waiting line. In
many situations, such events can be considered to be executed in a very small
interval of time, compared to the total length of model simulation time. The
discrete-event simulation means that we suppose that the model events are discrete,
i.e., they are accomplished within model time interval of length zero. This model
simplification makes the simulations very fast.

In the object-oriented programming we declare several generic code segments
called classes. According to these declarations, objects are created at the runtime.
Each object is equipped with a data set, and several methods that perform operations
on the data.

The Discrete Event Specification (DEVS) formalism is used to describe models in
discrete-event simulation. In the DEVS formalism, an “atomic” model M is defined
as follows (Zeigler 1987).

M ¼< X, S, Y , σint, σext, λ, τ >

σint : S ! S, σext : Q� S ! S, λ : Q ! Y ,
ð1:2Þ

where X is the input space, S is the system state space, Y is the output space, σint is the
internal state transition function, σext is the external transition function, and Q is the
“total state.”

Atomic models can be coupled to form a coupled model. The coupled models can
also be coupled in hierarchical way, to form more complex models. The coupled
DEVS model is as follows.

coupledDEVS �< Xself ,Y self ,D, Mif g, Iif g, Zi,j
� �

, select >

The sub-index self denotes the coupled model itself. D is a set of unique
component references. The set of components is

Miji 2 Df g

Ii is the set of influencees for I, Zi,j is the i-to-j output translation function. The
select component defines the order of execution for simultaneous events that may
occur in the coupled model. This component must be added to the model to avoid
ambiguities in the simulation algorithm and to make the model implementation
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