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Preface
This work introduces a model of geometric representation
for describing and manipulating complex non-standard
shapes such as rough surfaces or porous volumes. It is
aimed at students in scientific education (mathematicians,
computer scientists, physicists, etc.), engineers,
researchers or anyone familiar with the mathematical
concepts addressed at early stages of the graduate level.
However, many parts are accessible to all, in particular, all
introductory sections that present ideas with examples.
People with no prior background, whether they are artists,
designers or simply curious, will be able to understand the
philosophy of our approach, and discover a new universe of
unsuspected and exciting forms.
Geometric representation models are mathematical tools
integrated into computer-aided geometric design (CAGD)
software. They make the production of numerical
representations of forms possible. By means of graphical
interfaces or programming tools, users can draw and/or
manipulate these shapes. They can also test or evaluate
their physical properties (mechanical, electro-magnetic,
acoustic, etc.) by communicating geometric descriptions to
further specific numerical simulation software.
The geometric representation model we present here is
based on the fractal geometry paradigm. The principle
behind this consists of studying the properties (signal,
geometry, phenomena, etc.) at different scales and
identifying the invariants from there. The objects are
described as self-referential between two scales: each of
the object features (namely, the lower scale level) is
described as a reference to the object itself (namely, the
higher scale). This approach is not conventional and often



confusing at first. We come to perceive its richness and
power very quickly, however. The universe of forms that
can possibly be created is infinite and has still only partially
been explored.
In this book, we present the mathematical foundations, so
that the reader can access all the information to
understand, test and make use of this model. Properties,
theorems and construction methods are supplemented with
algorithms and numerous examples and illustrations.
Concerning the formalization, we have chosen to use
precise and rigorous mathematical notations to remove any
ambiguity and make understanding easier.
Readers unwilling to be concerned with mathematical
formalisms can get to grips with the philosophy of our
approach by focusing on the sections found at the
beginnings of the chapters, in which ideas and principles
are intuitively presented, based on examples.
This book is the result of 25 years of research carried out
mainly in the LIRIS laboratories of the University of Lyon I
and LIB of the University of Burgundy Franche-Comté. This
research was initiated by Eric Tosan, who was instrumental
at the origin of this formalism and to whom we dedicate
this work.

Christian GENTIL
Gilles GOUATY
Dmitry SOKOLOV

February 2021



Introduction

I.1. Fractals for industry: what for?
This book shows our first steps toward the fundamental and
applied aspects of geometric modeling. This area of
research addresses the acquisition, analysis and
optimization of the numerical representation of 3D objects.

Figure I.1. 3D tree built by iterative modeling
(source: project MODITERE no. ANR-09-COSI-014)

Figure I.1 shows an example of a structure that admits high
vertical loads, while minimizing the transfer of heat
between the top and bottom of the part. Additive
manufacturing (3D printing) allows, for the first time, the
creation of such complex objects, even in metal (here with
a high-end laser printer EOS M270). This type of
technology will have a high societal and economic impact,
enabling better systems to be created (engines, cars,
airplanes, etc.), designed and adapted numerically for
optimal functionality, thus consuming less raw material, for
their manufacturing, and energy, when used.



Current computer-aided design is, however, not well suited
to the generation of such types of objects. For centuries, for
millennia, humanity has produced goods with axes, files (or
other sharp or planing tools), by removing bits from a piece
of wood or plastic. Tools subsequently evolved into complex
numerical milling machines. However, at no point during
these manufacturing processes did we need sudden stops
or permanent changes in the direction of the cutting tool.
The patterns were always “regular”, hence the
development of mathematics specific to these problems and
our excellent knowledge of the modeling of smooth objects.
This is why it was necessary to wait until the 20th century
to have the mathematical knowledge needed to model
rough surfaces or porous structures: we were just not able
to produce them earlier.
Thus, since the development of computers in the 1950s,
computer-aided geometric design (CAGD or CAD) software
has been developed to represent geometric shapes
intended to be manufactured by standard manufacturing
processes. These processes are as follows:

– subtractive manufacturing, using machine tools such
as lathes or milling machines;
– molding, where molds themselves are made using
machine tools;
– deformation-based manufacturing: stamping or
swaging (but again, dies are usually manufactured
using machine tools), folding, etc.;
– cutting, etc.

Each of these processes imposes constraints, for example,
concerning collision issues in milling machines (even a five-
axis mill cannot produce any geometry). These
manufacturing processes inevitably influenced the way we



design the geometries of objects, in order to actually
manufacture them. For example, CAD software has
integrated these design methodologies by developing
appropriate numerical models or tools. Currently, most
CAD software programs are based on the representation of
shapes by means of surfaces defining their edges. These
surfaces are usually described using a parametric
representation called non-uniform rational B-spline
(NURBS). These surface models are very powerful and very
practical. It is possible to represent any volume enclosed by
a quadric (cylinders, cones, spheres, etc.) and complex
shapes, such as car bodies or airplane wings. They were
originally designed for this.
However, the emergence of additive manufacturing
techniques has caused an upheaval in this area, opening up
the possibility of potentially “manufacturable” forms. By
removing the footprint constraint of the tool, it then
becomes possible to produce very complex shapes with
gaps or porosity. These new techniques have called into
question the way objects are designed. New types of
objects, such as porous objects or rough surfaces, can have
many advantages, due to their specific physical properties.
Fractal structures are used in numerous fields such as
architecture (Rian and Sassone 2014), jewelry (Soo et al.
2006), heat and mass transport (Pence 2010), antennas
(Puente et al. 1996; Cohen 1997) and acoustic absorption
(Sapoval et al. 1997).

I.2. Fractals for industry: how?
The emergence of techniques such as 3D printers allows
for new possibilities that are not yet used or are even
unexplored. Different mathematical models and algorithms
have been developed to generate fractals. We can
categorize them into three families, as follows:



– the first groups algorithms for calculating the
attraction basins of a given function. Julia and
Mandelbrot (Peitgen and Richter 1986) or the
Mandelbulb (Aron 2009) sets are just a few examples;
– the second is based on the simulation of phenomena
such as percolation or diffusion (Falconer 1990);
– the last corresponds to deterministic or probabilistic
algorithms or models based on the self-similarity
property associated with fractals such as the terrain
generator (Zhou et al. 2007), the iterated function
system (Barnsley et al. 2008) or the L-system
(Prusinkiewicz and Lindenmayer 1990).

In the latter family of methods, shapes are generated from
rewriting rules, making it possible to control the geometry.
Nevertheless, most of these models have been developed
for image synthesis, with no concerns for
“manufacturability”, or have been developed for very
specific applications, such as wood modeling (Terraz et al.
2009). Some studies approach this aspect for applications
specific to 3D printers (Soo et al. 2006). In (Barnsley and
Vince 2013b), Barnsley defines fractal homeomorphisms of
[0, 1]2 onto the modeling space [0, 1]2. The same approach
is used in 3D to build 3D fractals. A standard 3D object is
integrated into [0, 1]3 and then transformed into a 3D
fractal object. This approach preserves the topology of the
original object, which is an important point for
“manufacturability”.
The main difficulty associated with traditional methods for
generating fractals lies in controlling the forms. For
example, it is difficult to obtain the desired shape using the
fractal homeomorphism system proposed by Barnsley.
Here, we develop a modeling system of a new type based
on the principles of existing CAD software, while expanding



their capabilities and areas of application. This new
modeling system offers designers (engineers in industry)
and creators (visual artists, designers, architects, etc.) new
opportunities to quickly design and produce a model,
prototype or unique object. Our approach consists of
expanding the possibilities of a standard CAD system by
including fractal shapes, while preserving ease of use for
end users.
We propose a formalism based on standard iterated
function systems (IFS) enhanced by the concept of
boundary representation (B-rep). This makes it possible to
separate the topology of the final forms from the geometric
texture, which greatly simplifies the design process. This
approach is powerful, and it generalizes subdivision curves
and standard surfaces (linear, stationary), allowing for
additional control. For example, we have been able to
propose a method for connecting a primal subdivision
scheme surface with a dual subdivision scheme surface
(Podkorytov et al. 2014), which is a difficult subject for the
standard subdivision approach.
The first chapter recalls the notion of self-similarity,
intimately linked to that of fractality. We present the IFS,
formalizing this property of self-similarity. We then
introduce enhancements into this model: controlled
iterated function systems (C-IFS) and boundary controlled
iterated function systems (BC-IFS). The second chapter is
devoted to examples. It provides an overview of the
possibilities of description and modeling of BC-IFS, but also
allows better understanding the principle of the model
through examples. The third chapter presents the link
between BC-IFS, the NURBS surface model and subdivision
surfaces. The results presented in this chapter are
important because they show that these surface models are
specific cases of BC-IFS. This allows them to be
manipulated with the same formalism and to make them



interact by building, for example, junctions between two
surfaces of any kind. In the fourth chapter, we outline
design tools that facilitate the description process, as well
as examples of the applications, of the design of porous
volumes and rough surfaces.



1
The BC-IFS Model
In this chapter, in section 1.1, we begin by intuitively
introducing the notion of self-similarity. Then, in section
1.1.2, we give its mathematical formulation as proposed by
Hutchinson (Hutchinson 1981) using iterated function
systems (IFS). Next, we present how this mathematical
model can be implemented to calculate and visualize
geometric shapes.
In section 1.2, we set out an extension of the IFS, allowing
us to move away from strict self-similarity and generate a
larger family of forms. This extension is called a controlled
iterated function system (C-IFS).
Finally, the final step in formalization is to enhance the C-
IFS model with the notion of boundary representation (B-
rep). This step is fundamental because it will make it
possible to describe and control the topology of fractal
forms.

1.1. Self-similarity and IFS
In this book, when we talk about fractal shapes, fractal
objects or simply fractals, it is in the sense of self-similar
objects.
There are different definitions of self-similarity. For
example, in the field of image processing, an image is
considered self-similar when certain parts of that image are
identical to (or “look alike”) other parts. This property is
exploited, in particular, by inpainting, a technique that
consists of reconstructing part of a damaged or deliberately
subtracted image (for example, to erase a character). The



property of self-similarity is often verified with natural
images, which is why inpainting algorithms are so
successful. The principle is to look for an area similar to the
area that needs to be filled in, and copy it over the missing
area.
In fractal geometry, it has a different meaning.
DEFINITION.– An object is called self-similar if it is
composed of copies of itself.
This definition is not rigorous and further clarification has
to be provided. Nonetheless, it contains the main idea.
Rather than describing the complex structure of an object,
we describe its parts using a reference to the object itself.
It is therefore a self-referential or recursive definition.
For example, we can describe the structure of a tree as
being composed of several parts: its main branches (see
Figure 1.1). Each of its parts can be considered as a
smaller tree.

Figure 1.1. Schematic illustration of self-similarity. The
black tree can be seen as a composition of two trees (in
green and red). For a color version of this figure, see
www.iste.co.uk/gentil/geometric.zip
In this example, we understand how a complex shape, such
as that of a tree, can be simply described. Self-similarity
provides information about the structure of the object with
a different approach from that of standard geometric

https://www.iste.co.uk/gentil/geometric.zip


representations. By referring to the parts of the object, we
study the details of the shape, in other words we perform a
change of scale. Each detail is then described according to
the object itself, namely as if the detail “looked like” a
reduced version of the object. The tree is made up of
branches. Each branch is defined as a tree. We can then
apply thereto the definition of the tree: it is a composition
of branches. This reasoning can then be indefinitely
iterated.
From this definition and this introductory example, a
number of questions immediately arise:

– Is this description relevant?
– Which objects are self-similar?
– What does it mean when a detail “looks like” the
object?
– Is the shape of an object completely determined from
its self-similarity?
– Knowing the self-similarity property, is it possible to
reproduce its shape?
– Can an object possess different self-similarities?

In order to better understand the self-similarity property
and provide an early answer to some of these questions, we
are going to consider a second example. However this time,
we start from an object whose shape is not a priori known,
but its self-similarity property is. Assume that this object
consists of five main parts, each of which is an exact copy
of the object on a smaller scale.
The left part of Figure 1.2 shows each part, symbolized by
an arbitrarily chosen shape, a square in this case. In this
illustration, each part is not identical to the overall
structure. To meet the definition of self-similarity, we need



to replace each part with the overall composite structure of
the five forms. We thus obtain the image in the center of
Figure 1.2. However, by adding details to the details, we
have also added details to the overall structure that were
not initially present. There is always a discrepancy between
the details of the overall form and the details of each part.
By iterating this construction to reduce this discrepancy,
the same effect will then be observed. Consistency between
the object and each of its parts can only be achieved if the
process is applied an infinite number of times to obtain a
result like the image on the right

Figure 1.2. An example of a self-similar object composed
of five copies of itself. These five main parts are symbolized
on the left by the five squares. In the center, each square
has been replaced by the overall form composed of the five
parts. On the right-hand side, the same construction
process has been applied seven times
From the second example, the following observations can
be derived:

– It shows how from the definition of self-similarity
alone, a form can be built.
– It brings forward the recursive aspect of the
definition.
– To obtain the final form, the construction process
must be applied an infinite number of times. From a
mathematical point of view, this is not a problem, but it


