

Table of Contents
Cover
Title page
Copyright
Preface
Introduction

I.1. Fractals for industry: what for?
I.2. Fractals for industry: how?

1 The BC-IFS Model
1.1. Self-similarity and IFS
1.2. Controlled Iterated Function System
1.3. Boundary controlled iterated function system

2 Design Examples
2.1. Curves
2.2. Wired structures
2.3. Surfaces and laces
2.4. Volumes and lacunar objects
2.5. Tree structures
2.6. Form assembly

3 Surface NURBS, Subdivision Surfaces and BC-IFS
3.1. Bezier curves and surfaces
3.2. Uniform B-spline curves and surfaces
3.3. Generalization
3.4. NURBS curves
3.5. Subdivision curves and surfaces

4 Building Operations, Assistance to Design and
Applications

file:///tmp/calibre_5.42.0_tmp_se3hpgat/macb3uov_pdf_out/OPS/cover.xhtml

4.1. Topological consistency and symmetry
constraints
4.2. Topological combination
4.3. Applications

Conclusion
Appendix: Data of Figures

A.1. Data of figures
A.2. Subdivision surface in Figure 3.6

References
Index
Other titles from ISTE in Numerical Methods in
Engineering
End User License Agreement

List of Illustrations
Introduction

Figure I.1. 3D tree built by iterative modeling
(source: project MODITERE no. AN...

Chapter 1
Figure 1.1. Schematic illustration of self-similarity.
The black tree can be see...
Figure 1.2. An example of a self-similar object
composed of five copies of itsel...
Figure 1.3. The self-similarity property, as shown in
Figure 1.2, is symbolized ...
Figure 1.4. Hausdorff distance. For a color version
of this figure, see www.iste...
Figure 1.5. Example of self-similarity involving non-
contractive transformations...

Figure 1.6. The Cantor set successively represented
at the iteration levels from...
Figure 1.7. Cartesian product of two Cantor sets
successively represented at ite...
Figure 1.8. The Sierpinski triangle successively
represented at iteration levels...
Figure 1.9. The Menger sponge successively
represented at iteration levels from ...
Figure 1.10. Example of Romanesco broccoli
consisting of seven self-similar elem...
Figure 1.11. On the left-hand side, we provide a few
examples of self-similarity...
Figure 1.12. Example of a decomposition of an L-
shape into several similar eleme...
Figure 1.13. Example of self-similarity. The object
on the left-hand side has a ...
Figure 1.14. Lattice structure of the attractors. On
the left, the lattice struc...
Figure 1.15. An example of a connection between
two attractors. The green attrac...
Figure 1.16. The evaluation tree of the attractor of
the IFS computed at the thi...
Figure 1.17. Example of the parameterization of the
attractor in Figure 1.13. On...
Figure 1.18. Example of a transport mapping that
defines a morphism of IFS. For ...
Figure 1.19. Example of mapping between two
attractors using the transport map. ...
Figure 1.20. Attractor defining the parameter space
for the Sierpinski triangle ...

Figure 1.21. Automaton of an IFS .
The transition i is associated with the tran...
Figure 1.22. Example of a three-state automaton
inducing a restriction of the se...
Figure 1.23. Both images represent the attractors
defined from the same transfor...
Figure 1.24. Other examples of attractors built
from the same automatons as thos...
Figure 1.25. Automaton generating the union of
two attractors. Transitions 0 and...
Figure 1.26. The internal structure of the Menger
sponge. On the left, the inter...
Figure 1.27. Automaton describing the structure of
the image on the right-hand s...
Figure 1.28. Example of a two-state automaton: the
□ is divided into four △ and ...
Figure 1.29. Construction of the sequence
converging to the attractor of the aut...
Figure 1.30. Approximation of the automaton
attractor of Figure 1.28 obtained wi...
Figure 1.31. Evaluation tree developed at level 2,
for the attractor of the auto...
Figure 1.32. Example of a third-degree B-spline
surface defined from a grid of c...
Figure 1.33. The surface, at the top right, is a
smooth B-spline surface and has...
Figure 1.34. Example of a curve constructed based
on an FIF. The parallelepipeds...
Figure 1.35. Barycentric space. On the left, the
barycentric space of dimension ...

Figure 1.36. Cantor set built in the barycentric
space BI2 using the IFS compose...
Figure 1.37. Sierpinski triangle built in the
barycentric space BI3. For a color...
Figure 1.38. Example of projections of the
Sierpinski triangle. The attractor is...
Figure 1.39. Example of a two-state automaton. The
□ is divided into three □ and...
Figure 1.40. Three different projections of the
attractor described by the autom...
Figure 1.41. Automaton defining the attractor in
the barycentric spaces and perf...
Figure 1.42. Curve of the “Takagi” type, defined
from three control points and t...
Figure 1.43. Incidence constraints. On the left:
Three curves of the “Takagi” ty...
Figure 1.44. Example of the construction of a
connection between the subdivision...
Figure 1.45. Automaton integrating the cellular
decomposition of a curve subdivi...
Figure 1.46. Tree for a curve. For a color version of
this figure, see www.iste....
Figure 1.47. Quotient graph for a curve. For a color
version of this figure, see...
Figure 1.48. Example of curves generated for
different parameter values. For a c...
Figure 1.49. Attractor built from the IFS
whose subdivision operators correspo...

Figure 1.50. Subdivision structure of the tile. For a
color version of this figu...
Figure 1.51. Automaton for the subdivision of a
quadrangular surface. For a colo...
Figure 1.52. Cell structure of a quadrangular tile.
For a color version of this ...
Figure 1.53. Example of a quadrangular surface.
For a color version of this figu...
Figure 1.54. Example of a quadrangular surface
bordered by Bezier curves with an...
Figure 1.55. Example of a quadrangular surface
structure bordered by Bezier curv...
Figure 1.56. Example of a surface structure with
fractal topology, obtained from...
Figure 1.57. Example of the quadrangular surface
bordered by Bezier curves with ...
Figure 1.58. Example of curves projected into the
modeling space , following th...
Figure 1.59. Example of curves projected into the
modeling space , following th...
Figure 1.60. Example of curves projected into the
modeling space , following th...
Figure 1.61. Example of a network of control points
for a triangular surface tha...

Chapter 2
Figure 2.1. “Standard” automaton for a curve.
Transitions referred to by the sym...
Figure 2.2. Examples of curves constructed using
two transformations. The contro...

Figure 2.3. A tree illustrating another possibility for
connecting the subdivisi...
Figure 2.4. Comparison of the effect of the two
types of connection, standard an...
Figure 2.5. Examples of curves constructed using
three transformations whose ver...
Figure 2.6. Examples of von Koch curves
constructed with two transformations (to...
Figure 2.7. Left-hand column: for the first figure,
the first subdivision point ...
Figure 2.8. Automaton describing a CA curve
subdivided into a CA-type curve and ...
Figure 2.9. Example of a curve obtained with two
mutually referenced states acco...
Figure 2.10. Tree illustrating the construction of a
connection for a wired stru...
Figure 2.11. Example of two wired structures built
from the incidence and adjace...
Figure 2.12. Examples of wired structures. The
diagrams above each shape represe...
Figure 2.13. Diagram of the cellular decomposition
of a quadrangular surface wit...
Figure 2.14. Example of subdivision of a
quadrangular surface with “non-standard...
Figure 2.15. Connections to build a Hilbert/Peano
curve. The red circles show th...
Figure 2.16. Example of a curve attempt that
satisfies the adjacency relations i...
Figure 2.17. Subdivision of a quadrangular surface
satisfying the constraints of...

Figure 2.18. Example of a Hilbert/Peano surface,
defined from the subdivision of...
Figure 2.19. The diagram on the right-hand side
presents the quadrangular subdiv...
Figure 2.20. To achieve a quadrangular surface
from two subdivisions, we need to...
Figure 2.21. Automaton symbolizing the subdivision
system of a quadrangular surf...
Figure 2.22. Example of a quadrangular surface
with two subdivisions. For this i...
Figure 2.23. Standard triangular subdivision. The
triangular face is subdivided ...
Figure 2.24. Standard triangular subdivision, but
with connections differing fro...
Figure 2.25. Pentagonal subdivision. On the left,
the incidence relations are sy...
Figure 2.26. On the left, incidence relations are
symbolized using red dotted li...
Figure 2.27. Cellular decomposition and subdivision
of the Sierpinski triangle. ...
Figure 2.28. Cellular decomposition and subdivision
of the Sierpinski triangle w...
Figure 2.29. Example of a Sierpinski triangle whose
face, edges and vertices hav...
Figure 2.30. Example of a Sierpinski triangle whose
edges are uniform quadratic ...
Figure 2.31. Penrose tiling of the “kite” type at
iterations 1, 2, 3 and 6. For ...
Figure 2.32. Topological subdivision diagram of the
faces and edges representing...

Figure 2.33. Example of 3D surfaces constructed
from the topological subdivision...
Figure 2.34. Examples of the Menger sponge,
represented with three iteration lev...
Figure 2.35. Example of the construction of a 2D
tree structure, consisting of t...
Figure 2.36. Subdivision process of the tree
structure of Figure 2.35 and cell d...
Figure 2.37. Automaton describing the iterative
construction process of the tree...
Figure 2.38. Examples of projection of the tree’s
topological structure, defined...
Figure 2.39. Subdivision process of a tree structure
whose trunk is subdivided i...
Figure 2.40. Automaton describing the iterative
construction process of the tree...
Figure 2.41. Example of a tree structure whose
trunk (green) is not subdivided (...
Figure 2.42. Simplified representation of the
incidence and adjacency relations ...
Figure 2.43. 3D tree built on the principle of space
tiling(source: project MODI...
Figure 2.44. Example of assembling fractal
structures (built from an octagonal f...
Figure 2.45. Example of an assembly of triangular
surface structures. The basic ...
Figure 2.46. Examples of assemblies of pentagonal
fractal faces following a dode...
Figure 2.47. Assembly of 10 3D Penrose tilings of
the “kite”-type to form the co...

Figure 2.48. Examples of assemblies built from
Menger sponges and manufactured b...

Chapter 3
Figure 3.1. On the left is an example of a quadratic
Bezier curve, defined by th...
Figure 3.2. C-IFS automaton whose attractor is a
Bezier curve. This automaton si...
Figure 3.3. Illustration of the self-similarity
property of uniform quadratic B-...
Figure 3.4. Blending B-spline functions of the
second degree. Their support is o...
Figure 3.5. The control points (P0, P1, P2, P3) and
the knot vector (u0, u1, u2,...

Figure 3.6. Subdivision scheme obtained by
duplication of knots
Figure 3.7. Automaton of the C-IFS representing
the iterative process of a secon...
Figure 3.8. From left to right: The non-uniform
quadratic curve defined from fou...
Figure 3.9. Automaton of the C-IFS representing
the subdivision of a third-degre...
Figure 3.10. The top diagram represents the knot
interval vector of a curve of d...
Figure 3.11. Illustration of the extraction of the
knot vectors from the two cur...
Figure 3.12. Subdivision process of a NURBS
surface of degree 2, obtained by the...
Figure 3.13. Automaton of the C-IFS representing
the subdivision of a NURBS surf...

Figure 3.14. C-IFS automaton whose attractor is a
subdivision curve built from t...
Figure 3.15. Approximations of a uniform cubic B-
spline curve for levels 0 to 6:...
Figure 3.16. Refinement of a regular control mesh.
In red: Minimal control mesh ...
Figure 3.17. Self-similarity of the refined mesh.
Each of the four blue sub-mesh...
Figure 3.18. Automaton of a subdivision surface for
the Doo–Sabin scheme
Figure 3.19. Refinement of an irregular control
mesh. In red: Minimal control me...
Figure 3.20. Self-similarity of the refined mesh. In
blue, the four sub-meshes o...
Figure 3.21. Automaton of a surface subdivision for
the Doo–Sabin scheme with an...
Figure 3.22. Adjacency and incidence constraints.
On the left: Example of an adj...
Figure 3.23. Control points defining one of the
irregular edges. The irregular e...
Figure 3.24. Illustration of incidence and adjacency
constraints for an irregula...
Figure 3.25. Representation of the topological
subdivision process of an irregul...
Figure 3.26. Cell decomposition of an irregular tile.
The constraints are repres...
Figure 3.27. Subdivision of an irregular tile with an
irregular face of six side...
Figure 3.28. Catmull subdivision of a regular tile

Figure 3.29. The four sub-meshes of 4 × 4 control
points are represented in blue...
Figure 3.30. Example of an irregular mesh with a
vertex of valence five. After r...
Figure 3.31. Illustration of the Loop subdivision.
Figure 3.31(a) is an illustra...
Figure 3.32. Refinement of a regular control mesh
for the Loop scheme. The struc...
Figure 3.33. Self-similarity of the refined mesh for
the Loop scheme. Decomposit...

Chapter 4
Figure 4.1. Example of the user interface of
“MODITERE”, the iterative modeler d...
Figure 4.2. Example of orientation constraints of
edges for the definition of th...
Figure 4.3. Example of configuration of edge
orientation for the attractor of Fi...
Figure 4.4. Issues in the orientation of edges. On
the left, the connection for ...
Figure 4.5. Definition and application of the
permutation operator. On the left,...
Figure 4.6. Construction of a connection between
two edges of opposite orientati...
Figure 4.7. The three curves have a single internal
dimension, and vertices of d...
Figure 4.8. The definition of the connections for
volume cells can prove complex...
Figure 4.9. Illustration of the definitions of face
permutations: on the left, a...

Figure 4.10. Examples of construction of the
topological tensor product. For a c...
Figure 4.11. Example of cellular decomposition of a
tensor product of two curves...
Figure 4.12. Automaton of the curve a
Figure 4.13. Quotient graph of curve a
Figure 4.14. Automaton of a surface automatically
generated from the automatons ...
Figure 4.15. Quotient graph of a surface induced by
adjacency relations combinin...
Figure 4.16. Quotient graph obtained from
adjacency relations on incidence opera...
Figure 4.17. Automaton of a volume structure
obtained by tensor product of three...
Figure 4.18. Example of an automatically generated
tree, whose leaves will perfe...
Figure 4.19. First stages of subdividing a tree
bordered by a curve
Figure 4.20. The types of subdivisions of the tree
depend on the types of edge s...
Figure 4.21. Automaton representing a tree
structure whose set of leaves is divi...
Figure 4.22. Double trees bordered by
quadrangular surfaces
Figure 4.23. Example of surface obtained by the
tensor product of a NURBS curve ...
Figure 4.24. Automaton representing the
construction of a connection structure b...

Figure 4.25. Connection subdivision process. The
red, green and blue mesh, respe...
Figure 4.26. Connections built between different
pairs of surfaces: a Doo–Sabin ...
Figure 4.27. Example of a lacunar surface, co-
imagined by architects (IBOIS-EPFL...
Figure 4.28. Example of the definition of a 2D
lacunar structure by tiling the p...
Figure 4.29. Example of construction of the Menger
sponge. In red, the cube is d...
Figure 4.30. Lacunar structures obtained by
removing the central part of a regul...
Figure 4.31. Menger–Excoffier sponge with walls of
the same thickness between ea...
Figure 4.32. The Menger–Excoffier sponge is built
from two subdivision systems o...
Figure 4.33. For the Menger–Excoffier sponge, the
two 3D subdivision systems are...
Figure 4.34. “Triangle”-type cells have been added
to the structure of Figure 4....
Figure 4.35. Design of a lacunar structure from two
types of cell: a tetrahedron...
Figure 4.36. Two copies of the 3D lacunar
topological structure obtained from th...
Figure 4.37. Prototypes designed by assembly of
tetrahedral structures shown in ...
Figure 4.38. Illustration of the topological
subdivision of the lacunar face. Fo...
Figure 4.39. Lacunar face at iteration levels 3 (on
the left) and 4 (in the cent...

Figure 4.40. Illustration of the cellular
decomposition and the subdivision proc...
Figure 4.41. Example of the design of a lacunar
structure, built from a truncate...
Figure 4.42. Example of filling using porous
volumes. On the left, the geometry ...
Figure 4.43. Examples of the design of lacunar
structures through the assembly o...
Figure 4.44. Assembly according to the structure of
a diamond. On the left, an e...
Figure 4.45. Examples of rough surfaces. For a
color version of this figure, see...
Figure 4.46. Example of a variant of the Von Koch
curve filling up almost an ent...
Figure 4.47. Example of a rough, or even chaotic,
surface, designed on the princ...
Figure 4.48. Both surfaces are designed from the
same topological structure as s...
Figure 4.49. Example of a self-supporting hull, built
by wood panel assembly (IB...
Figure 4.50. On top, prototype of the thermal
exchanger manufactured in aluminum...
Figure 4.51. Construction of the display primitive
linking two levels of the exc...
Figure 4.52. Internal structure of the switch. For a
color version of this figur...

Geometric Modeling and Applications Set
coordinated by
Marc Daniel

Volume 5

Geometric Modeling of
Fractal Forms for CAD
Christian Gentil

Gilles Gouaty

Dmitry Sokolov

First published 2021 in Great Britain and the United States by ISTE Ltd and
John Wiley & Sons, Inc.
Apart from any fair dealing for the purposes of research or private study, or
criticism or review, as permitted under the Copyright, Designs and Patents Act
1988, this publication may only be reproduced, stored or transmitted, in any
form or by any means, with the prior permission in writing of the publishers, or
in the case of reprographic reproduction in accordance with the terms and
licenses issued by the CLA. Enquiries concerning reproduction outside these
terms should be sent to the publishers at the undermentioned address:
ISTE Ltd
27-37 St George’s Road
London SW19 4EU
UK
www.iste.co.uk
John Wiley & Sons, Inc.
111 River Street
Hoboken, NJ 07030
USA
www.wiley.com
© ISTE Ltd 2021
The rights of Christian Gentil, Gilles Gouaty and Dmitry Sokolov to be identified
as the authors of this work have been asserted by them in accordance with the
Copyright, Designs and Patents Act 1988.
Library of Congress Control Number: 2021932086
British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-040-9

https://www.iste.co.uk/
https://www.wiley.com/

Preface
This work introduces a model of geometric representation
for describing and manipulating complex non-standard
shapes such as rough surfaces or porous volumes. It is
aimed at students in scientific education (mathematicians,
computer scientists, physicists, etc.), engineers,
researchers or anyone familiar with the mathematical
concepts addressed at early stages of the graduate level.
However, many parts are accessible to all, in particular, all
introductory sections that present ideas with examples.
People with no prior background, whether they are artists,
designers or simply curious, will be able to understand the
philosophy of our approach, and discover a new universe of
unsuspected and exciting forms.
Geometric representation models are mathematical tools
integrated into computer-aided geometric design (CAGD)
software. They make the production of numerical
representations of forms possible. By means of graphical
interfaces or programming tools, users can draw and/or
manipulate these shapes. They can also test or evaluate
their physical properties (mechanical, electro-magnetic,
acoustic, etc.) by communicating geometric descriptions to
further specific numerical simulation software.
The geometric representation model we present here is
based on the fractal geometry paradigm. The principle
behind this consists of studying the properties (signal,
geometry, phenomena, etc.) at different scales and
identifying the invariants from there. The objects are
described as self-referential between two scales: each of
the object features (namely, the lower scale level) is
described as a reference to the object itself (namely, the
higher scale). This approach is not conventional and often

confusing at first. We come to perceive its richness and
power very quickly, however. The universe of forms that
can possibly be created is infinite and has still only partially
been explored.
In this book, we present the mathematical foundations, so
that the reader can access all the information to
understand, test and make use of this model. Properties,
theorems and construction methods are supplemented with
algorithms and numerous examples and illustrations.
Concerning the formalization, we have chosen to use
precise and rigorous mathematical notations to remove any
ambiguity and make understanding easier.
Readers unwilling to be concerned with mathematical
formalisms can get to grips with the philosophy of our
approach by focusing on the sections found at the
beginnings of the chapters, in which ideas and principles
are intuitively presented, based on examples.
This book is the result of 25 years of research carried out
mainly in the LIRIS laboratories of the University of Lyon I
and LIB of the University of Burgundy Franche-Comté. This
research was initiated by Eric Tosan, who was instrumental
at the origin of this formalism and to whom we dedicate
this work.

Christian GENTIL
Gilles GOUATY
Dmitry SOKOLOV

February 2021

Introduction

I.1. Fractals for industry: what for?
This book shows our first steps toward the fundamental and
applied aspects of geometric modeling. This area of
research addresses the acquisition, analysis and
optimization of the numerical representation of 3D objects.

Figure I.1. 3D tree built by iterative modeling
(source: project MODITERE no. ANR-09-COSI-014)

Figure I.1 shows an example of a structure that admits high
vertical loads, while minimizing the transfer of heat
between the top and bottom of the part. Additive
manufacturing (3D printing) allows, for the first time, the
creation of such complex objects, even in metal (here with
a high-end laser printer EOS M270). This type of
technology will have a high societal and economic impact,
enabling better systems to be created (engines, cars,
airplanes, etc.), designed and adapted numerically for
optimal functionality, thus consuming less raw material, for
their manufacturing, and energy, when used.

Current computer-aided design is, however, not well suited
to the generation of such types of objects. For centuries, for
millennia, humanity has produced goods with axes, files (or
other sharp or planing tools), by removing bits from a piece
of wood or plastic. Tools subsequently evolved into complex
numerical milling machines. However, at no point during
these manufacturing processes did we need sudden stops
or permanent changes in the direction of the cutting tool.
The patterns were always “regular”, hence the
development of mathematics specific to these problems and
our excellent knowledge of the modeling of smooth objects.
This is why it was necessary to wait until the 20th century
to have the mathematical knowledge needed to model
rough surfaces or porous structures: we were just not able
to produce them earlier.
Thus, since the development of computers in the 1950s,
computer-aided geometric design (CAGD or CAD) software
has been developed to represent geometric shapes
intended to be manufactured by standard manufacturing
processes. These processes are as follows:

– subtractive manufacturing, using machine tools such
as lathes or milling machines;
– molding, where molds themselves are made using
machine tools;
– deformation-based manufacturing: stamping or
swaging (but again, dies are usually manufactured
using machine tools), folding, etc.;
– cutting, etc.

Each of these processes imposes constraints, for example,
concerning collision issues in milling machines (even a five-
axis mill cannot produce any geometry). These
manufacturing processes inevitably influenced the way we

design the geometries of objects, in order to actually
manufacture them. For example, CAD software has
integrated these design methodologies by developing
appropriate numerical models or tools. Currently, most
CAD software programs are based on the representation of
shapes by means of surfaces defining their edges. These
surfaces are usually described using a parametric
representation called non-uniform rational B-spline
(NURBS). These surface models are very powerful and very
practical. It is possible to represent any volume enclosed by
a quadric (cylinders, cones, spheres, etc.) and complex
shapes, such as car bodies or airplane wings. They were
originally designed for this.
However, the emergence of additive manufacturing
techniques has caused an upheaval in this area, opening up
the possibility of potentially “manufacturable” forms. By
removing the footprint constraint of the tool, it then
becomes possible to produce very complex shapes with
gaps or porosity. These new techniques have called into
question the way objects are designed. New types of
objects, such as porous objects or rough surfaces, can have
many advantages, due to their specific physical properties.
Fractal structures are used in numerous fields such as
architecture (Rian and Sassone 2014), jewelry (Soo et al.
2006), heat and mass transport (Pence 2010), antennas
(Puente et al. 1996; Cohen 1997) and acoustic absorption
(Sapoval et al. 1997).

I.2. Fractals for industry: how?
The emergence of techniques such as 3D printers allows
for new possibilities that are not yet used or are even
unexplored. Different mathematical models and algorithms
have been developed to generate fractals. We can
categorize them into three families, as follows:

– the first groups algorithms for calculating the
attraction basins of a given function. Julia and
Mandelbrot (Peitgen and Richter 1986) or the
Mandelbulb (Aron 2009) sets are just a few examples;
– the second is based on the simulation of phenomena
such as percolation or diffusion (Falconer 1990);
– the last corresponds to deterministic or probabilistic
algorithms or models based on the self-similarity
property associated with fractals such as the terrain
generator (Zhou et al. 2007), the iterated function
system (Barnsley et al. 2008) or the L-system
(Prusinkiewicz and Lindenmayer 1990).

In the latter family of methods, shapes are generated from
rewriting rules, making it possible to control the geometry.
Nevertheless, most of these models have been developed
for image synthesis, with no concerns for
“manufacturability”, or have been developed for very
specific applications, such as wood modeling (Terraz et al.
2009). Some studies approach this aspect for applications
specific to 3D printers (Soo et al. 2006). In (Barnsley and
Vince 2013b), Barnsley defines fractal homeomorphisms of
[0, 1]2 onto the modeling space [0, 1]2. The same approach
is used in 3D to build 3D fractals. A standard 3D object is
integrated into [0, 1]3 and then transformed into a 3D
fractal object. This approach preserves the topology of the
original object, which is an important point for
“manufacturability”.
The main difficulty associated with traditional methods for
generating fractals lies in controlling the forms. For
example, it is difficult to obtain the desired shape using the
fractal homeomorphism system proposed by Barnsley.
Here, we develop a modeling system of a new type based
on the principles of existing CAD software, while expanding

their capabilities and areas of application. This new
modeling system offers designers (engineers in industry)
and creators (visual artists, designers, architects, etc.) new
opportunities to quickly design and produce a model,
prototype or unique object. Our approach consists of
expanding the possibilities of a standard CAD system by
including fractal shapes, while preserving ease of use for
end users.
We propose a formalism based on standard iterated
function systems (IFS) enhanced by the concept of
boundary representation (B-rep). This makes it possible to
separate the topology of the final forms from the geometric
texture, which greatly simplifies the design process. This
approach is powerful, and it generalizes subdivision curves
and standard surfaces (linear, stationary), allowing for
additional control. For example, we have been able to
propose a method for connecting a primal subdivision
scheme surface with a dual subdivision scheme surface
(Podkorytov et al. 2014), which is a difficult subject for the
standard subdivision approach.
The first chapter recalls the notion of self-similarity,
intimately linked to that of fractality. We present the IFS,
formalizing this property of self-similarity. We then
introduce enhancements into this model: controlled
iterated function systems (C-IFS) and boundary controlled
iterated function systems (BC-IFS). The second chapter is
devoted to examples. It provides an overview of the
possibilities of description and modeling of BC-IFS, but also
allows better understanding the principle of the model
through examples. The third chapter presents the link
between BC-IFS, the NURBS surface model and subdivision
surfaces. The results presented in this chapter are
important because they show that these surface models are
specific cases of BC-IFS. This allows them to be
manipulated with the same formalism and to make them

interact by building, for example, junctions between two
surfaces of any kind. In the fourth chapter, we outline
design tools that facilitate the description process, as well
as examples of the applications, of the design of porous
volumes and rough surfaces.

1
The BC-IFS Model
In this chapter, in section 1.1, we begin by intuitively
introducing the notion of self-similarity. Then, in section
1.1.2, we give its mathematical formulation as proposed by
Hutchinson (Hutchinson 1981) using iterated function
systems (IFS). Next, we present how this mathematical
model can be implemented to calculate and visualize
geometric shapes.
In section 1.2, we set out an extension of the IFS, allowing
us to move away from strict self-similarity and generate a
larger family of forms. This extension is called a controlled
iterated function system (C-IFS).
Finally, the final step in formalization is to enhance the C-
IFS model with the notion of boundary representation (B-
rep). This step is fundamental because it will make it
possible to describe and control the topology of fractal
forms.

1.1. Self-similarity and IFS
In this book, when we talk about fractal shapes, fractal
objects or simply fractals, it is in the sense of self-similar
objects.
There are different definitions of self-similarity. For
example, in the field of image processing, an image is
considered self-similar when certain parts of that image are
identical to (or “look alike”) other parts. This property is
exploited, in particular, by inpainting, a technique that
consists of reconstructing part of a damaged or deliberately
subtracted image (for example, to erase a character). The

property of self-similarity is often verified with natural
images, which is why inpainting algorithms are so
successful. The principle is to look for an area similar to the
area that needs to be filled in, and copy it over the missing
area.
In fractal geometry, it has a different meaning.
DEFINITION.– An object is called self-similar if it is
composed of copies of itself.
This definition is not rigorous and further clarification has
to be provided. Nonetheless, it contains the main idea.
Rather than describing the complex structure of an object,
we describe its parts using a reference to the object itself.
It is therefore a self-referential or recursive definition.
For example, we can describe the structure of a tree as
being composed of several parts: its main branches (see
Figure 1.1). Each of its parts can be considered as a
smaller tree.

Figure 1.1. Schematic illustration of self-similarity. The
black tree can be seen as a composition of two trees (in
green and red). For a color version of this figure, see
www.iste.co.uk/gentil/geometric.zip
In this example, we understand how a complex shape, such
as that of a tree, can be simply described. Self-similarity
provides information about the structure of the object with
a different approach from that of standard geometric

https://www.iste.co.uk/gentil/geometric.zip

representations. By referring to the parts of the object, we
study the details of the shape, in other words we perform a
change of scale. Each detail is then described according to
the object itself, namely as if the detail “looked like” a
reduced version of the object. The tree is made up of
branches. Each branch is defined as a tree. We can then
apply thereto the definition of the tree: it is a composition
of branches. This reasoning can then be indefinitely
iterated.
From this definition and this introductory example, a
number of questions immediately arise:

– Is this description relevant?
– Which objects are self-similar?
– What does it mean when a detail “looks like” the
object?
– Is the shape of an object completely determined from
its self-similarity?
– Knowing the self-similarity property, is it possible to
reproduce its shape?
– Can an object possess different self-similarities?

In order to better understand the self-similarity property
and provide an early answer to some of these questions, we
are going to consider a second example. However this time,
we start from an object whose shape is not a priori known,
but its self-similarity property is. Assume that this object
consists of five main parts, each of which is an exact copy
of the object on a smaller scale.
The left part of Figure 1.2 shows each part, symbolized by
an arbitrarily chosen shape, a square in this case. In this
illustration, each part is not identical to the overall
structure. To meet the definition of self-similarity, we need

to replace each part with the overall composite structure of
the five forms. We thus obtain the image in the center of
Figure 1.2. However, by adding details to the details, we
have also added details to the overall structure that were
not initially present. There is always a discrepancy between
the details of the overall form and the details of each part.
By iterating this construction to reduce this discrepancy,
the same effect will then be observed. Consistency between
the object and each of its parts can only be achieved if the
process is applied an infinite number of times to obtain a
result like the image on the right

Figure 1.2. An example of a self-similar object composed
of five copies of itself. These five main parts are symbolized
on the left by the five squares. In the center, each square
has been replaced by the overall form composed of the five
parts. On the right-hand side, the same construction
process has been applied seven times
From the second example, the following observations can
be derived:

– It shows how from the definition of self-similarity
alone, a form can be built.
– It brings forward the recursive aspect of the
definition.
– To obtain the final form, the construction process
must be applied an infinite number of times. From a
mathematical point of view, this is not a problem, but it

