Chuang Wen Yuying Yan *Editors*

Advances in Heat Transfer and Thermal Engineering Proceedings of 16th UK Heat Transfer

Proceedings of 16th UK Heat Transfer Conference (UKHTC2019)

Advances in Heat Transfer and Thermal Engineering

Chuang Wen · Yuying Yan Editors

Advances in Heat Transfer and Thermal Engineering

Proceedings of 16th UK Heat Transfer Conference (UKHTC2019)

Editors Chuang Wen Faculty of Engineering University of Nottingham Nottingham, UK

Yuying Yan Faculty of Engineering University of Nottingham Nottingham, UK

ISBN 978-981-33-4764-9 ISBN 978-981-33-4765-6 (eBook) https://doi.org/10.1007/978-981-33-4765-6

© Springer Nature Singapore Pte Ltd. 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Nowadays, we are facing ever-severe crisis of conventional energy resources and pollutions, increasing demand for new energy resources and applications, and significant challenges for the technologies of efficient cooling, heat and mass transfer enhancement, and effective thermal management, etc. These have become crucially important for almost all engineering area and industries such as mechanical, aerospace, civil and building, chemical and process, electric and electronic, pharmaceutical and medical, as well as power industries.

Over the more than 100 years development, heat transfer has now become a cross-disciplinary subject. The study on micro-nano scale heat transfer has played an important role in the research progress of material science, and the development of biomedical engineering, etc. The 16th UK Heat Transfer Conference (UKHTC2019) addressed these challenges. The conference gathered the UK active and leading researchers typically many young and new academic colleagues, as well as the researchers from heat transfer communities of Europe, North Americans, Australia, South Africa, Kuwait, Japan, and China, etc.

The conference was aimed at a closer collaboration and cooperation between the UK and international scholars in the field of heat transfer. The UK National Heat Transfer Committee organised this conference biennially to provide an innovative platform for scholars in thermal engineering to share and exchange new ideas and solutions. Six plenary and three keynote lectures and more than 190 papers were presented at UKHTC2019 throughout two days in four sets of seven parallel oral sessions. The proceedings in the title of *Advances in Heat Transfer and Thermal Engineering* contains selected and the authors agreed extended abstracts or papers that cover almost all the topics in heat transfer and thermal engineering.

We would like to thank all authors for their contributions to UKHTC2019 and thank the staff members of the University of Nottingham to provide active assistance during the preparation stage of this conference. We send our sincere gratitude to the dedicated reviewers for their time and contribution to improve the scientific quality of the manuscripts. We also would like to acknowledge the support received from the sponsors. We hope that the emerging solutions described in the conference proceedings will inspire our academic and industrial communities to create, innovate, and build a more energy-efficient world.

Nottingham, UK

Chuang Wen Yuying Yan

Convection

Natural Convection from Heated Surface-Mounted Circular	_
Cylinder H. Malah, Y. S. Chumakov, and S. Ramzani Movafagh	3
Experimental Investigation of Transitional Flow Forced Convection Heat Transfer Through a Smooth Vertical Tube with a Square-Edged Inlet Abubakar I. Bashir, Marilize Everts, and Josua P. Meyer	9
Effects of Rarefied Effect, Axial Conduction, and Viscous Dissipation on Convective Heat Transfer in 2D Parallel Plate Microchannel or Nanochannel with Walls at Uniform Temperature Qiangqiang Sun, Kwing-So Choi, and Xuerui Mao	15
Enhancement of Laminar Natural Convection Heat Transfer in Horizontal Annuli Using Two Fins A. El Amraoui, A. Cheddadi, and M. T. Ouazzani	23
A Computational Study of Ultrasound-Enhanced Convective Heat Transfer Raheem Abbas Nabi, Yi Sui, and Xi Jiang	29
Boiling-Evaporation-Condensation	
Wall Effects on the Thermocapillary Migration of SingleFluorinert Droplet in Silicon Oil LiquidYousuf Alhendal and Ali Turan	37
Modelling of Flash Boiling in Two-Phase Geothermal Turbine S. Rane and L. He	45
Experimental Investigation on Flash Evaporation of Pure Water at Different Depths with Functional Analysis Method Siguang Li, Yanjun Li, Longbin Yang, Xiaojin Zhang, and Runzhang Xu	51

Contents	5
----------	---

55

59

Investigation on the Characteristics of Droplet Evaporation Under Different Heating Conditions Using Lattice Boltzmann Method Li Wang, Yuying Yan, and Nick Miles
Evaporating Progress of Hexane Droplet on the Surface of Nacl Solution
Numerical Simulation on Heat Transfer Characteristics

Numerical Simulation on Heat Transfer Characteristics	
of Steam-Water Two-Phase Flow in Smooth Tube and Rifled Tube	63
Wanze Wu, Baozhi Sun, Jianxin Shi, Xiang Yu, and Zhirui Zhao	
Lubrication Model for Vapor Absorption/Desorption	

of Hygroscopic Liquid Desiccant Droplets Zhenying Wang, George Karapetsas, Prashant Valluri, Khellil Sefiane, and Yasuyuki Takata Fixation of Thermocouples and Insulation for Heated Block Viktor Vajc and Martin Dostál	67 71

Veronika Kubyshkina, Khellil Sefiane, Daniel Orejon,	
and Coinneach Mackenzie Dover	
Effect of Inlet Subcooling on Flow Boiling Behaviour of HFE-7200	

Effect of fillet Subcooling on Flow Doning Denaviour of fifth-7200	
in a Microchannel Heat Sink	83
Vivian Y. S. Lee, Gary Henderson, and Tassos G. Karayiannis	

Heat Transfer Measurements for Condensation of FC72	
in Microchannels	89
Lei Chai, Jiong Hui Liu, Nan Hua, Guang Xu Yu, John W. Rose,	
and Hua Sheng Wang	
Bubble Dynamics and Heat Transfer on Biphilic Surfaces	93

```
P. Pontes, R. Cautela, E. Teodori, A. S. Moita, A. Georgoulas,
and António L. N. Moreira
```

Molecular Dynamics Simulation of Effect of Temperature	
Difference on Surface Condensation	99
J. H. Pu, Q. Sheng, J. Sun, W. Wang, and H. S. Wang	
The Strong Influence of Thermal Effects on the Lifetime	

of an Evaporating Droplet 105 Feargus G. H. Schofield, Stephen K. Wilson, David Pritchard, and Khellil Sefiane

Coupled Water and Ethanol Vapour Transfer to and from Volatile	
Ethanol Drops in Humid Air: Diffusion Model Revisited	111
Yutaku Kita, Daniel Orejon, Yasuyuki Takata, and Khellil Sefiane	

Significantly Enhanced Pool Boiling Heat Transfer on Multi-walledCarbon Nanotubes Self-assembly SurfaceLan Mao, Wenbin Zhou, Xuegong Hu, Yu He, and Rong Fu	115
Heat Transfer Analysis of a Tubular Solar Still Consideringthe Non-uniform Temperature Distribution on the CondensingShellTiantong Yan, Guo Xie, and Licheng Sun	121
Droplet Deposition Pattern Affected by Heating Directions Zeyu Liu, Yuying Yan, Xinyong Chen, Li Wang, and Xin Wang	125
Effect of Vapour Pressure on Power Output of a Leidenfrost Heat Engine Prashant Agrawal, Gary G. Wells, Rodrigo Ledesma-Aguilar, Glen McHale, Anthony Buchoux, Khellil Sefiane, Adam Stokes, Anthony J. Walton, and Jonathan G. Terry	131
Three-Dimensional Computer Simulation of Heat Flux-ControlledPool Boiling of Water-Based Nanofluids by the Coupled MapLattice MethodAsheesh Kumar and Partha Ghoshdastidar	137
Heat Transfer of Condensing Saturated and Non-saturated Hydrocarbons Inside Horizontal Tubes S. Fries and A. Luke	143
Analysis of the Influence of Thermophysical Properties on the Coupled Heat and Mass Transfer in Pool Boiling Niklas Buchholz and Andrea Luke	147
Experimental Investigation of Various Influence Parameters on the Onset of Nucleate Boiling M. E. Newton, H. Margraf, J. Addy, and A. Luke	151
Study on Morphological Development of Fuel Droplets After Impacted on Metal Surfaces with Different Wettability Liang Guo, Gaofei Chen, Wanchen Sun, Degang Li, Yuheng Gao, and Peng Cheng	157
Optimizing the Design of Micro-evaporators via Numerical Simulations Mirco Magnini and Omar K. Matar	163
Simultaneous Laser- and Infrared-Based Measurements of the Life Cycle of a Vapour Bubble During Pool Boiling	169

Experimental Observations of Flow Boiling in Horizontal Tubes for Direct Steam Generation in Concentrating Solar Power Plants Hannah R. Moran, Victor Voulgaropoulos, Dimitri Zogg, Omar K. Matar, and Christos N. Markides	175
Multiscale Investigation of Nucleate Boiling and InterfacesE. R. Smith, M. Magnini, and V. Voulgaropoulos	179
Effect of Surface Wettability on Nanoscale Boiling Heat Transfer Longyan Zhang, Jinliang Xu, Junpeng Lei, and Guanglin Liu	183
Effect of Bulk Temperature on the Evaporation of a Nitrogen Drop in Different Immiscible Liquids	191
CFD Modelling of Gas-Turbine Fuel Droplet Heating, Evaporation	107
Mansour Al Qubeissi, Geng Wang, Nawar Al-Esawi, Oyuna Rybdylova, and Sergei S. Sazhin	197
A Study of Nucleate Boiling Conjugate Heat Transfer Robin Kamencky, Michael Frank, Dimitris Drikakis, and Konstantinos Ritos	203
Flow Boiling of Water in a Square Metallic Microchannel S. Korniliou, F. Coletti, and T. G. Karayiannis	207
Experimental Study on Flow Boiling Heat Transfer of Refrigerant R1233zd in Microchannels Xin Yu You, Jiong Hui Liu, Nan Hua, Ji Wang, Rongx Hui Xu, Guang Xu Yu, and Hua Sheng Wang	211
Study on the Pool Boiling Bubble Departure Diameterand Frequency from Porous Graphite Foam StructuresI. Pranoto, K. C. Leong, A. A. Rofiq, H. M. Arroisi, and M. A. Rahman	217
Investigation of Droplet Evaporation on Copper Substrate with Different Roughness Xin Wang, Zeyu Liu, Li Wang, and Yuying Yan	225
Enhanced Heat Transfer	
Enhance Heat Transfer and Mass Transfer in the Falling FilmAbsorption Process by Adding NanoparticlesHongtao Gao, Fei Mao, Yuchao Song, Jiaju Hong, and Yuying Yan	231
Pulsating Heat Stripes: A Composite Polymer Sheet with EnhancedThermal Conductivity	247

Study of Heat Transfer Enhancement by Pulsating Flowin a Rectangular Mini ChannelParth S. Kumavat, Richard Blythman, Darina B. Murray,and Seamus M. O'Shaughnessy	253
The Potential Use of Graphene to Intensify the Heat Transfer in Adsorption Beds Ahmed Rezk, Laura J. Leslie, and Rees Davenport	259
A Parametric Study into a Passively Enhanced Heat Separation System Chidiebere Ihekwaba and Mansour Al Qubeissi	265
Heat Transfer During Pulsating Liquid Jet Impingement onto a Vertical Wall J. Wassenberg, P. Stephan, and T. Gambaryan-Roisman	271
Icing of Water Droplet Enhanced with the Electrostatic Field Qiyuan Deng, Hong Wang, Xun Zhu, Qiang Liao, Rong Chen, and Yudong Ding	277
Micro-Nano Heat Transfer	
Performance Enhancement of Vapour-Compression RefrigerationSystems Using Nanoparticles: An Experimental StudyV. La Rocca, M. Morale, A. Ferrante, and A. La Rocca	283
Thermal Conductivity Correlation for Microscale Porous Media by Using OpenPNM Ángel Encalada, Mayken Espinoza-Andaluz, and Martin Andersson	287
Ethylene Glycol and Propanol: Understanding the Influenceof an Extra Hydroxyl Group on the Mechanisms of ThermalConductivityLikhith Manjunatha, Hiroshi Takamatsu, and James J. Cannon	293
Experimental Investigation of Thermal Performance and Liquid Wetting of a Vertical Open Rectangular Microgrooves Heat Sink with Fe ₃ O ₄ –Water Nanofluids R. Fu, W. B. Zhou, J. H. Wang, and X. G. Hu	297
On the Measurement Error of Temperature in Nanocomposite Thermal Insulation by Thermocouples Chao Fan, Xiao-Chen Zhang, Chuang Sun, and Xin-Lin Xia	303
Thermal Effect on Breakup Dynamics of Double Emulsion Flowing Through Constricted Microchannel Yong Ren, Yuning Huang, Yuying Yan, and Jing Wang	309

Design and Analysis of Synthetic Jet for Micro-channel Cooling Ashish Mishra, Akshoy Ranjan Paul, Anuj Jain, and Firoz Alam	315
Thermal Bioeffect of Hybrid Microfluidic System Used for Particle and Cell Separation	321
Computational Heat Transfer	
Numerical Simulation of Natural Convection in Solar Chimney Hichem Boulechfar and Hadjer Bahache	327
Numerical Investigation on Heat Transfer Performance of TriplyPeriodic Minimal Surface Structures for Supercritical CO2 CyclesWeihong Li, Guopeng Yu, and Zhibin Yu	331
Temperature-Dependent Conductances to Improve the Accuracyof the Dynamic Model of an Electric OvenMichael Lucchi, Nicola Suzzi, and Marco Lorenzini	335
Numerical Simulation on Combustion Simulation Basedon Soft-Measuring TechniqueYingai Jin, Mingyu Quan, Shijuan Yan, Yuying Yan, and Jiatong Guo	341
Numerical Investigation of Mass Redistribution in SupercriticalWater-Cooled Reactor Flow ChannelsZhirui Zhao, Yitung Chen, Baozhi Sun, Jianxin Shi, Xiang Yu, and Wanze Wu	345
Numerical Study of the Impacts of Forced Vibration on Thermocapillary Bubble Migration in a Rotating Cylinder Fatima Alhendal and Yousuf Alhendal	349
Numerical Study on the Freezing Point of Methane HydrateDissociation by DepressurizationQun Zhang, Longbin Yang, Yazhou Shao, Shidong Wang, and Runzhang Xu	355
Multi-bubble Coalescence Simulations with Large Density RatioUsing Improved Lattice Boltzmann MethodHongtao Gao, Xiupeng Ji, Jiaju Hong, Yuchao Song, and Yuying Yan	361
A New Approach to Inverse Boundary Design in Radiation Heat Transfer Mehran Yarahmadi, J. Robert Mahan, and Farshad Kowsary	377
Numerical Investigation of Thermal Dynamic Response in Porous Media—A Pore-Scale Study Rabeeah Habib, Bijan Yadollahi, and Nader Karimi	385

Numerical Simulation of Thermal–Hydraulic Performanceof a Round Tube-Fin Condenser with Liquid–Vapour SeparationNan Hua, Ying Chen, and Hua Sheng Wang	391
Numerical Modelling of Wet Steam Flows in Turbine Blades Chuang Wen, Xiaowei Zhu, Hongbing Ding, and Yan Yang	397
Evaluation of Neck Tissue Heat Transfer in Case of Stenosisin the Carotid ArteryAshish Saxena, Vedabit Saha, and E. Y. K. Ng	403
CFD-Enabled Optimization of Polymerase Chain Reaction Thermal Flow Systems Hazim S. Hamad, N. Kapur, Z. Khatir, Osvaldo Querin, H. M. Thompson, and M. C. T. Wilson	409
Modelling and Evaluation of the Thermohydraulic Performance of Finned-Tube Supercritical Carbon Dioxide Gas Coolers Lei Chai, Konstantinos M. Tsamos, and Savvas A. Tassou	417
Modeling Fouling Process on Tubes with Lattice BoltzmannMethod and Immersed Boundary MethodZi-Xiang Tong, Dong Li, Ya-Ling He, and Wen-Quan Tao	423
Numerical Study of the Impacts of Forced Vibrationon Thermocapillary Bubble MigrationMohammad Alhendal and Yousuf Alhendal	427
CFD Modelling and Experimental Calibration of Concentrated Windings in a Direct Oil-Cooled Segmented Stator Robert Camilleri	433
Numerical and Experimental Investigation on Single-Point Thermal Contact Resistance Anliang Wang, Zhenyu Liu, Hongwei Wu, Andrew Lewis, and Tahar Loulou	439
Optimization of Conformal Cooling Channels for Rapid Prototyped Mould Inserts Tongyan Zeng, James Jewkes, and Essam Abo-Serie	443
Numerical Analysis of a Segmented Annular Thermoelectric Generator	449
Heat Transfer Modelling of APAA Transmit-Receive Modules V. I. Zhuravliov, N. M. Naumovich, and V. S. Kolbun	455
Numerical Optimisation of the Regenerator of a Multi-stageTravelling Wave Thermoacoustic Electricity GeneratorWigdan Kisha and David Hann	459

Experimental and Numerical Investigation of the Effects of Different Heat Transfer Modes on the Sublimation of Dry Ice in an Insulation Box Abbisbek Purandare and Sriniyas Vanapalli	465
Heat Transfer and Thermal Stress Analysis of PDC Cutter in Rock Breaking Process Zengzeng Zhang, Yan Zhao, and Congshan Zhang	469
Thermal Performance Evaluation Methodology of Grooved HeatPipes with Rectangular, Trapezoidal and Wedge Cross SectionsGökay Gökçe and Zafer Dursunkaya	475
Thermal Management	
Development of High Heat Dissipation and Low Thermal Expansion Printed Wiring Boards Yohei Ito and Sohei Samejima	483
Optimization of Thermal Management of Li-Ion Cells with Phase Change Materials S. Landini, R. Waser, A. Stamatiou, J. Leworthy, J. Worlitschek, and T. S. O'Donovan	487
The Simulation of the Motor Temperature Distribution with SprayCooling	493
Influence of Nanofluids Inlet and Outlet Positions on CPU Cooling Performance	497
The Temperature Uniformity Analysis and Optimizationon the Lithium-Ion Battery with Liquid CoolingGuohua Wang, Yuying Yan, and Qing Gao	505
Heat Spreading Performance of Integrated IGBT Modulewith Bonded Vapour Chamber for Electric VehicleBo Li, Yiyi Chen, Yuying Yan, Xuehui Wang, Yong Li, and Yangang Wang	509
Predicting the Temperature Distribution in a Lithium-Ion Battery Cell for Different Cooling Strategies Mahmoud Sawani and Robert Camilleri	517
Electro-osmotic Non-isothermal Flow in Rectangular Channels with Smoothed Corners Marco Lorenzini	521

Transient Simulation of Finned Heat Sinks Embedded with PCM for Electronics Cooling	527
Experimental Investigation of Mini Pin-Fin Heat Sink Filled with PCM for Thermal Management Adeel Arshad, Luke Jackman, Mark Jabbal, and Yuying Yan	533
Experimental and Numerical Heat Transfer Investigation of Impingement Jet Nozzle Position in Concave Double-Wall Cooling Structures Edward Wright, Abdallah Ahmed, Yuying Yan, John Maltson, and Lynda Arisso Lopez	537
Critical Review and Ranking of Novel Solutions for Thermal Management in Electric Vehicles	543
System Simulation on the Refrigerant-Based Lithium-Ion BatteryThermal Management TechnologyQing Gao, Ming Shen, and Yan Wang	549
Investigation on Battery Thermal Management Based on Phase Change Energy Storage Technology Hongtao Gao, Yutong Liu, Jiaju Hong, Yuchao Song, and Yuying Yan	553
Design and Simulation of the Thermal Management System for 5GMobile PhonesZhaoshu Chen, Yong Li, Wenjie Zhou, and Yuying Yan	563
Investigation of Critical Overheating Behavior in Batteries for Thermal Safety Management Mengdi Zhao, Qing Gao, Tianshi Zhang, and Yubin Liu	569
Experimental Study on Direct Expansion Cooling Battery Thermal Management System Yuan Meng, Gao Qing, Zhang Tianshi, and Wang Guohua	573
Numerical Analysis of Thermal Systems of a Bus Engine Konstantinos Karamanos, Yasser Mahmoudi Larimi, Sung In Kim, and Robert Best	577
Robust Optimisation of Serpentine Fluidic Heat Sinksfor High-Density Electronics CoolingMuyassar E. Ismaeel, N. Kapur, Z. Khatir, and H. M. Thompson	583

X V1	

Numerical Study on the Fluid Flow and Heat Transfer Performanceof Flat Miniature Heat Pipe for Electronic Devices CoolingFei Xin, Ting Ma, Yuying Yan, and Qiuwang Wang	591
Thermal Performance on a Vapor Chamber-Based BatteryThermal Management SystemDan Dan, Hongkui Lian, Yangjun Zhang, Yuying Yan, and Chengning Yao	597
Conformal Cooling of Aluminium Flat Fins Using a 3D Printed Water-Cooled Mould Y. Liang, R. Sharma, E. Abo-Serie, and J. Jewkes	603
A Hybrid Microchannel and Slot Jet Array Heat Sink for Cooling High-Power Laser Diode Arrays Zeng Deng, Jun Shen, Wei Dai, Ke Li, and Xueqiang Dong	609
Thermal Design for the Passive Cooling System of Radio BaseStation with High Power DensityKai-Wen Duan, Ji-Wei Shi, and Wen-Quan Tao	617
Design and Experimental Study on a New Heat DissipationMethod for Watch-PhonesWenjie Zhou, Yong Li, Zhaoshu Chen, Yuying Yan, and Hanyin Chen	621
Heat Exchanger	
Experimental and Numerical Investigation on Fouling and Heat Transfer Performance of a Novel <i>H</i>-type Finned Heat Exchanger Song-Zhen Tang, Zhan-Bin Liu, Ming-Jia Li, and Wen-Quan Tao	629
Improvement of Multi-objective Optimization Toolfor Shell-and-Tube Heat Exchanger DesignThomas McCaughtry and Sung in Kim	635
Performance Analysis on Compact Heat Exchangers for ActivatedCarbon-Ethanol Adsorption Heat Pump/Thermal StorageTakahiko Miyazaki, Nami Takeda, Yuta Aki, Kyaw Thu,Nobuo Takata, Shinnosuke Maeda, and Tomohiro Maruyama	641
Experimental Validation of a Numerical Model of a Corrugated Pipe-Phase Change Material (PCM)-Based Heat Exchanger to Harness Greywater Heat	645
Fluid Flow	
A Heat Transfer Analysis of Separated and Reattached Flow Around a Heated Blunt Plate Christopher D. Ellis, Hao Xia, and Gary J. Page	653

Flow and Heat Transfer Characteristics of Piezoelectric-DrivenSynthetic Jet Actuator with Respect to Their Stroke LengthMuhammad Ikhlaq, Mehmet Arik, Adeel Arshad, and Mark Jabbal	659
RANS Model Validation of Natural Circulation in DifferentiallyHeated CavitiesConstantinos Katsamis, Tim Craft, Hector Iacovides, and Juan Uribe	663
Experimental and Numerical Investigation of the Heat Transfer Characteristics of Laminar Flow in a Vertical Circular Tube at Low Reynolds Numbers Suvanjan Bhattacharyya, Marilize Everts, Abubakar I. Bashir, and Josua P. Meyer	669
The Role of Turbulence Models in Simulating Urban Microclimate Azin Hosseinzadeh, Nima shokri, and Amir Keshmiri	675
Temperature Effect on Falling Behaviour of Liquid Gallium DropletM. Sofwan Mohamad, C. M. Mackenzie Dover, and K. Sefiane	681
Needle-Based Formation of Double Emulsion Encapsulating Multiple Cores in Parallel Mode Zheng Lian, Yong Ren, Kai Seng Koh, Jun He, George Z. Chen, Yuying Yan, and Jing Wang	687
Flow-Visualization Experimental Research on the Plume Pattern Above a Horizontal Heated Cylinder Guopeng Yu, Haiteng Ma, Weihong Li, Li He, and Zhibin Yu	691
Experimental Study of Thermal Field of a Pebble Bed Channel with Internal Heat Generation Meysam Nazari and Yasser Mahmoudi	695
Numerical Simulation for a Single Bubble on the Vertical FlatSurface by an Immiscible Two-Phase LBMTomohiko Yamaguchi and Satoru Momoki	699
Experimental Study on Fuel Spray Impingement Process Against Metal Surface with Different Wettability Liang Guo, Jianyi Wei, Wanchen Sun, Xuejiang Hao, Deigang Li, and Kai Fang	705
Effect of Turbulence Models on Steam Condensation in Transonic Flows Chuang Wen, Nikolas Karvounis, Jens Honore Walther, Hongbing Ding, Yan Yang, Xiaowei Zhu, and Yuying Yan	711
An Experimental Study on Vent Locations in Road Racing Bicycle Helmet to Optimize Thermal Comfort and Aerodynamic Efficiency Harun Chowdhury, Firoz Alam, Terence Woo, and Akshoy Ranjan Paul	717

Contents

A Novel Horizontal Liquid–Liquid Flow Pattern Map Using Dimensionless Number Groups Olusegun Samson Osundare, Liyun Lao, and Gioia Falcone	721
Coupling Thermal–Fluid–Solid Modeling of Drilling Fluid Seepage into Coal Seam Borehole for Co₂ Sequestration Shu-Qing Hao	727
Simulation and Experimental Research on Flow Field and Temperature Field of Diamond Impregnated Drill Bit Baochang Liu, Shujing Wang, Shengli Ji, Zhe Han, Xinzhe Zhao, and Siqi Li	733
Deposition from Waxy Crude Oils Flowing in Transportation Pipelines: A Numerical Study Mirco Magnini and Omar K. Matar	739
Simplified Layer Model for Solid Particle Clusters in Product Oil	
Pipelines Dongze Li, Lei Chen, Qing Miao, Gang Liu, Shuyi Ren, and Zhiquan Wang	745
Flow and Heat Transfer Intensification in von Karmon SwirlingFlow by Sucrose-Based Polymer SolutionGuice Yao, Jin zhao, and Dongsheng Wen	749
Renewable Energy	
Performance Evaluation of Liquid Air Energy Storage with Air Purification	757
Chen Wang, Xiaohui She, Ailian Luo, Shifang Huang, and Xiaosong Zhang	
Optimization of Optical Window of Solar Receiver by Genetic Algorithm Combined with Monte Carlo Ray Tracing Xiao-Lei Li, Feng-Xian Sun, Jian Qiu, and Xin-Lin Xia	773
Application of the Superposition Technique in Conduction Heat Transfer for Analysing Arrays of Shallow Boreholes in Ground Source Heat Pump Systems Carlos Naranjo-Mendoza, Muyiwa A. Oyinlola, Andrew J. Wright, and Richard M. Greenough	779
Comparison of Direct Steam Generation and Indirect Steam Generation of Solar Rankine Cycles Under Libyan Climate Conditions	785
Amin Ehtiwesh, C Kutlu, Yuehong Su, and Jo Darkwa	
Heat Transfer in Unconventional Geothermal Wells: A Double Numerical Modelling Approach Theo Renaud, Patrick Verdin, and Gioia Falcone	791

An Experimental Investigation of a Thermochemical Reactor for Solar Heat Storage in Buildings Cheng Zeng, Yang Liu, Xiaojing Han, Ming Song, Ashish Shukla, and Shuli Liu	797
Thermal and Electrical Performance Evaluation and Design Optimization of Hybrid PV/T Systems Moustafa Al-Damook, Mansour Al Qubeissi, Zinedine Khatir, Darron Dixon-Hardy, and Peter J. Heggs	805
Energy conversion and storage	
Investigations on the Thermophysical Properties of an Organic Eutectic Phase Change Material Dispersed with GNP–AG Hybrid Nanoparticles Neeshma Radhakrishnan and C. B. Sobhan	817
Thermal Analysis of a 10 Ah Sodium Sulphur Battery (NaS) Cell Ebikienmo E. Peters, Peter J. Heggs, and Darron W. Dixon-Hardy	823
The Effect of Air Distribution Modes and Load Operationson Boiler CombustionYingai Jin, Cong Tian, Yaohong Xing, Mingyu Quan, Jiwei Cheng,Yuying Yan, and Jiatong Guo	827
Transient Performance Improvement for ThermoelectricGenerator Used in Automotive Waste Heat RecoveryKuo Huang, Yuying Yan, Guohua Wang, Bo Li, and Adeel Arshad	833
Heat Transfer Analysis of a Liquid Piston Gas Compressor M. Kaljani, Y. Mahmoudi, A. Murphy, J. Harrison, and D. Surplus	839
Progress with Development of FASTT Technology W. D. Alexander	845
A Numerical Model with Experiment Validation for the Melting Process in a Vertical Rectangular Container Subjected to a Uniform Wall Heat Flux M. Fadl and P. C. Eames	853
Experimental Study on Heat Transfer Performance of Active Magnetic Regenerator Working at Room Temperature	857
Thermodynamic Analysis of Multi-stage Compression AdiabaticCompressed Air Energy Storage SystemLixiao Liang, Jibiao Hou, Xiangjun Fang, Ying Han, Jie Song,Le Wang, Zhanfeng Deng, Guizhi Xu, and Hongwei Wu	863

Performance of Triangular Finned Triple Tubes with Phase Change Materials (PCMs) for Thormal Energy Storage	860
Yan Yang, Xiaowei Zhu, Hongbing Ding, and Chuang Wen	809
Thermal Analysis of an Earth Energy Bank Muyiwa A. Oyinlola, Carlos Naranjo-Mendoza, Sakellariou Evangelos, Andrew J. Wright, and Richard M. Greenough	875
Numerical Study on Charging Process of Latent Thermal EnergyStorage Under Fluctuating Thermal ConditionsZhi Li, Yiji Lu, Xiaoli Yu, Rui Huang, and Anthony Paul Roskilly	879
Thermal and Electrical Property of Silicon with Metastable PhasesIntroduced by HPT ProcessMasamichi Kohno, Mizuki Kashifuji, Kensuke Matsuda,Harish Sivasankaran, Yoshifumi Ikoma, Makoto Arita, Shenghong Ju,Junichiro Shiom, Zenji Horita, and Yasuyuki Takata	883
Micro Gas Turbine Range Extender Performance Analysis Using Varying Intake Temperature R. M. R. A. Shah, M. A. L. Qubeissi, A. McGordon, M. Amor-Segan, and P. Jennings	887
Thermoacoustic Electricity Generator for Rural Dwellings in Developing World Wigdan Kisha and David Hann	893
Heat Transfer Within PCM Heat Sink in the Presence of Copper Profile and Local Element of the Time-Dependent Internal Heat Generation Nadezhda S. Bondareva and Mikhail A. Sheremet	899
Effects of Bionic Models with Simultaneous Thermal Fatigue and Wear Resistance Dahui Yu, Ti Zhou, Hong Zhou, Haiqiu Lu, Haifeng Bo, and Yuying Yan	903
Experimental Study and Sensitive Simulation of a Heat Pipe Photovoltaic/Thermal System T. Zhang, Z. W. Yan, and H. D. Fu	909

Convection

Natural Convection from Heated Surface-Mounted Circular Cylinder

H. Malah, Y. S. Chumakov, and S. Ramzani Movafagh

1 Introduction

In recent years, there are more efforts on natural convection heat transfer from a horizontal cylinder, because of its practical applications. However, unconfined cylinder is well studied; the effect of introducing end-walls on the heat transfer rate of cylinder is considerably less investigated [1]. By development of computers and enhancement of advanced computational techniques, many studies of flow over a bluff body relevant to solid wall have been performed numerically [2], although experimental studies keep their place among researchers' efforts because of their advantages [3]. All numerical and experimental studies confirmed the expected arise on the heat transfer rate in the upstream region of the cylinder. However, the flow configuration, bluff body geometry and applied conditions on solid walls affect the arising flow [4, 5]. In this study, a numerical model of a heated horizontal circular cylinder mounted on vertical isothermal plate is employed to evaluate the natural convection heat transfer. To quantify the effect of vertical plate on the heat transfer from the cylinder surface, the aspect ratio of the cylinder (H/D) is selected equal to 0.6, in order to immerse in the arisen boundary layer on the vertical plate entirely. This geometrical configuration is evaluated on the vertical plate at fixed Grashof number equals 3×10^8 that represents laminar Grashof number. As a result, we describe the three-dimensional characteristics of natural convection heat transfer, which affect flow around the circular cylinder mounted on vertical heated plate. The results proved the significant effect of height of cylinder on the heat transfer rate from circular cylinder surface in the case of

H. Malah (🖂) · Y. S. Chumakov

S. Ramzani Movafagh

Department of Environmental Engineering, Faculty of Engineering and Technology, Saint-Petersburg State Institute of Technology, St. Petersburg 190013, Russian Federation

Institute of Applied Mathematics and Mechanics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation e-mail: hamid.malah@gmail.com

[©] Springer Nature Singapore Pte Ltd. 2021

C. Wen and Y. Yan (eds.), Advances in Heat Transfer and Thermal Engineering, https://doi.org/10.1007/978-981-33-4765-6_1

laminar natural convection flow. This study improves fundamental understanding of the buoyancy-induced flows around three-dimensional obstacles in different industrial applications to address the anticipated needs to enhance the rate of heat transfer and safety simultaneously.

2 Computational Methodology

In this work, in order to develop a laminar boundary layer on the heated vertical plate, the cylinder was mounted on an isothermal rectangular plate, which its dimensions considered equal to 100*D* in vertical direction (*Y*) and 7*D* in lateral direction (*X*). The vertical plate temperature is set to 333.15 K. In order to achieve a developed laminar incoming flow around the cylinder, the vertical position of cylinder from leading edge of rectangular plate is equal 30*D*, which provides Grashof number for laminar flow equals to 3×10^8 . In addition, the computational domain was extended 9*D* from leading and trailing edge of plate and 10*D* normal to the plate (*Z*-direction) in order to ensure impermeability and slip in these regions.

In the analysed case of high aspect ratio cylinder, which performed in the similar conditions as present study, the computed thickness of incoming boundary layer on the vertical plate was equal to 0.9D [4]. The cylinder diameter (*D*) was equal to 0.02 m with fixed surface temperature at 353.15 K. The cylinder height (*H*) is fixed to 0.6D, in order to immerse in the laminar boundary layer entirely.

The schematic configuration of problem, its dimensions and imposed boundary conditions are shown in Fig. 1a. In Fig. 1a, the solid walls were applied no-slip boundary condition. The boundary condition, which called "Opening" in Fig. 1a, refers to penetrable side of computational domain in constant pressure.

Fig. 1 Schematic of the case geometry and computational details: **a** problem configuration, **b** multiblocked grid layout

5

In this work, the case geometry discretized by using body-fitted mesh. The multiblocked grid in XY plane forms two-dimensional grid, and the range of its cells size in different region is shown in Fig. 1b. The two-dimensional grid, which consists of 41 thousand cells, was clustered to the vertical plate over Z-axis with a coefficient equals to one and generates the three-dimensional grid layout. The cells' size over Z spatial orientation is set to 0.02D. The three-dimensional mesh grid consists of approximately 4.8 million hexahedron cells.

In this study, a time-based numerical simulation was performed by using a commercial code (ANSYS FLUENT 16.2). The numerical model is based on the momentum and the energy balance equations, which were coupled by considering the fractional step algorithm and solved by using the Boussinesq approximation. The governing equations were discretized using second-order accurate schemes for all the spatial derivatives. Lastly, the computations were run up to 300 s in physical time with a time step equal to 0.002 s.

3 Results

In this work, in order to survey on characteristics of natural convection heat transfer around surface-mounted circular cylinder, the localized Nusselt number related to angular coordinate (Nu_{θ}) is determined on the solid surface of circular cylinder. To aim this purpose, the spatial angular coordinates were considered as angles, on which zero angle refers to leading edge of circular cylinder on *YZ* plane. In order to investigate the effect of height of cylinder on the heat transfer rate, the local Nusselt numbers at different *Z* coordinates along height of cylinder within laminar boundary layer thickness were presented in Table 1. Table 1 illustrates the computational results

Z/D	Source	0	30	60	90	120	150	180
0.1	Present	12.39	11.49	8.43	4.45	3.06	3.82	6.21
	[5]	12.56	11.60	8.39	4.31	5.16	10.63	7.58
0.2	Present	21.36	20.50	14.99	6.92	2.06	3.31	5.41
	[5]	21.38	20.46	14.77	6.42	4.59	5.91	3.90
0.3	Present	24.55	23.79	18.13	8.56	2.19	2.62	3.36
	[5]	24.45	23.69	17.89	8.02	3.64	4.83	3.18
0.4	Present	24.95	24.29	18.83	9.44	2.60	2.03	2.03
	[5]	24.36	23.66	18.16	8.71	2.82	3.89	3.32
0.5	Present	25.51	24.94	19.85	10.83	3.75	2.63	1.91
	[5]	23.10	22.47	17.62	9.23	2.67	2.95	3.26
0.6	Present	30.36	30.37	26.01	17.22	9.31	8.50	7.96
	[5]	21.50	20.94	16.78	9.73	3.02	2.61	3.31

Table 1 Local Nusselt number (Nu_{θ}) comparison

at seven discrete angular coordinates on the cylinder surface. In addition, in order to investigate the effect of cylinder aspect ratio on transferred heated flow from cylinder, the computed local Nusselt numbers of the work [3], where the results of high aspect ratio cylinder were provided, are included in Table 1 for comparison.

Based on the presented values in Table 1, the local Nusselt numbers decrease from the leading edge ($\theta = 0^{\circ}$) to the trailing edge ($\theta = 180^{\circ}$) of the cylinder for each Z coordinate. In the downstream region of the cylinder ($\theta = 120^{\circ}$), there is a rapid decline in value of local Nusselt numbers, and after that ($\theta = 150^{\circ}$) the Nusselt number values experience a slight increase. Since the rate of natural convection heat transfer is proportional to the buoyancy of the fluid, the local Nusselt numbers increase along Z-axis from confined end-wall (rectangular vertical plate) to the unconfined end of circular cylinder.

Although there is a good agreement between the values of local Nusselt number in the present analysis and results of high aspect ratio study [5], Table 1 demonstrates two regions on the cylinder surface, where the rate of convection heat transfer is comparable between low and high aspect ratio cylinder. The first region is at the unconfined end of cylinder (around Z/D = 0.6), where incoming flow can bypass the cylinder in the case of low aspect ratio cylinder, so there is anticipated a dramatically increase in the local Nusselt numbers. The second zone is downstream region of cylinder (from $\theta = 120^{\circ}$ to $\theta = 180^{\circ}$), where the arisen heated flow from the high aspect ratio cylinder crosses the formed boundary layer entirely, arisen heated flow interacts with the incoming boundary layer and leads to an obvious increase in the rate of convection heat transfer.

An overall view of the data in Table 1 demonstrates the fact that the leading edge of surface-mounted circular cylinder ($\theta = 0^{\circ}$) is a specific line for this problem. Although the local Nusselt number is practically constant for a long cylinder [5], the local Nusselt number increases for a short cylinder on the leading edge ($\theta = 0^{\circ}$) along cylinder height (Z-direction). The localized Nusselt number in the wake region of the cylinder is qualitatively similar for different variants, representing a slow, almost monotonic decrease in local Nusselt number with increasing spatial angular coordinates around the cylinder.

4 Conclusions

By comparing the numerical results of arisen convection heat transfer rate in present work (low aspect ratio) with the results of high aspect ratio cylinder [5], the significant effect of cylinder aspect ratio on the Nusselt number in the case of laminar natural convection flow is demonstrated.

Maximum values of local Nusselt number are observed at the confined end of cylinder near the vertical plate. These values are located in laminar incoming boundary layer, which arose on the heated vertical plate. Furthermore, heat transfer coefficient decreases from leading edge of cylinder in upstream region to trailing edge in the downstream of the cylinder.

References

- 1. C.E. Clifford, M.L. Kimber, Optimizing laminar natural convection for a heat generating cylinder in a channel. J. Heat Transfer **136**, 112502 (2014)
- G. Delibra, K. Hanjalic, D. Borello, F. Rispoli, Vortex structures and heat transfer in a wallbounded pin matrix: LES with a RANS wall-treatment. Int. J. Heat Fluid Flow 31, 740–753 (2010)
- J.K. Ostanek, K.A. Thole, Wake development in staggered short cylinder arrays within a channel. Exp. Fluids 53, 673–697 (2012)
- 4. H. Malah, Y.S. Chumakov, A.M. Levchenya, A study of the vortex structures around circular cylinder mounted on vertical heated plate. AIP Conf. Proc. **2018**, 050018 (1959)
- Y.S. Chumakov, A.M. Levchenya, H. Malah, The vortex structure formation around a circular cylinder placed on a vertical heated plate. St. Petersburg State Polytech. Univ. J. Phys. Math. 11, 56–66 (2018)

Experimental Investigation of Transitional Flow Forced Convection Heat Transfer Through a Smooth Vertical Tube with a Square-Edged Inlet

Abubakar I. Bashir, Marilize Everts, and Josua P. Meyer

1 Introduction

Limited work has been done on forced convection heat transfer in the transitional flow regime, especially in horizontal tubes with higher heat fluxes where the uncertainties are low. Forced convection experiments in horizontal tubes are challenging to perform because of the difference in density between the fluid near the surface (hot) and near the center of the tube (cold) that cause buoyancy effects and lead to mixed convection. Mixed convection can change the heat transfer characteristics in the laminar and transitional flow regimes significantly. For forced convection, the theoretical fully developed laminar flow Nusselt number is 4.36 (for a constant heat flux boundary condition). For mixed convection, the Nusselt numbers can increase up to 180–520% higher than 4.36 [1–3] due to buoyancy effects. In vertical tubes, the buoyancy effects can be reduced as the flow is in the same direction as the buoyancy force and is mostly suppressed at higher Reynolds numbers. Therefore, forced convection conditions can be achieved in the laminar and transitional flow regimes of a smooth vertical tube, even at higher heat fluxes.

Ghajar and Tam [3] found that the boundaries and the heat transfer characteristics of the transitional flow regime were inlet dependent. Everts and Meyer [1] investigated the effect of buoyancy on the heat transfer in the transitional flow regime and found that the transition Reynolds numbers were significantly affected by the buoyancy effects. Furthermore, buoyancy effects increased with increase in heating, and therefore, heating also changes the transition boundaries. However, these analyses

© Springer Nature Singapore Pte Ltd. 2021

A. I. Bashir · M. Everts · J. P. Meyer (🖂)

Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002, South Africa

e-mail: josua.meyer@up.ac.za

A. I. Bashir Department of Mechanical Engineering, Bayero University, Kano, Nigeria

C. Wen and Y. Yan (eds.), Advances in Heat Transfer and Thermal Engineering, https://doi.org/10.1007/978-981-33-4765-6_2

focused on mixed convection conditions in horizontal tubes. It is important to investigate the heat transfer characteristics for pure forced convection in the transitional flow regime in order to fundamentally understand the behavior of transition heat transfer without the influence of buoyancy. Therefore, the purpose of this study was to experimentally investigate the single-phase forced convection heat transfer characteristics of the transitional flow regime in a smooth vertical tube, with a square-edged inlet, heated at constant heat flux.

2 Experimental Setup

The schematic of the experimental facility is shown in Fig. 1 and water was used as working fluid. A magnetic gear pump was used to pump the water from a storage tank to the flow meters, flow-calming section and inlet section and then to the test section. After the test section, the heated water returned to the storage tank for cooling and recirculation. The flow-calming section was placed prior to the test section to ensure a uniform flow distribution through the inlet section and test section, because transition is inlet dependent. A square-edged inlet geometry was used for all the experiments.

Fig. 1 Schematic of the experimental facility

The test section was a smooth hard drawn copper tube with an inner diameter of 5.1 mm and a heated length of 4.52 m (maximum length-to-diameter, x/D_i of 886). Twenty-one thermocouples were attached to the test section to measure the local wall temperatures. The inlet and exit bulk fluid temperatures were measured using two Pt100 probes placed inside the inlet and exit mixers, respectively. The test section was heated at heat fluxes of 1, 4, 6 and 8 kW/m² using a direct current (DC) power supply. At a Reynolds number of 2000, the flow was found to be fully developed from $x/D_i = 416$, because the heat transfer coefficients became relatively constant along the tube length. Therefore, the local results at $x/D_i = 592$ were used for the fully developed flow analyses. The test section was set at vertical upward flow direction to avoid the effect of buoyancy or free convection that might cause mixed convection. The experiments were performed for Reynolds numbers between 1000 and 6000 to cover the entire transitional flow regime as well as sufficient parts of the laminar and turbulent flow regimes.

The setup was validated against the literature by comparing laminar and turbulent flow heat transfer coefficients with well-known correlations. The laminar flow heat transfer results were compared using the flow regime map of Metais and Eckert [4] for constant heat flux in vertical tubes. All the heat transfer results fell within the forced convection region of the Metais and Eckert [4] map. Furthermore, at a Reynolds number of 1000, the laminar forced convection Nusselt number was 4.41, which is within 1.1% of 4.36. Thus, the forced convection condition was confirmed in the laminar flow regime up to the start of transition. In the turbulent flow regime, the maximum deviation of the heat transfer coefficients from Gnielinski [5] correlation was 3.9%.

3 Results

Figure 2a compares the local fully developed heat transfer results in terms of Nusselt number (Nu = hD_i/k) as a function of Reynolds number at $x/D_i = 592$. The Nusselt numbers for all the different heat fluxes in the laminar flow regime were approximately the same and approached the theoretical forced convection Nusselt number of 4.36 for a constant heat flux boundary condition. This indicated that there is negligible or no buoyancy effects and confirmed forced convection conditions for all the heat fluxes up to the start of transitional flow regime. However, as the Reynolds number increased and the flow approached the transitional flow regime, the laminar flow Nusselt numbers of all the heat fluxes increased slightly, which might be due to the effect of variable fluid property (viscosity). As expected, there was a negligible difference between the results of the different heat fluxes in the turbulent flow regime, therefore, the flow was also dominated by forced convection conditions. Because both the laminar and turbulent flow regimes were dominated by pure forced convection heat transfer, it confirmed that the entire transitional flow regime was also dominated by forced convection.

Fig. 2 Comparison of **a** fully developed local Nusselt numbers as a function of Reynolds numbers at x/D = 592 for the different heat fluxes and **b** Reynolds numbers at the start (Re_{cr}) and end (Re_{qt}) of transitional flow regime in **a** as a function heat flux

For all the heat fluxes in Fig. 2a, transition occurred at the same mass flow rate of approximately 0.00890 kg/s, while the critical Reynolds numbers at the start of transition increased with increase in heat flux. As the heat flux was increased for a constant mass flow rate, the increased fluid temperature led to a decreased viscosity which in turn caused the Reynolds numbers to increase. At a heat flux of 1 kW/m², transition occurred at a critical Reynolds number of 2388, while at 8 kW/m², the critical Reynolds number increased to 2883 for the same mass flow rate. Similarly, transition ended at approximately the mass flow rate but the Reynolds number at end of transition also increased with increased heat fluxes. Figure 2b compares the transition Reynolds numbers for the different heat fluxes in Fig. 2a. It followed that both the Reynolds numbers at the start (Re_{cr}) and end (Re_{at}) of the transitional flow regime increased simultaneously with increasing heat flux. It also showed that the width of the transitional flow regime, defined by Everts and Meyer [1] as $\Delta Re =$ Re_{cr} – Re_{at}, for all the heat fluxes was approximately equal and ranged between 203 and 219. This is different from that of mixed convection condition as was found by Evert and Meyer [1] in horizontal tubes. For mixed convection condition, the width of the transitional flow regime was significantly affected by free convection effects and therefore decreased with increasing heat flux.

4 Conclusions

Single-phase forced convection heat transfer characteristics of the transitional flow was experimentally investigated using a smooth vertical tube with a square-edged