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Preface

Nowadays, we are facing ever-severe crisis of conventional energy resources and
pollutions, increasing demand for new energy resources and applications, and
significant challenges for the technologies of efficient cooling, heat and mass
transfer enhancement, and effective thermal management, etc. These have become
crucially important for almost all engineering area and industries such as mechan-
ical, aerospace, civil and building, chemical and process, electric and electronic,
pharmaceutical and medical, as well as power industries.

Over the more than 100 years development, heat transfer has now become a
cross-disciplinary subject. The study on micro-nano scale heat transfer has played
an important role in the research progress ofmaterial science, and the development of
biomedical engineering, etc. The 16th UKHeat Transfer Conference (UKHTC2019)
addressed these challenges. The conference gathered the UK active and leading
researchers typically many young and new academic colleagues, as well as the
researchers from heat transfer communities of Europe, North Americans, Australia,
South Africa, Kuwait, Japan, and China, etc.

The conference was aimed at a closer collaboration and cooperation between the
UK and international scholars in the field of heat transfer. The UK National Heat
Transfer Committee organised this conference biennially to provide an innovative
platform for scholars in thermal engineering to share and exchange new ideas and
solutions. Six plenary and three keynote lectures and more than 190 papers were
presented at UKHTC2019 throughout two days in four sets of seven parallel oral
sessions. The proceedings in the title of Advances in Heat Transfer and Thermal
Engineering contains selected and the authors agreed extended abstracts or papers
that cover almost all the topics in heat transfer and thermal engineering.

We would like to thank all authors for their contributions to UKHTC2019 and
thank the staff members of the University of Nottingham to provide active assistance
during the preparation stage of this conference. We send our sincere gratitude to
the dedicated reviewers for their time and contribution to improve the scientific
quality of the manuscripts. We also would like to acknowledge the support received
from the sponsors. We hope that the emerging solutions described in the conference
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proceedingswill inspire our academic and industrial communities to create, innovate,
and build a more energy-efficient world.

Nottingham, UK Chuang Wen
Yuying Yan
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Natural Convection from Heated
Surface-Mounted Circular Cylinder

H. Malah, Y. S. Chumakov, and S. Ramzani Movafagh

1 Introduction

In recent years, there are more efforts on natural convection heat transfer from a hori-
zontal cylinder, because of its practical applications. However, unconfined cylinder is
well studied; the effect of introducing end-walls on the heat transfer rate of cylinder is
considerably less investigated [1]. By development of computers and enhancement of
advanced computational techniques, many studies of flow over a bluff body relevant
to solid wall have been performed numerically [2], although experimental studies
keep their place among researchers’ efforts because of their advantages [3]. All
numerical and experimental studies confirmed the expected arise on the heat transfer
rate in the upstream region of the cylinder. However, the flow configuration, bluff
body geometry and applied conditions on solid walls affect the arising flow [4, 5].
In this study, a numerical model of a heated horizontal circular cylinder mounted on
vertical isothermal plate is employed to evaluate the natural convection heat transfer.
To quantify the effect of vertical plate on the heat transfer from the cylinder surface,
the aspect ratio of the cylinder (H/D) is selected equal to 0.6, in order to immerse in the
arisen boundary layer on the vertical plate entirely. This geometrical configuration is
evaluated on the vertical plate at fixed Grashof number equals 3× 108 that represents
laminar Grashof number. As a result, we describe the three-dimensional characteris-
tics of natural convection heat transfer, which affect flow around the circular cylinder
mounted on vertical heated plate. The results proved the significant effect of height
of cylinder on the heat transfer rate from circular cylinder surface in the case of
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laminar natural convection flow. This study improves fundamental understanding of
the buoyancy-induced flows around three-dimensional obstacles in different indus-
trial applications to address the anticipated needs to enhance the rate of heat transfer
and safety simultaneously.

2 Computational Methodology

In this work, in order to develop a laminar boundary layer on the heated vertical plate,
the cylinder was mounted on an isothermal rectangular plate, which its dimensions
considered equal to 100D in vertical direction (Y ) and 7D in lateral direction (X).
The vertical plate temperature is set to 333.15 K. In order to achieve a developed
laminar incoming flow around the cylinder, the vertical position of cylinder from
leading edge of rectangular plate is equal 30D, which provides Grashof number for
laminar flow equals to 3× 108. In addition, the computational domain was extended
9D from leading and trailing edge of plate and 10D normal to the plate (Z-direction)
in order to ensure impermeability and slip in these regions.

In the analysed case of high aspect ratio cylinder, which performed in the similar
conditions as present study, the computed thickness of incoming boundary layer on
the vertical plate was equal to 0.9D [4]. The cylinder diameter (D) was equal to
0.02 m with fixed surface temperature at 353.15 K. The cylinder height (H) is fixed
to 0.6D, in order to immerse in the laminar boundary layer entirely.

The schematic configuration of problem, its dimensions and imposed boundary
conditions are shown in Fig. 1a. In Fig. 1a, the solid walls were applied no-slip
boundary condition. The boundary condition, which called “Opening” in Fig. 1a,
refers to penetrable side of computational domain in constant pressure.

Fig. 1 Schematic of the case geometry and computational details: a problem configuration,bmulti-
blocked grid layout
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In this work, the case geometry discretized by using body-fitted mesh. The multi-
blocked grid in XY plane forms two-dimensional grid, and the range of its cells size
in different region is shown in Fig. 1b. The two-dimensional grid, which consists of
41 thousand cells, was clustered to the vertical plate over Z-axis with a coefficient
equals to one and generates the three-dimensional grid layout. The cells’ size over
Z spatial orientation is set to 0.02D. The three-dimensional mesh grid consists of
approximately 4.8 million hexahedron cells.

In this study, a time-based numerical simulation was performed by using a
commercial code (ANSYS FLUENT 16.2). The numerical model is based on the
momentum and the energy balance equations, which were coupled by considering
the fractional step algorithm and solved by using the Boussinesq approximation. The
governing equations were discretized using second-order accurate schemes for all
the spatial derivatives. Lastly, the computations were run up to 300 s in physical time
with a time step equal to 0.002 s.

3 Results

In this work, in order to survey on characteristics of natural convection heat transfer
around surface-mounted circular cylinder, the localized Nusselt number related to
angular coordinate (Nuθ ) is determined on the solid surface of circular cylinder.
To aim this purpose, the spatial angular coordinates were considered as angles, on
which zero angle refers to leading edge of circular cylinder on YZ plane. In order to
investigate the effect of height of cylinder on the heat transfer rate, the local Nusselt
numbers at different Z coordinates along height of cylinder within laminar boundary
layer thicknesswere presented in Table 1. Table 1 illustrates the computational results

Table 1 Local Nusselt number (Nuθ ) comparison

Z/D Source 0 30 60 90 120 150 180

0.1 Present 12.39 11.49 8.43 4.45 3.06 3.82 6.21

[5] 12.56 11.60 8.39 4.31 5.16 10.63 7.58

0.2 Present 21.36 20.50 14.99 6.92 2.06 3.31 5.41

[5] 21.38 20.46 14.77 6.42 4.59 5.91 3.90

0.3 Present 24.55 23.79 18.13 8.56 2.19 2.62 3.36

[5] 24.45 23.69 17.89 8.02 3.64 4.83 3.18

0.4 Present 24.95 24.29 18.83 9.44 2.60 2.03 2.03

[5] 24.36 23.66 18.16 8.71 2.82 3.89 3.32

0.5 Present 25.51 24.94 19.85 10.83 3.75 2.63 1.91

[5] 23.10 22.47 17.62 9.23 2.67 2.95 3.26

0.6 Present 30.36 30.37 26.01 17.22 9.31 8.50 7.96

[5] 21.50 20.94 16.78 9.73 3.02 2.61 3.31
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at seven discrete angular coordinates on the cylinder surface. In addition, in order to
investigate the effect of cylinder aspect ratio on transferred heated flow from cylinder,
the computed local Nusselt numbers of the work [3], where the results of high aspect
ratio cylinder were provided, are included in Table 1 for comparison.

Based on the presented values in Table 1, the local Nusselt numbers decrease
from the leading edge (θ = 0°) to the trailing edge (θ = 180°) of the cylinder for
each Z coordinate. In the downstream region of the cylinder (θ = 120°), there is
a rapid decline in value of local Nusselt numbers, and after that (θ = 150°) the
Nusselt number values experience a slight increase. Since the rate of natural convec-
tion heat transfer is proportional to the buoyancy of the fluid, the local Nusselt
numbers increase along Z-axis from confined end-wall (rectangular vertical plate) to
the unconfined end of circular cylinder.

Although there is a good agreement between the values of local Nusselt number in
the present analysis and results of high aspect ratio study [5], Table 1 demonstrates
two regions on the cylinder surface, where the rate of convection heat transfer is
comparable between low and high aspect ratio cylinder. The first region is at the
unconfined end of cylinder (around Z/D= 0.6), where incoming flow can bypass the
cylinder in the case of low aspect ratio cylinder, so there is anticipated a dramatically
increase in the local Nusselt numbers. The second zone is downstream region of
cylinder (from θ = 120° to θ = 180°), where the arisen heated flow from the high
aspect ratio cylinder acts as a separate source of heat generation. Since the high
aspect ratio cylinder crosses the formed boundary layer entirely, arisen heated flow
interacts with the incoming boundary layer and leads to an obvious increase in the
rate of convection heat transfer.

An overall view of the data in Table 1 demonstrates the fact that the leading edge
of surface-mounted circular cylinder (θ = 0°) is a specific line for this problem.
Although the local Nusselt number is practically constant for a long cylinder [5],
the local Nusselt number increases for a short cylinder on the leading edge (θ =
0°) along cylinder height (Z-direction). The localized Nusselt number in the wake
region of the cylinder is qualitatively similar for different variants, representing a
slow, almost monotonic decrease in local Nusselt number with increasing spatial
angular coordinates around the cylinder.

4 Conclusions

By comparing the numerical results of arisen convection heat transfer rate in present
work (low aspect ratio)with the results of high aspect ratio cylinder [5], the significant
effect of cylinder aspect ratio on the Nusselt number in the case of laminar natural
convection flow is demonstrated.

Maximum values of local Nusselt number are observed at the confined end
of cylinder near the vertical plate. These values are located in laminar incoming
boundary layer, which arose on the heated vertical plate. Furthermore, heat transfer
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coefficient decreases from leading edge of cylinder in upstream region to trailing
edge in the downstream of the cylinder.
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Experimental Investigation
of Transitional Flow Forced Convection
Heat Transfer Through a Smooth
Vertical Tube with a Square-Edged Inlet

Abubakar I. Bashir, Marilize Everts, and Josua P. Meyer

1 Introduction

Limitedwork has been done on forced convection heat transfer in the transitional flow
regime, especially in horizontal tubes with higher heat fluxes where the uncertainties
are low. Forced convection experiments in horizontal tubes are challenging to perform
because of the difference in density between the fluid near the surface (hot) and near
the center of the tube (cold) that cause buoyancy effects and lead tomixed convection.
Mixed convection can change the heat transfer characteristics in the laminar and
transitional flow regimes significantly. For forced convection, the theoretical fully
developed laminar flow Nusselt number is 4.36 (for a constant heat flux boundary
condition). For mixed convection, the Nusselt numbers can increase up to 180–520%
higher than 4.36 [1–3] due to buoyancy effects. In vertical tubes, the buoyancy effects
can be reduced as the flow is in the same direction as the buoyancy force and ismostly
suppressed at higher Reynolds numbers. Therefore, forced convection conditions can
be achieved in the laminar and transitional flow regimes of a smooth vertical tube,
even at higher heat fluxes.

Ghajar and Tam [3] found that the boundaries and the heat transfer characteristics
of the transitional flow regime were inlet dependent. Everts and Meyer [1] investi-
gated the effect of buoyancy on the heat transfer in the transitional flow regime and
found that the transition Reynolds numbers were significantly affected by the buoy-
ancy effects. Furthermore, buoyancy effects increased with increase in heating, and
therefore, heating also changes the transition boundaries. However, these analyses

A. I. Bashir · M. Everts · J. P. Meyer (B)
Department of Mechanical and Aeronautical Engineering, University of Pretoria, Pretoria 0002,
South Africa
e-mail: josua.meyer@up.ac.za

A. I. Bashir
Department of Mechanical Engineering, Bayero University, Kano, Nigeria

© Springer Nature Singapore Pte Ltd. 2021
C. Wen and Y. Yan (eds.), Advances in Heat Transfer and Thermal Engineering ,
https://doi.org/10.1007/978-981-33-4765-6_2

9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-33-4765-6_2&domain=pdf
mailto:josua.meyer@up.ac.za
https://doi.org/10.1007/978-981-33-4765-6_2


10 A. I. Bashir et al.

focused on mixed convection conditions in horizontal tubes. It is important to inves-
tigate the heat transfer characteristics for pure forced convection in the transitional
flow regime in order to fundamentally understand the behavior of transition heat
transfer without the influence of buoyancy. Therefore, the purpose of this study was
to experimentally investigate the single-phase forced convection heat transfer charac-
teristics of the transitional flow regime in a smooth vertical tube, with a square-edged
inlet, heated at constant heat flux.

2 Experimental Setup

The schematic of the experimental facility is shown in Fig. 1 and water was used as
working fluid. Amagnetic gear pumpwas used to pump thewater from a storage tank
to the flowmeters, flow-calming section and inlet section and then to the test section.
After the test section, the heated water returned to the storage tank for cooling and
recirculation. The flow-calming sectionwas placed prior to the test section to ensure a
uniform flow distribution through the inlet section and test section, because transition
is inlet dependent. A square-edged inlet geometry was used for all the experiments.

Valve Bypass 
control 
valve 

Pressure 
gauge 

Filter 

Gear pump 
i

Test section 

Mixer with 
inlet probe 

Flow-calming 
section 

Inlet section Flow 
metersData Acquisition 

system (DAQ)

Mixer with 
exit probe Storage tank 

Chiller 
unit 

Power 
supply 

Fig. 1 Schematic of the experimental facility
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The test section was a smooth hard drawn copper tube with an inner diameter of
5.1 mm and a heated length of 4.52 m (maximum length-to-diameter, x/Di of 886).
Twenty-one thermocouples were attached to the test section tomeasure the local wall
temperatures. The inlet and exit bulk fluid temperatures were measured using two
Pt100 probes placed inside the inlet and exit mixers, respectively. The test section
was heated at heat fluxes of 1, 4, 6 and 8 kW/m2 using a direct current (DC) power
supply. At a Reynolds number of 2000, the flowwas found to be fully developed from
x/Di = 416, because the heat transfer coefficients became relatively constant along
the tube length. Therefore, the local results at x/Di = 592 were used for the fully
developed flow analyses. The test section was set at vertical upward flow direction to
avoid the effect of buoyancy or free convection that might cause mixed convection.
The experiments were performed for Reynolds numbers between 1000 and 6000 to
cover the entire transitional flow regime as well as sufficient parts of the laminar and
turbulent flow regimes.

The setup was validated against the literature by comparing laminar and turbulent
flow heat transfer coefficients with well-known correlations. The laminar flow heat
transfer results were compared using the flow regime map of Metais and Eckert
[4] for constant heat flux in vertical tubes. All the heat transfer results fell within
the forced convection region of the Metais and Eckert [4] map. Furthermore, at a
Reynolds number of 1000, the laminar forced convection Nusselt number was 4.41,
which is within 1.1%of 4.36. Thus, the forced convection conditionwas confirmed in
the laminar flow regime up to the start of transition. In the turbulent flow regime, the
maximum deviation of the heat transfer coefficients from Gnielinski [5] correlation
was 3.9%.

3 Results

Figure 2a compares the local fully developed heat transfer results in terms of Nusselt
number (Nu = hDi/k) as a function of Reynolds number at x/Di = 592. The Nusselt
numbers for all the different heat fluxes in the laminar flow regime were approxi-
mately the same and approached the theoretical forced convection Nusselt number
of 4.36 for a constant heat flux boundary condition. This indicated that there is negli-
gible or no buoyancy effects and confirmed forced convection conditions for all the
heat fluxes up to the start of transitional flow regime. However, as the Reynolds
number increased and the flow approached the transitional flow regime, the laminar
flow Nusselt numbers of all the heat fluxes increased slightly, which might be due
to the effect of variable fluid property (viscosity). As expected, there was a negli-
gible difference between the results of the different heat fluxes in the turbulent flow
regime, therefore, the flow was also dominated by forced convection conditions.
Because both the laminar and turbulent flow regimes were dominated by pure forced
convection heat transfer, it confirmed that the entire transitional flow regime was also
dominated by forced convection.



12 A. I. Bashir et al.

1000 2000 3000 4000 5000 6000
0

5

10

15

20

25

30

35

40

45

(a)

Recr

 1 kW/m2

 4 kW/m2

 6 kW/m2

 8 kW/m2

N
u(

x)

Re(x)

Nu = 4.36

Reqt

0 2 4 6 8
2000

2200

2400

2600

2800

3000

3200

3400

Re

Heat flux, q (kW/m2)

 Recr
 Reqt

(b)

Re

Fig. 2 Comparison of a fully developed local Nusselt numbers as a function of Reynolds numbers
at x/D = 592 for the different heat fluxes and b Reynolds numbers at the start (Recr) and end (Reqt)
of transitional flow regime in a as a function heat flux

For all the heat fluxes in Fig. 2a, transition occurred at the same mass flow rate
of approximately 0.00890 kg/s, while the critical Reynolds numbers at the start of
transition increased with increase in heat flux. As the heat flux was increased for a
constant mass flow rate, the increased fluid temperature led to a decreased viscosity
which in turn caused the Reynolds numbers to increase. At a heat flux of 1 kW/m2,
transition occurred at a critical Reynolds number of 2388, while at 8 kW/m2, the
critical Reynolds number increased to 2883 for the same mass flow rate. Similarly,
transition ended at approximately the mass flow rate but the Reynolds number at
end of transition also increased with increased heat fluxes. Figure 2b compares the
transition Reynolds numbers for the different heat fluxes in Fig. 2a. It followed that
both the Reynolds numbers at the start (Recr) and end (Reqt) of the transitional flow
regime increased simultaneously with increasing heat flux. It also showed that the
width of the transitional flow regime, defined by Everts and Meyer [1] as �Re =
Recr − Reqt, for all the heat fluxes was approximately equal and ranged between 203
and 219. This is different from that of mixed convection condition as was found by
Evert and Meyer [1] in horizontal tubes. For mixed convection condition, the width
of the transitional flow regime was significantly affected by free convection effects
and therefore decreased with increasing heat flux.

4 Conclusions

Single-phase forced convection heat transfer characteristics of the transitional flow
was experimentally investigated using a smooth vertical tube with a square-edged


