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Preface

Seldom turns out the way it does in the song.
Robert Hunter

This book provides a semester-length course in the mathematics of fluid flows
in porous media. Over a 20-year span, I taught such a course every few years to
doctoral students in engineering, mathematics, and geophysics. Most of these stu-
dents’ research involved flow and transport in groundwater aquifers, soils, and
petroleum reservoirs. The students’ mathematical backgrounds ranged from stan-
dard undergraduate engineering requirements to more advanced, graduate-level
training.

The book emphasizes analytic aspects of flows in porous media. This focus may
seem odd: Most mathematically oriented scholarship in the area is computational
in nature, owing both to the heterogeneity of natural porous media and to the
inherent nonlinearity of many underground flow models. Nevertheless, while
many superb books cover computational methods for flows in porous media,
intelligent design of numerical approximations also requires a grasp of certain
analytic questions:
● Where do the governing equations come from?
● What physics do they model, and what physics do they neglect?
● What qualitative properties do their solutions exhibit?

Where appropriate, the book discusses numerical implications of these ques-
tions.

The exposition should be accessible to anyone who has completed a baccalaure-
ate program in engineering, mathematics, or physics at a US university. The book
makes extensive use of multivariable calculus, including the integral theorems of
vector field theory, and ordinary differential equations. Several sections exploit
concepts from first-semester linear algebra. No prior study of partial differential
equations is necessary, but some exposure to them is helpful.
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xii Preface

After a brief introduction in Chapter 1, Chapter 2 introduces the mass and
momentum balance laws from which the governing partial differential equations
arise. This chapter sets the stage for a pattern that appears throughout the book:
We derive governing equations, then analyze representative or generic solutions
to infer important attributes of the flows.

Chapters 3 through 5 examine models of single-fluid flows, followed by mod-
els of the transport of chemical species in the subsurface. After a discussion in
Chapter 6 of multiphase flows, traditionally the province of oil reservoir engineers
but now also important in groundwater contaminant hydrology and carbon diox-
ide sequestration, Chapter 7 provides an overview multifluid, multispecies flows,
also called compositional flows. This level of complexity admits few analytic solu-
tions. Therefore, Chapter 7 focuses on model formulation.

Two features of the book deserve comment.

● Over 100 exercises, most of them straightforward, appear throughout the text.
Their main purpose is to engage the reader in some of the steps required to
develop the theory.

● There are four appendices. The first simply lists symbols that have dedicated
physical meanings. The remaining appendices cover three common curvilinear
coordinate systems, the Buckingham Pi theorem of dimensional analysis, and
some aspects of surface integrals. While needed at certain junctures in the text,
these topics seem ancillary to the book’s main focus.

I owe thanks to dozens of students at the University of Wyoming who endured
early versions of the notes for this book. These men and women convinced me of
its utility and offered many corrections and suggestions for improvement. Profes-
sor Frederico Furtado kindly offered additional corrections, generous encourage-
ment, and insights deeper than he will admit. I also owe sincerest thanks to my
colleagues in the University of Wyoming’s Department of Mathematics and Statis-
tics, from whom I have learned a lot. I cannot have asked for a better academic
home. Finally, my wife, Adele Aldrich, deserves more gratitude than I know how
to express, for her support through the entire process.

Myron B. AllenLaramie, Wyoming
December, 2020
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Introduction

1.1 Historical Setting

The mathematical theory of fluid flows in porous media has a distinguished
history. Most of this theory ultimately rests on Henry Darcy’s 1856 engineering
study [43], summarized in Section 3.1, of the water supplies in Dijon, France.
A year after the publication of this meticulous and seminal work, Jules Dupuit
[49], a giant among early groundwater scientists, recognized that Darcy’s findings
implied a differential equation. This observation proved to be crucial. For the
next 75 years or so, the subject grew to encompass problems in multiple space
dimensions—hence partial differential equations (PDEs)—with major contri-
butions emerging mainly from the groundwater hydrology community. Pioneers
included Joseph Boussinesq [25, 26], Philipp Forchheimer [53, 54], Charles S.
Slichter [136], Edgar Buckingham [30], and Lorenzo A. Richards [129].

Interest in the mathematics of porous-medium flows blossomed as oil pro-
duction increased in economic importance during the early twentieth century.
Prominent in the early petroleum engineering literature in this area are works
by P.G. Nutting [110], Morris Muskat and his collaborators [104–107, 159, 160],
and Miles C. Leverett and his collaborators [29, 95–97]. Between 1930 and
1960, mathematicians, groundwater hydrologists, petroleum engineers, and
geoscientists made tremendous progress in understanding the PDEs that govern
underground fluid flows.

Today, mathematical models of porous-medium flow encompass linear and non-
linear PDEs of all major types, as well as systems involving PDEs having differ-
ent types. The analysis of these equations and their numerical approximations
requires an increasing level of mathematical and computational sophistication,
and the models themselves have become essential design tools in the management
of underground fluid resources.

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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From a philosophical perspective, credit for these advances belongs to scientists
and engineers who clung tenaciously—often in the face of skepticism on the part
of more “practically” oriented colleagues—to two premises. The first is that the
key to effective modeling resides in careful mathematical reasoning. While this
premise seems platitudinous, at any moment in history some practitioners believe
that their science is too inherently messy to justify fastidious mathematics. On the
contrary, the need for painstaking logical inferences from premises and hypotheses
is arguably never greater than when the data are complicated, confusing, or hard
to obtain.

The second premise is more subtle: In the absence of good data, sound mathe-
matical models are essential. Far from outstripping the data, mathematical models
tell us what data we really need. Moreover, they tell us what qualitative proper-
ties we can expect in predictions arising from a given input data set. They also
reveal how properties of the data, such as its spatial variability and uncertainty,
affect the models’ predictive capabilities. If the required data cannot in principle
be acquired, if the qualitative properties of the model conflict with the empirical
evidence, or if the model cannot, in principle, provide stable predictions in the face
of heterogeneity and uncertainty, then we must admit that our understanding is
incomplete.

1.2 Partial Differential Equations (PDEs)

Most realistic models of fluid flows in porous media use PDEs, “the natural dialect
of continuum science” [62], written at scales appropriate for bench- or field-scale
observations. In practical applications, these equations are complicated. They
are posed on geometrically irregular, multidimensional domains; they often have
highly variable coefficients; they can involve coupled systems of equations; in
many applications they are nonlinear. For these reasons, we must often replace
the exact PDEs by arithmetic approximations that one can solve using electronic
machines.

The practical need for computational methods notwithstanding, a grasp of the
analytic aspects of the PDEs remains an important asset for any porous-medium
modeler. What types of initial and boundary conditions yield well-posed prob-
lems? Do the solutions obey a priori bounds based on the initial or boundary data?
Do the numerical approximations respect these bounds? Does the PDE tend to
smooth or preserve numerically problematic sharp fronts as time advances? Do
shocks form from continuous initial data?

In the first half of the twentieth century, pioneering numerical analysts Richard
Courant, Kurt Friedrichs, Hans Lewy, and John von Neumann—all immigrants
to the United States—recognized that one cannot successfully “arithmetize
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analysis” [23] without understanding the differential equations. Designing stable,
convergent, accurate, and efficient approximations to PDEs requires mathemati-
cal insight into the equations being approximated. A visionary 1947 consulting
report [152] by von Neumann, developing the first petroleum reservoir simulator
designed for a computer, illustrates this principle.

This book aims to promote this type of insight. We examine PDE-based models
of porous-medium flows in geometries and settings simple enough to admit anal-
ysis without numerical approximations but realistic enough to reveal important
structures.

From a mathematical perspective, the study of fluid flows in porous media
offers fertile ground for inquiry into PDEs more generally. In particular, this book
employs many broadly applicable concepts in the theory of PDEs, including:

1. Mass and momentum balance laws
2. Variational principles
3. Fundamental solutions
4. The principle of superposition
5. Similarity methods
6. Stability analysis
7. The method of characteristics and jump conditions.

Where possible, the narrative introduces these topics in the simplest possible
settings before applying them to more complicated problems.

Topic 1, covered in Chapter 2, deserves comment. Few PDE texts at this level
discuss balance laws in the detail pursued here. However, it is hard to build intu-
ition about porous-medium flows without knowing the principles from which they
arise. The balance laws furnish those principles. On the other hand, a completely
rigorous study of balance laws for fluids flowing in porous media would require
a monograph-length treatment in its own right. Chapter 2 reflects an attempt to
weigh the importance of fundamental principles against the need for a concise
explanation of how the governing PDEs emerge from basic laws of physics. The
references offer suggestions for deeper inquiry.

We frequently refer to PDEs according to a classification system inherited from
the algebra of quadratic equations. The utility of this system becomes more appar-
ent as one becomes more familiar with examples. For now, it suffices to review the
system for second-order PDEs in two independent variables having the form

a𝜕
2u
𝜕x2 + b 𝜕

2u
𝜕x 𝜕y

+ c𝜕
2u
𝜕y2 = F

(
x, y,u, 𝜕u

𝜕x
,
𝜕u
𝜕y

)
. (1.1)

Here, a, b, and c are functions of the independent variables x and y, which we can
replace with x and t in time-dependent problems; u(x, y) is the unknown solution;
and F denotes a function of five variables that describes the lower-order terms in
the PDE.
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The highest-order terms determine the classification. The discriminant of Eq.
(1.1) is Δ = b2 − 4ac, which is a function of (x, y). Equation (1.1) is

● hyperbolic at any point of the (x, y)-plane where Δ(x, y) > 0;
● parabolic at any point of the (x, y)-plane where Δ(x, y) = 0;
● elliptic at any point of the (x, y)-plane where Δ(x, y) < 0.

Extending this terminology, we say that a first-order PDE of the form

𝜕u
𝜕x

+ a𝜕u
𝜕y

= F(x, y,u)

is hyperbolic at any point (x, y) where a(x, y) ≠ 0.

Exercise 1.1 Verify the following classifications, where c and D are real-valued
with D > 0:

𝜕
2u
𝜕t2 − c2 𝜕

2u
𝜕x2 = 0 (one-dimensional wave equation) hyperbolic,

𝜕u
𝜕t

− D𝜕
2u
𝜕x2 = 0 (one-dimensional heat equation) parabolic,

𝜕
2u
𝜕x2 + 𝜕

2u
𝜕y2 = 0 (two-dimensional Laplace equation) elliptic.

Mathematicians associate the wave equation with time-dependent processes
that exhibit wave-like behavior, the heat equation with time-dependent processes
that exhibit diffusive behavior, and the Laplace equation with steady-state
processes. These associations arise from applications, some of which this book
explores, reinforced by theoretical analyses of the three exemplars in Exercise 1.1.
For more information about the classification of PDEs, see [65, Section 2-6].

1.3 Dimensions and Units

In contrast to most texts on pure mathematics, in this book physical dimen-
sions play an important role. We adopt the basic physical quantities length, mass,
and time, having physical dimensions L, M, and T, respectively. All other physical
quantities encountered in this book—except for one case involving temperature in
Chapter 7—are derived quantities, having physical dimensions that are products
of powers of L, M, and T.

For example, the physical dimension of force F arises from Newton’s second law
F = ma, where m denotes mass and a denotes acceleration:

dim(F) = dim(ma) = dim(m) ⋅ dim(a) = M ⋅ LT−2
.
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Analyzing the physical dimensions of quantities that arise in physical laws can
yield surprisingly powerful mathematical results. Subsequent chapters exploit this
concept many times.

Physical laws such as F = ma require a way to assign numerical values to the
physical quantities involved. We do this by comparison with standards, a process
called measurement. For example, to assign a numerical value to the length of
an object, we compare it to a length to which we have assigned a numerical value
by fiat. A choice of standards for measuring L, M, and T, applied consistently for
all occurrences of length, mass, and time, defines a system of units. Changing
the system of units typically changes the numerical values that we measure, the
exception being dimensionless quantities, which have dimension 1.

Where practical, this book uses the Système Internationale (SI) as the preferred
system of units. The current standards for time, length, and mass in the SI are as
follows:

● Time: One second (s) is the duration of 9 192 631 770 periods of the radiation
emitted by the transition between the two hyperfine levels of the ground state
of cesium-133. This period of time is approximately 1/86 400 of one Earth day.

● Length: One meter (m) is the distance traveled in a vacuum by light in 1/299 792
458 s. This distance is approximately 10−7 times the distance from the Earth’s
geographic north pole to the equator along a great circle.

● Mass: One kilogram (kg) is the mass required to fix the value of the Planck con-
stant as 6.62607015 × 10−34 kg m2 s−1, given the definition of one second and
1 m. This mass is approximately that of 10−3 m3 (1 liter) of water at room tem-
perature and pressure.

In some cases, non-SI units are more convenient for measuring physical quanti-
ties that arise in the bench- or field-scale study of fluid flows in porous media.
When these cases arise, we give the factor that enables conversion to SI units.
The fact that scientists and engineers prefer non-SI units in some instances high-
lights the inherently subjective nature of units: Humans tend to prefer standards
that yield numerical values not far from 1 in our everyday experience. One advan-
tage of using dimensionless quantities—a technique employed frequently in this
book—is that we avoid this subjectivity.

1.4 Limitations in Scope

Three limitations in scope are worth noting. First, we treat only isothermal flows
in porous media, that is, flows at constant temperature. This restriction conve-
niently allows us to ignore the energy balance equation in deriving governing
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PDEs. On the other hand, it also eliminates several types of flows that have impor-
tant applications, including flows in geothermal reservoirs and thermal methods
of enhanced oil recovery, such as steam flooding.

Also glaringly absent from the table of contents is the topic of flows in fractured
porous media. Geoscientists correctly point out that most geologic porous media
possess fractures, which exert significant influences on fluid flows. Yet the math-
ematics of flow in fractured porous media remains poorly delineated, owing not
so much to the absence of mathematical models (see [21] for a recent overview
and [8, 15, 86, 153] for prominent examples) but, more importantly, to the obser-
vation that fractures exist at many scales of observation. In some underground
formations, one must know something about the geometry of individual fractures
to model fluid flows accurately. In these settings, the modeler’s challenge is to rep-
resent the discrete fracture system (or statistical realizations) on tractably coarse
computational grids. In other geologic settings, it suffices to treat the pore net-
work and the fracture network as overlapping porosity systems, and the challenge
is to model how fluids move within and between them. This spectrum of modeling
approaches deserves a monograph of its own.

Also missing from the topics covered here is a discussion of fluid flows in
extremely flow-resistant media, often but debatably referred to as nanodarcy
flows but more properly characterized as non-Darcy flows. Flows of this type
have increased in practical importance during the past two decades, owing
especially to vastly improved technologies for producing natural gas from
shale formations when hydrocarbon commodity prices justify the costs. The
physics here are complex, involving gas–rock interactions in interstices whose
typical diameters approach the mean free path of the gas molecules. None of
the classical macroscopic transport models—such as Darcy’s law or Fick’s law
of diffusion—suffices by itself to capture these phenomena [37, 81]. One can
hope that further advances in our understanding of these flows, analogous to
the advances described above for classical Darcy flows, will yield more settled
mathematical models in years to come.
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2

Mechanics

2.1 Kinematics of Simple Continua

At the macroscopic scale of observation, greater than about 10−3 m, a natural
porous medium such as sandstone is a complex mixture of solids and fluids, sep-
arated by interfaces whose geometries are often too small for humans to discern
without aid. This book focuses mainly on the macroscopic scale. However, viewed
at the microscopic scale, say 10−6–10−3 m, the solids and fluids in a porous medium
appear as distinct continua, separated by observable interfaces. We begin with the
mechanics of these simple continua. Section 2.5 extends the discussion to the
mechanics of multiconstituent continua, applicable at the macroscopic scale of
observation.

The first step is to establish the kinematics. This branch of mechanics provides
a framework for describing the motions of continua geometrically, without refer-
ence to the forces that cause motion. The treatment here is an abbreviated version
of material that appears in standard courses on continuum mechanics; for more
details consult [4].

2.1.1 Referential and Spatial Coordinates

In continuum mechanics, the term body refers to a collection  of particles,
sometimes called material points. A subset of the body that is a body in its own
right is a part of the body. We assign to each body a reference configuration,
which associates with the body a region  in three-dimensional Euclidean space.
In the reference configuration, each particle in the body has a position X, unique
to that particle, as shown in Figure 2.1. The vector X serves as a label, called the
referential or Lagrangian coordinates of the particle. As with a person’s home
address, from a strictly logical point of view the particle need not ever occupy

The Mathematics of Fluid Flow Through Porous Media, First Edition. Myron B. Allen.
© 2021 John Wiley & Sons, Inc. Published 2021 by John Wiley & Sons, Inc.
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X

Figure 2.1 A reference configuration of a body,
showing the referential coordinates X used to
label a particle according to its position in the
reference configuration.

the point X. That said, in some applications it is useful to choose the reference
configuration in a way that associates each particle with a position that it occupies
at some prescribed time, for example t = 0.

The central aim of kinematics is to describe the trajectories of particles, that is,
to determine the position x in three-dimensional Euclidean space that each par-
ticle X occupies at every time t. For this purpose we assume that there exists a
one-parameter family 𝝌(X, t) of vector-valued functions, time t being the parame-
ter, that has the following properties.

1. The vector 𝝌(X, t), having dimension L, gives the spatial position x of the par-
ticle X at time t.

2. At each time t, the function𝝌(⋅, t) of the referential coordinates X is one-to-one,
onto, and continuously differentiable with respect to X.

3. Also at each fixed time t, 𝝌(⋅, t) has a continuously differentiable inverse 𝝌−1

such that X = 𝝌−1(x, t). That is, 𝝌−1 tells us which particle X occupies the spa-
tial position x at time t.

4. For each value of the coordinate X, the function 𝝌(X, ⋅) is twice continuously
differentiable with respect to t.

The function 𝝌 is the deformation of the body, illustrated in Figure 2.2. We
call the vector x = 𝝌(X, t) the spatial or Eulerian coordinates of the particle X at
time t.

χ

x

X χ(  , t)

Figure 2.2 The deformation
mapping the reference
configuration  onto the body’s
configuration at time t.
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2.1 Kinematics of Simple Continua 9

Figure 2.3 Regions  and  occupied by a body in
two reference configurations, along with the
corresponding deformations 𝝌 and 𝝍 that map a given
particle onto a position vector x at time t.

X

Y

x

χ

ψ

Exercise 2.1 Let  and  be the regions occupied by a body in two different ref-
erence configurations, giving the referential coordinates of a certain particle as X
and Y, respectively, as illustrated in Figure 2.3. Let 𝝌 and 𝝍 , respectively, denote
the deformations associated with these two reference configurations. Thus the spa-
tial position of the particle at time t is 𝝌(X, t) = x = 𝝍(Y, t). Justify the relationship
Y = 𝝍−1(𝝌(X, t), t). This relationship makes it possible to reconcile the analyses of
motion by observers who choose different reference configurations.

2.1.2 Velocity and the Material Derivative

In classical mechanics, it is straightforward to calculate a particle’s velocity: Differ-
entiate the particle’s spatial position with respect to time. Continuum mechanics
employs the same concept. The velocity of particle X is the time derivative of its
position:

𝜕𝝌

𝜕t
(X, t). (2.1)

This function has dimension LT−1. In taking this partial derivative, we hold the
particle X fixed and differentiate with respect to t, just as in classical mechanics.
We call the velocity (2.1) the referential velocity or Lagrangian velocity.

We distinguish this velocity from another notion of velocity that arises by mea-
suring what happens at a fixed position in space, as with an anemometer or wind
vane attached to a stationary building. This concept of velocity commonly arises in
fluid mechanics. In this case, we differentiate with respect to t, holding the spatial
coordinate x fixed. To calculate this spatial or Eulerian velocity from the defor-
mation, we first determine which particle X = 𝝌−1(x, t) passes through x at time
t, then compute the velocity of that particle:

v(x, t) =
𝜕𝝌

𝜕t
(𝝌−1(x, t)
⏟⏞⏟⏞⏟

X

, t).


