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Preface

Variational analysis can be briefly described as the mathematics of optimization and
control. The name became commonly accepted after the publication of the book
Variational Analysis by R. T. Rockafellar and R. J-B. Wets in 1998. However, basic
concepts, ideas, and results that are now regarded as being in the heart of the area
have been around much longer. Variational analysis unifies theories and techniques
that have been developed in calculus of variations, mathematical programming,
and optimal control and covers areas such as convex analysis, nonlinear analysis,
nonsmooth analysis, and set-valued analysis. In a separate direction, it has been
defined to include topics in differential geometry and functional analysis. It is a good
example of mathematics with deep roots, rich theory, and a variety of applications,
whose rapid growth in the last decades has been driven not only by the curiosity of
researchers but also by very practical problems such as financial planning or steering
a flying object.

The aim of this book is to present an introduction to variational analysis for
graduate students, researchers and practitioners in the broad area of mathematical
sciences and engineering, including operations research, economics, and finances.
The focus is on problems with constraints, the analysis of which involves set-valued
mappings and functions that are not differentiable, at least in the usual sense. A
typical reader of the book should be familiar with multivariable calculus and linear
algebra. Some basic knowledge in optimization, control, and elementary functional
analysis is desirable but not necessary—all needed background material is included
in the book.

The book is structured in 20 lectures, each one of which is devoted to a particular
topic. The choice of topics reflects the author’s views and interests and by no means
covers all aspects of the field. The material is presented in a theorem-proof format,
but there are also examples, exercises, and discussions. In each lecture, the proofs
that are essential for understanding the concepts and techniques involved are given in
the text, and reading these proofs is highly recommended. More technical or lengthy

e.g., as in the book by M. Morse, Variational analysis: critical extremals and Sturmian extensions,
Interscience Publishers, 1973, which is mainly about calculus of variations at large.
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viii Preface

proofs are given at the end of the lecture and could be skipped at a first reading. Most
of the exercises are supplied with hints or detailed guides. Some classical results in
analysis such as, e.g., (a version of) the Baire category theorem, are given without
proofs in the lecture where they are first used. Each lecture has its own numbering
of formulas; citing formulas from other lectures is avoided.

The book starts with a preparatory part presenting in a condensed form notations
and terminology, along with some basic concepts and facts from functional analysis.
Lecture 1 introduces standard optimization problems and in particular shows how
to derive necessary optimality conditions in the format of generalized equations.
Lecture 2 is about continuity of set-valued mappings. In addition, conditions are
presented for continuity of the optimal value and optimal solution mappings of a
general optimization problem depending on a parameter. Lipschitz continuity of
set-valued mappings is also introduced in that lecture but explored more broadly in
the following Lecture 3, which deals in particular with polyhedral mappings with
application to linear programming, as well as outer Lipschitz continuity of piecewise
polyhedral mappings.

The next several lectures are devoted to regularity properties of set-valued map-
pings with applications to nonlinear optimization. Metric regularity of mapping
acting in metric spaces, together with the companion properties of Aubin continuity
and linear openness, are introduced in Lecture 4. Lecture 5 is devoted to stability of
metric regularity under perturbations as defined by the Lyusternik-Graves theorem.
Lecture 6 presents the Robinson-Ursescu theorem, which gives a characterization
of metric regularity of mappings with closed and convex graphs. Lecture 7 deals
with derivative criteria for metric regularity that utilize generalized differentiation
of set-valued mappings. Strong regularity is introduced in Lecture 8 together with
the Robinson theorem, a far reaching extension of the classical implicit function
theorem. The next one, Lecture 9, is devoted to two basic implicit function theorems
for nondifferentiable functions, one due to F. Clarke and the other to B. Kummer.
Lecture 10 characterizes strong regularity of mappings appearing in quadratic opti-
mization problems in a Hilbert space setting, and in a basic nonlinear programming
problem. Strong subregularity is introduced and discussed in Lecture 11. Lecture 12
presents a version of the Bartle-Graves theorem for set-valued mappings, which is
concerned with the existence of continuous selections of the inverses of metrically
regular mappings. Lecture 13 deals with so-called radius theorems associated with
regularity properties. Lectures 7, 12, and 13 are technically involved and can be
skipped at a first reading of the book; they are not used in the further lectures.
Lecture 14 broadens the spectrum of applications of the regularity theory; it shows
convergence of the Newton method applied to generalized equations involving map-
pings having the regularity properties given in the preceding lectures. A version of the
Newton method for a class of nondifferentiable functions, the so-called semismooth
functions, is presented in Lecture 15.

The final five lectures are devoted to applications of variational analysis to optimal
control problems. The main focus is on the linear-quadratic optimal control problem
with control constraints, which is relatively simple but still rich enough to allow
demonstrating applications of basic ideas and techniques of variational analysis,
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without going deep into differential equations and functional analysis. Lecture 16
derives optimality conditions for the linear-quadratic problem. Lecture 17 considers
a more general nonlinear optimal control problem and shows how to apply the
theorems of Lyusternik-Graves, Robinson-Ursescu, and Robinson in order to obtain
conditions for metric regularity and strong regularity of feasibility and optimality
mappings for that problem. Lecture 18 is devoted to a discrete approximation of the
linear-quadratic and a nonlinear optimal control problem, for which error estimates
are obtained by using regularity properties of the mappings involved. In Lecture 19,
optimal feedback control is introduced and discussed, and the existence of such a
feedback is proven for the control-constrained linear-quadratic problem. The final
Lecture 20 is devoted to model predictive control, which is presented as an approach
to approximate optimal feedback; the main result presented is about the accuracy of
such an approximation.

Parts of this book can be used in various graduate courses in the general area of
optimization and control, depending on the audience and the specific goals of the
lecturer. For example, combining the material of lectures 1–3, 8–11, and 15 with
some adjustments and additions may become a one-semester course on modern opti-
mization theory. Lectures 1–8, and 13–17 provide a basis for a course on variational
analysis for mathematically mature students. Lectures 4–6, 12, and 15–20 may be
used in a course on control, addressing in particular optimality, regularity, as well as
more specific topics such as discrete approximations and model predictive control.

The idea to write this book was born in the spring of 2020, when I gave a one-
semester graduate course on variational analysis in the Faculty of Mathematics and
Informatics, Sofia University, Bulgaria. I was not able to find a suitable book that
could be used as a textbook for the course. Then I prepared lecture notes which
evolved into this book. While working on the book, new topics have been added to
obtain a broader coverage of nonsmooth analysis and regularity of mappings, as well
as topics in optimal control. The choice of the material in the book was also inspired
by the decades long research collaboration of the author with students, postdocs, and
faculty from the University of Michigan in Ann Arbor.

I am indebted to a number of people who have helped me with this book. During
the preparation of the manuscript, I benefited from extensive discussions with V.
Veliov, in particular concerning the lectures on control. Special thanks to R. Goebel,
C. Josz, M. Krastanov, D. Liao-McPherson, J. Leung, Y. Stoev, and N. Zlateva,
who had read preliminary drafts and made valuable suggestions, and especially
to R. Rozenov, who also helped with the figures. I am also thankful to R. Bot,
D. Drusvyatskiy, D. Klatte, I. Kolmanovsky, S. Robinson, and T. Zolezzi for their
advice and encouragement. Many thanks to the anonymous referees for their valuable
remarks. I obtained additional feedback from students who attended my course at
Sofia University, and in particular from G. Angelov, S. Apostolov, M. Konstantinov,
M. Nikolova, B. Stefanov, M. Tasheva, and I. Vasilev. The support from AFOSR
under the grant FA9550-20-1-0385 is greatly appreciated.
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This book would have never been written without the moral support of my family.
In particular, I am thankful to my wife Dora for her patience and understanding, to
my daughter Mira for her help with typesetting, and to my son Kiko for the many
questions he asked me about this project.

Ann Arbor, MI, USA Asen L. Dontchev
June 2021

In Memoriam. In finishing the Preface above, Asen Dontchev knew he had a
terminal illness. However, in putting September 2021 beneath his name he had no
inkling that, already on the 16th of that month, his life would come to its end.

Through his original research and many publications, he contributed hugely to
the mathematics of optimization and control. This volume of lectures, brought forth
in troublesome final circumstances, will help to spread the understanding of that
subject and its evolving applications. It shows his remarkable qualities as a thinker
and writer, being able to combine theoretical with practical while revealing the
vital heart of every topic. He always stressed the importance of explaining things to
newcomers to variational analysis, building on their diverse motivations from other
areas and trying to ease their way around technicalities. For all this, he will be sadly
missed and lastingly remembered.

Terry Rockafellar
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Lecture 0
Notation, Terminology, and Some
Functional Analysis

We start with a brief introduction to metric spaces. Let X be a set, IR be the set
of reals and IR+ be the set of nonnegative reals. A metric ρ in X is a mapping
ρ : X × X → IR+ which has the following properties:

– ρ(x, y) = 0 =⇒ x = y;
– ρ(x, y) = ρ(y, x);
– ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (the triangle inequality).
The set X equipped with a metric ρ is called a metric space and denoted (X, ρ).

In such a space the closed ball with center x ∈ X and radius r ∈ IR+ is the set

IBr (x) =
{
y ∈ X

�
� ρ(y, x) ≤ r

}
.

The open ball with center x and radius r is defined in the same way with ≤ replaced
by < and denoted int IBr (x).

A metric space X is said to be complete when every Cauchy sequence {xn} in
X converges. That is to say: if ρ(xn, xm) → 0 as both n and m independently go to
infinity, then there is y ∈ X such that ρ(xn, y) → 0.

A linear or vector space is a set supplied with two operations: addition and multi-
plication by a scalar, which obey standard rules such as commutativity, associativity,
and distributivity. All linear spaces considered are over the reals. A metric ρ acting
in a linear space X is said to be shift-invariant when

ρ(y + z, y′ + z) = ρ(y, y′) for all y, y′, z ∈ X .

A linear space X is said to be normed when there is a mapping ‖ · ‖ : X → IR
defined on X and called norm that has the following properties:

– ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 ⇐⇒ x = 0;
– ‖αx‖ = |α |‖x‖ for all x ∈ X and α ∈ IR, where |α | denotes the absolute value

of a real α: |α | = max{0, α};
– ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. L. Dontchev, Lectures on Variational Analysis, Applied Mathematical
Sciences 205, https://doi.org/10.1007/978-3-030-79911-3_0
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2 0 Notation, Terminology, and Some Functional Analysis

A normed space is a metric space with a metric ρ(x, y) = ‖x− y‖. In such a space
the closed unit ball IB1(0) is denoted by IB and the open unit ball is then int IB. A
space that is linear, normed and complete is called a Banach space .

Given a linear space X , an inner or scalar product on X is a function 〈·, ·〉 :
X × X → IR with the following properties:

– 〈x, y〉 = 〈y, x〉 for all x, y ∈ X;
– 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉 for all x1, x2, y ∈ X;
– 〈λx, y〉 = λ〈y, x〉 for all x, y ∈ X and λ ∈ IR;
– 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0.
Then

√〈x, x〉 is a norm of x. A linear space X equipped with a scalar product
and an associated norm which is complete with respect to that norm is said to be a
Hilbert space. A standard fact for such a space is the Cauchy-Schwarz inequality

〈u, v〉 ≤ ‖u‖‖v‖.

The space consisting of all linear and continuous real-valued functions on a
Banach space X is another Banach space which is dual or adjoint to X , denoted by
X∗. The value that an x∗ ∈ X∗ assigns to an x ∈ X is called the duality mapping. The
dual of the Banach space X∗ is the bidual X∗∗ of X . When every function x∗∗ ∈ X∗∗
on X∗ can be represented as x∗ → 〈x∗, x〉 for some x ∈ X , the space X is called
reflexive. In particular, when X is a Hilbert space with inner product 〈x, y〉, each
x∗ ∈ X∗ corresponds to a function x → 〈x, y〉 for some y ∈ X , so that X∗ can be
identified with X itself.

The n-dimensional Euclidean space, denoted IRn, is a linear space of vectors

x =
�
��
�

x1
...
xn

	



�

equipped with the Euclidean norm

‖x‖ =
√
〈x, x〉 =

[ ∑n

j=1
x2j

]1/2

which is associated with the canonical inner product

〈x, y〉 =
∑n

j=1
xj yj .

The space IR is the set of reals, the real line, whose norm is the absolute value | · |.
Given a metric space (X, ρ), a point x ∈ X and a set C ⊂ X , the quantity

d(x,C) = inf
y∈C
ρ(x, y)

is called the distance from x to C. We adopt the convention that the distance from
any point to the empty set is +∞. Any point y of C which is closest to x in the sense
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of achieving this distance is called a projection of x on C. The set of projections is
denoted by PC(x).

In any metric space, a neighborhood of x is any set U for which there exists a
positive number r such that IBr (x) ⊂ U. We recall that the interior of a set C ⊂ IRn

consists of all points x such that C is a neighborhood of x, whereas the closure of C
consists of all points x such that the complement of C is not a neighborhood of x; C
is open if it coincides with its interior and closed if it coincides with its closure. A
nonempty set C ⊂ X is closed if and only if every x ∈ X with dC(x) = 0 belongs to
C. The interior is denoted by int C. The union of any number of open sets is open,
while the intersection of a finite number of open sets is open.

A set C is said to be locally closed at a point x ∈ C when there exists a neighbor-
hood U of x such that the intersection C ∩ U is a closed set. A set C is said to be
dense in a closed set D when the closure cl C ofC coincides with D, or equivalently,
when for any x ∈ D any neighborhood U of x contains elements of C. A set C is
said to be compact when every open cover of it has a finite subcover. That is, C is
compact if for every collection T of open sets U ⊂ C such that C ⊂ ∪TU, there
is a finite subset F of T such that C ⊂ ∪FU. In metric spaces this is the same as
saying that every sequence {xn} with xn ∈ C has a subsequence which is convergent
to an element of C. If C ⊂ IRn then compactness of C is equivalent to C being both
bounded and closed.

A set C in a linear space X is said to be convex if for every x, x ′ ∈ C and every
λ ∈ [0, 1], the point λx + (1 − λ)x′ is in C. A function f : X → IR with domain
containing a convex set C is said to be convex on C, or over C, or relative to C, if for
every x, x ′ ∈ C and every λ ∈ (0, 1),

f (λx + (1 − λ)x ′) ≤ λ f (x) + (1 − λ) f (x ′).

If ≤ is replaced by < for x � x ′, the function f is said to be strictly convex on C. A
function f : X → IR defined in a Banach space X is said to be strongly convex on
C if there exists a constant α > 0 such that the function f (x) − α‖x‖2 is convex. A
function f : X → IR is concave when − f is convex.

The convex hull of a set C ⊂ IRn, which will be denoted by co C, is the smallest
convex set that includes C. It can be identified as the intersection of all convex sets
that include C, but also can be described as consisting of all linear combinations
λ0x0 + λ1x1 + · · · + λnxn with xi ∈ C, λi ≥ 0, and λ0 + λ1 + · · · + λn = 1; this is the
Carathéodory theorem. The closed convex hull of C is the closure of the convex hull
of C and denoted cl co C; it is the smallest closed convex set that contains C.

A sequence xk with elements in a metric space (X, ρ) is said to strongly converge
to x, or simply to converge to x, when for every ε > 0 there exists a natural number
K such that for all k ≥ K we have ρ(xk, x) ≤ ε. A sequence xk in a Banach space
X with a dual X∗ is weakly convergent to x when for every x∗ ∈ X∗ the sequence
〈x∗, xk〉 converges to 〈x∗, x〉. For a Hilbert space X weak convergence means that for
every y ∈ X the sequence of reals 〈y, xk〉 is convergent to 〈y, x〉. Weak convergence
determines weak compactness, i.e., a set C in a Hilbert space X is weakly compact
when every sequence has a weakly convergent subsequence. A basic result in that
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context says that any bounded, closed and convex set in a Hilbert space is weakly
compact.

In further lines we introduce notations and terminology for mappings. A mapping
F acting from a set X to a set Y is generally denoted as

X � x → F(x) ⊂ Y,

where x ∈ X and F(x) is the image of x which in general is a subset of Y . The
domain of a mapping F acting between X and Y is

dom F = {x ∈ X | F(x) � ∅},

the graph of F is
gph F = {(x, y) ∈ X × Y | y ∈ F(x)},

while the range of F is

rge F = {y ∈ Y | there exists x ∈ dom F with y ∈ F(x)}.

A mapping F : X → Y is said to be a function when for every x ∈ X the image
F(x) ⊂ Y is just one point or the empty set. We will also consider mappings for
which the image F(x) of a point x may consist of more than one point and call
such mappings set-valued mappings. In the notation for set-valued mappings we use
capital letters and double arrows, e.g., F : X →→ Y , versus small letters and single
arrows for functions, e.g., f : X → Y . Every function may be viewed as a set-valued
mapping. A set-valued mapping which is not a function, that is, having multiple
values at certain points in its domain, is said to be a multivalued mapping, in contrast
to a function, which is a single-valued mapping in its domain.

We define the inverse of a set-valued mapping F : X →→ Y as

Y � y → F−1(y) = {x ∈ X | y ∈ F(x)}.

According to this definition, every mapping has an inverse. In particular, the inverse
of a function always exists, but it may be multivalued, that is, not a function. A
simple example is given in Fig. 0.1.

We introduce next a concept which identifies the case when a set-valued mapping
is locally a function . Let X and Y be metric spaces.

Single-Valued Graphical Localization of a Set-Valued Mapping. For F : X →→ Y
and a pair (x̄, ȳ) ∈ gph F, a function s is said to be a single-valued graphical
localization of F around x̄ for ȳ if there exist neighborhoods U of x̄ and V of ȳ such
that U ⊂ dom s and

gph s = (U × V) ∩ gph F,

so that
s : x →

{
F(x) ∩ V when x ∈ U,
∅ otherwise.
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In the example displayed in Fig. 0.1, the inverse of the function x → x2 has a
single-valued localization around any x > 0 for y =

√
x and another one around any

x > 0 for y = −√x; moreover, it has no single-valued localization around 0 for 0
and is empty valued for any x < 0.

Fig. 0.1: The inverse of the function x → x2

Let X and Y be Banach spaces. A linear mapping A acting from X to Y is a
function with dom A = X which obeys the rule for linearity:

A(αx + βy) = αAx + βAy for all x, y ∈ X and all scalars α, β ∈ IR.

A linear mapping A : X → Y acting between Banach spaces X and Y is bounded
when there exists a constant α ≥ 0 such that

‖Ax‖ ≤ α‖x‖ for all x ∈ X .

The space of linear bounded mappings acting from a Banach space X to a Banach
spaceY is denoted by L(X,Y ). It is a Banach space when equipped with the operator
norm supx∈IB ‖Ax‖. A mapping A ∈ L(X,Y ) is said to be surjective or onto when
for every y ∈ Y there is a x ∈ X with Ax = y; this is denoted as AX = Y . We also
use the notation ker A = {x ∈ X | Ax = 0}.

Let A be a linear and bounded mapping A acting from Hilbert space X into itself.
Then the mapping A∗ defined as

〈A∗x, y〉 = 〈Ay, x〉 for all x, y ∈ X

is linear and bounded and is called the adjoint mapping associated with A. If A = A∗
the mapping A is said to be selfadjoint.
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In IRn we make a distinction between a linear mapping and its matrix. Specifically,
a linear mapping A : IRn → IRm is represented by a matrix, which, with some abuse
of notation, we denote again by A; here the matrix A is with m rows, n columns, and
components ai, j . The transpose of A, denoted by AT, represents the adjoint of the
mapping A. If the matrix A is nonsingular, which requires m = n, then the inverse
A−1 of A is also a linear mapping represented by the inverse of the matrix A. More
generally, if m ≤ n and the rows of the matrix A are linearly independent, then the
rank of the matrix A is m and the mapping A is surjective. In this case the matrix
AAT is nonsingular. On the other hand, if m ≥ n and the columns of A are linearly
independent then ATA is nonsingular. Both the identity mapping and its matrix will
be denoted by I, regardless of dimensionality.

Let (X, ρ) and (Y, ρ) be metric spaces. A function f : X → Y is said to be contin-
uous at x̄ ∈ dom f if for every ε > 0 there exists δ > 0 such that ρ( f (x), f (x̄)) ≤ ε
whenever ρ(x, x̄) ≤ δ. A function f is said to be continuous on, or over, or relative
to, a set D ⊂ dom f if it is continuous at every x ∈ D. A function f : X → Y is
said to be open at x̄ ∈ dom f when for any neighborhood U of x̄ the set f (U) is a
neighborhood of f (x̄). A function f : X → IR is said to be lower semicontinuous
on a set C if for every point x ∈ C and every sequence xk ∈ C convergent to x
one has lim infk→∞ f (xk) ≥ f (x). Symmetrically, a function f : X → IR is upper
semicontinuous on a set C if for every point x ∈ C and every sequence xk ∈ C
convergent to x one has lim supk→∞ f (xk) ≤ f (x). Recall the classical Weierstrass
theorem:

Weierstrass Theorem. Let C be a nonempty compact set in a metric space X . Then
every lower semicontinuous function onC attains its minimum onC and every upper
semicontinuous function on C attains its maximum on C. Hence, any continuous on
C function attains both its minimum and maximum on C.

A function f : X → IR acting on a Hilbert space X is said to be weakly
lower semicontinuous at a point x if it is lower semicontinuous with respect to the
weak convergence in X . The Weierstrass theorem extends to the weak versions of
compactness and lower semicontinuity: any weakly lower semicontinuous function
f on Hilbert space X attains its minimum on a weakly compact set and, in particular,
on a closed and convex set. A continuous function which is convex, is weakly lower
semicontinuous.

Let X and Y be Banach spaces. A function f : X → Y is said to be Fréchet
differentiable at a point x when x ∈ int dom f and there is a linear and bounded
mapping A : X → Y with the property that for every ε > 0 there exists δ > 0 such
that

‖ f (x + h) − f (x) − Ah‖ ≤ ε‖h‖ for every h ∈ X with ‖h‖ < δ.

If such a mapping A exists, it is unique; it is denoted by D f (x) and called the Fréchet
derivative of f at x. A function f : X → Y is said to be twice Fréchet differentiable
at a point x ∈ int dom f when it is Fréchet differentiable at x and there is a bilinear
mapping N : X × X → Y with the property that for every ε > 0 there exists δ > 0
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with

‖ f (x + h) − f (x) − D f (x)h − N(h, h)‖ ≤ ε‖h‖2 for every h ∈ X with ‖h‖ < δ.

If such a mapping N exists, it is unique and is called the second Fréchet derivative of
f at x, denoted by D2 f (x). Higher-order derivatives can be defined accordingly. (For
functions acting in finite dimensions these are the usual derivatives from calculus;
then we omit Fréchet.) When the Fréchet derivative mapping x → D f (x) exists
and is continuous (with respect to the operator norm) on an open set C ⊂ X , then
we say that the function f is continuously differentiable on C; we also call such a
function smooth on C. Analogously, for an integer k we define k times continuously
differentiable functions. The set of such functions is denoted by Ck .

For a function f : P × X → Y and a pair (p, x) ∈ int dom f , the partial Fréchet
derivative mapping Dx f (p, x) : X → Y of f with respect to x at (p, x) is the Fréchet
derivative of the function g(y) = f (p, y) at x. If the partial derivative mapping is a
continuous function in a neighborhood of (p, x), then f is said to be continuously
differentiable with respect to x around (p, x).

For a function f : IRn → IRm we distinguish between the derivative as a linear
mapping and its matrix. The m × n matrix that represents the derivative D f (x) at x
is called the Jacobian of f at x and is denoted by ∇ f (x). The second derivative is
denoted by ∇2 f (x) and so on. In the notation x = (x1, . . . , xn) and f = ( f1, . . . , fm),
the components of ∇ f (x) are the partial derivatives of the component functions fi:

∇ f (x) =
(
∂ fi
∂xj

(x)
)m,n

i, j=1
.

For f : IRd × IRn → IRm the partial derivative ∇x f (p, x) is represented by an
m × n matrix, denoted ∇x f (p, x) and called the partial Jacobian. It’s a standard fact
from calculus that if the function (p, x) → f (p, x) is differentiable with respect to
both p and x around (p̄, x̄) and the partial Jacobian mappings (p, x) → ∇x f (p, x) and
(p, x) → ∇p f (p, x) are continuous around (p̄, x̄), then f is continuously differentiable
around (p̄, x̄).

In this book we will also employ the following weaker notion of derivative; for
simplicity we stick with finite dimensions. For f : IRn → IRm, a point x̄ ∈ dom f
and a vector d ∈ IRn, the limit

f ′(x̄; d) = lim
t↘ 0

f (x̄ + td) − f (x̄)
t

,

when it exists, is called the directional derivative of f at x̄ for d. If this directional
derivative exists for every d, f is said to be directionally differentiable at x̄.

Let X and Y be metric spaces where both metrics are denoted by ρ but may be
different. A function f : X → Y is said to be Lipschitz continuous relative to a set
C, or on a set C, if C ⊂ dom f and there is a constant κ ≥ 0 such that

ρ( f (x ′), f (x ′′)) ≤ κρ(x ′, x ′′) for all x ′, x ′′ ∈ C. (1)
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If f is Lipschitz continuous relative to a neighborhood of a point x ∈ int dom f ,
then f is said to be Lipschitz continuous around x. We say further, in the case of an
open set C, that f is locally Lipschitz continuous on C if it is a Lipschitz continuous
function around every point x of C.

For a function f : X → Y and a point x ∈ int dom f , the Lipschitz modulus of f
at x, denoted lip ( f ; x), is the infimum of the set of values of κ for which there exists
a neighborhood C of x such that (1) holds. Equivalently,

lip ( f ; x) = lim sup
x′,x′′→x,
x′�x′′

ρ( f (x ′), f (x ′′))
ρ(x ′, x ′′) .

A function f is Lipschitz continuous around x if and only if lip ( f ; x) < ∞. For
an open set C, a function f is locally Lipschitz continuous on C exactly when
lip ( f ; x) < ∞ for every x ∈ C.

Let P, X and Y be metric spaces. A function f : P × X → Y is said to be
Lipschitz continuous with respect to x around (p, x) ∈ int dom f when the function
y → f (p, y) is Lipschitz continuous around x; the associated Lipschitz modulus of f
with respect to x is denoted by lip x( f ; (p, x)). We say f is Lipschitz continuous with
respect to x uniformly in p around (p, x) ∈ int dom f when there are neighborhoods
Q of p and U of x along with a constant κ and such that

ρ( f (p′, x ′′), f (p′, x ′)) ≤ κρ(x ′′, x ′) for all x ′′, x ′ ∈ U and p′ ∈ Q.

Accordingly, the partial uniform Lipschitz modulus with respect to x has the form

l̂ip x( f ; (p, x)) := lim sup
x′′,x′→x,p′→p,

x′′�x′

ρ( f (p′, x ′′), f (p′, x ′))
ρ(x ′′, x ′) .

A one-point version of the Lipschitz continuity is a property called calmness. A
function f : X → Y is said to be calm at x relative to a set D in X if x ∈ D ∩ dom f
and there exists a constant κ ≥ 0 such that

ρ( f (x ′), f (x)) ≤ κρ(x ′, x) for all x ′ ∈ D ∩ dom f . (2)

For a function f : X → Y and a point x ∈ dom f , the calmness modulus of f at x,
denoted clm ( f ; x), is the infimum of the set of values κ ≥ 0 for which there exists
a neighborhood D of x such that (2) holds. The definition of the partial uniform
calmness modulus is completely analogous to that of the partial uniform Lipschitz
modulus.

Let X and Y be Banach spaces. Having the concept of calmness, we can interpret
the Fréchet differentiability of a function f : X → Y at a point x ∈ int dom f as the
existence of a linear mapping D f (x) : X → Y such that

clm (e; x) = 0 for e(x′) = f (x ′) − [ f (x) + D f (x)(x ′ − x)].
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Furthermore, we have that clm ( f ; x) = ‖D f (x)‖. A sharper concept of derivative
is tied up with the Lipschitz modulus. A function f : X → Y is said to be strictly
Fréchet differentiable at a point x if there is a linear and bounded mapping A : X → Y
such that

lip (e; x) = 0 for e(x ′) = f (x ′) − [ f (x) + A(x ′ − x)].
Specifically, in this case we have that for each ε > 0 there exists a neighborhood U
of x such that

‖ f (x ′′) − [ f (x ′) + D f (x)(x ′′ − x ′)]‖ ≤ ε‖x ′′ − x ′‖ for every x ′′, x ′ ∈ U.

Clearly, the strictly Fréchet differentiable functions are Fréchet differentiable and
the continuously Fréchet differentiable functions are strictly Fréchet differentiable
functions, with lip ( f ; x) = ‖D f (x)‖. Sometimes, when clear from the context, we
omit “Fréchet.”

We introduce next the notion of semidifferentiability. First, we need the following
definition: A function ϕ : X → Y is said to be positively homogeneous if 0 = ϕ(0)
and ϕ(λw) = λϕ(w) for all w ∈ dom ϕ and λ > 0. This mean geometrically that
the graph of ϕ is a cone in X ×Y . Any linear function is positively homogeneous in
particular.

Semidifferentiability. A function f : X → Y is said to be semidifferentiable at x if
there exists a continuous and positively homogeneous function ϕ : X → Y such that

clm (e; x) = 0 for e(x′) = f (x ′) + ϕ(x ′ − x).

If the stronger condition holds that

lip (e; x) = 0 for e(x ′) = f (x ′) + ϕ(x ′ − x),

then f is said to be strictly semidifferentiable at x. Either way, the function ϕ,
necessarily unique, is called the semiderivative of f at x and denoted by D f (x). In
the literature, this kind of derivative is also called Bouligand or B-derivative.

For a function f and a point x ∈ dom f , semidifferentiability of f at x is
equivalent to the existence of the limit

lim
t↘ 0,w′→w

f (x + tw′) − f (x)
t

for every w ∈ X .

If a function f is semidifferentiable at x, then f is in particular directionally differ-
entiable at x and has

f ′(x;w) = D f (x)(w) for all w.

When lip ( f ; x) < ∞, directional differentiability at x in turn implies semidifferen-
tiability at x.
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When the semiderivative D f (x) is linear, semidifferentiability turns into dif-
ferentiability, and strict semidifferentiability turns into strict differentiability. The
connections known between D f (x) and the calmness modulus and Lipschitz mod-
ulus of f at x under differentiability can be extended to semidifferentiability by
adopting the definition that

‖ϕ‖ = sup
‖x ‖≤1

‖ϕ(x)‖ for a positively homogeneous function ϕ.

We then have clm (D f (x); 0) = ‖D f (x)‖ and consequently clm ( f ; x) = ‖D f (x)‖,
which in the case of strict semidifferentiability becomes lip ( f ; x) = ‖D f (x)‖.

Examples.
(1) The function f (x) = e |x | for x ∈ IR is not differentiable at 0, but it is

semidifferentiable there and its semiderivative is given by D f (0) : w → |w |. This is
actually a case of strict semidifferentiability. Away from 0, f is of course continuously
differentiable (hence strictly differentiable).

(2) The function f (x1, x2) = min{x1, x2} on IR2 is continuously differentiable at
every point away from the line where x1 = x2. On that line, f is strictly semidiffer-
entiable with

D f (x1, x2)(w1,w2) = min{w1,w2}.
(3) A function of the form f (x) = max{ f1(x), f2(x)}, with f1 and f2 continuously

differentiable from IRn to IR, is strictly differentiable at all points x where f1(x) �
f2(x) and semidifferentiable where f1(x) = f2(x), the semiderivative being given
there by

D f (x)(w) = max{D f1(x)(w),D f2(x)(w)}.
However, f might not be strictly semidifferentiable at such points.

The semiderivative obeys standard calculus rules, such as semidifferentiation of
a sum, product and ratio, and, most importantly, the chain rule. Here are some
further properties of the semiderivative: Let f be semidifferentiable at x and let g
be Lipschitz continuous and semidifferentiable at y := f (x). Then the composition
g◦ f is semidifferentiable at x and

D(g◦ f )(x) = Dg(y)◦D f (x).

Let f be strictly semidifferentiable at x and g be strictly differentiable at f (x). Then
g◦ f is strictly semidifferentiable at x.



Lecture 1
Basics in Optimization

An optimization problem is typically a problem of finding minimum or maximum
of a real-valued function f relative to a set C. The function f is called the objective
or cost function, while the set C over which the minimization or maximization
takes place is called the feasible set usually given by constraints. The problem of
minimizing f over C consists of finding an element x̄ in C such that

f (x̄) ≤ f (x) for all x ∈ C.

This problem is written as

min f (x) subject to x ∈ C or min
x∈C

f (x).

Stated in that way, this is a problem of finding a global minimum of f over C. A
point x̄ is a local minimum of f over C if there exists a neighborhood U of x̄ such
that f (x̄) ≤ f (x) for all x ∈ C ∩ U. Clearly, every global minimum is also a local
minimum but the converse is not true. A maximization problem consists of finding
x̄ ∈ C such that f (x̄) ≥ f (x) for all x ∈ C and can be stated equivalently as a
minimization problem, inasmuch as

max
x∈C

f (x) = −min
x∈C

(− f (x)).

In this book we will consider mainly two kinds of optimization problems. First
come mathematical programming problems, where the feasible set is a subset of an
Euclidean space usually given by equalities and inequalities. The name “program-
ming” most likely stems from the time when optimization problems were solved
on early computers; it propagated to problem classes such as linear programming,
quadratic programming, convex programming, nonlinear programming, etc., where
linear, quadratic, convex, and nonlinear correspond to the type of functions involved
in the objective function and the constraints. Then we will focus on optimal con-
trol problems, where the feasible set is a set of functions in an infinite-dimensional

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. L. Dontchev, Lectures on Variational Analysis, Applied Mathematical
Sciences 205, https://doi.org/10.1007/978-3-030-79911-3_1

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79911-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-79911-3_1

