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Prologue
Naomi J. Halas1 and Peter Nordlander2
1Department of Chemistry, Laboratory for
Nanophotonics, Department of Electrical and Computer
Engineering, and Department of Physics and Astronomy,
Rice University, Houston, Texas 77005, United States
2Laboratory for Nanophotonics, Department of
Electrical and Computer Engineering, and Department
of Physics and Astronomy, Rice University, Houston,
Texas 77005, United States

Humans have long been fascinated by the chemical
reactions of nature: from plant growth to the putrefaction
of waste, we have marveled, explored and hoped to mimic
nature’s processes in the hopes of achieving similar
chemical transformations. Many of the chemical mysteries
that fascinated ancient humans were frequently reactions
facilitated by enzymes, nature’s catalysts, which had been
highly optimized, some for many millions of years,
accelerating reaction rates with tremendous specificity. But
the energy sources of nature’s chemical reactions were not
initially obvious. So when first alchemists, then chemists,
began to attempt chemical transformations, the only
energy sources they could rely upon were those they could
control: fire, for raising temperatures, and eventually,
pressure, with the advent of strong materials in which to
contain and confine chemical reactions.
Chemistry became a vast and mature science in the last
two centuries, opening entire new fields ranging from
organic chemistry, allowing us to synthesize the molecules
of nature in our own ways, to physical chemistry, advancing
our understanding of the phases of matter, the elements,
and eventually, the atom and quantum mechanics. But the



energy toolkit of the chemist – the way energy was applied
to scale reaction barriers – remained largely unchanged.
With the dawn of our understanding of electricity came
electrochemistry. While electrical current could now be
harnessed to drive chemical reactions, our understanding
of electromagnetism had not progressed far enough at that
point for us to understand how to use light to directly
deliver energy into a chemical reaction. Einstein’s insight,
followed by the advent of modern, controllable light
sources, brought us new ways to deposit energy into
chemical reactions. Still, the ultralow efficiencies that
haunted the first chemists largely remained. The catalysts
developed for conventional energy sources brought
advances, but still proved to be so limited that the chemical
industry became the single largest consumer of energy on
the entire planet.
Our modern understanding of how to deliver light energy
efficiently to chemical reactions, to lower reaction barriers
and direct chemical outcomes, is still in its infancy. But
advances made possible by the nanoscience revolution of
the past twenty years, in particular in nanophotonics,
brought us the concept of nanoscale, optical frequency
“antennas,” capable of capturing light from the far field
and localizing it in confined volumes whose dimensions are
compatible with chemical processes. Ironically, it was
Faraday, one of the fathers of electrochemistry, who also
advanced the first nanoscale antennas, in the form of gold
colloid that he synthesized. Noble metal nanoparticles,
each with their characteristic plasmon resonances, form
the foundation of localized light delivery that is the central
theme of this book. Shape modification to control the
photon energy that can be coupled into nanoparticles
provides an important “tuning knob” to control localized
energy delivery even further, in new ways.



Our modern knowledge of condensed matter physics
opened the door to understanding the specific processes
that illuminated noble metal nanoparticles could deliver to
chemical reactions. The collective electronic, or plasmon,
resonance, a coherent oscillation of its delocalized
electrons, is responsible for an extremely strong coupling
between incident light waves and the nanoparticles. The
quanta of light energy deposited into a metal nanoparticle
can be dissipated in several important, and ultimately
useful, ways. The coherent oscillation can be damped by
coupling to phonons, resulting in highly efficient
photothermal heating at the nanoparticle surface and in its
direct surroundings. The plasmon can also decay in two
ways by emitting a photon: direct radiative decay, i.e.,
scattering, an efficient process particularly for large
nanoparticles; and the radiative recombination of hot
carriers, also known as plasmon-induced
photoluminescence, an indirect and relatively rare process,
but one that can provide important information regarding
the actual electron temperature within the nanoparticle.
But perhaps most importantly, plasmons can decay by the
excitation of an energetic “hot” electron-hole pair within
the nanoparticle. The nonequilibrium carriers excited by
this process can transfer from the surface of the metal
nanoparticle, to, or from, the molecular orbitals of an
adsorbate molecule on the metal nanoparticle’s surface.
The transfer of an electron to an otherwise unoccupied
orbital of an adsorbate molecule, creating a transient
negative ion state, can substantially lower the barrier to
molecular dissociation. Hot carriers can also transfer their
energy to adsorbed molecules through Auger-like shake-up
processes, leaving the molecule in an excited state. Thus
we see how optically excited “plasmonic” nanoparticles
can, in relatively simple processes, photocatalyze a
chemical reaction that would normally require high
temperatures to achieve the same molecular



rearrangement. What is required, however, is the energy of
the plasmon excitation exceeds that of the energy of the
unoccupied molecular orbital with respect to the Fermi
energy of the metal. It is a substantial challenge for
theoretical chemists to calculate these energy offsets with
high accuracy: it is the key to using this process for many
more plasmon-mediated chemical reactions, and a current
critical challenge for this field. This effect is also further
complicated by the electronic structure of the metal itself:
for example, metals with prominent occupied d-bands, such
as gold can produce both hot and warm electrons, and cold
and warm holes, for a substantial range of excitation
energies. The energy required for a straightforward charge
transfer process to an adsorbate orbital may dictate a
preference for certain noble metal nanoparticles over
others.
While noble metal nanoparticle “antennas” possess several
properties that can efficiently drive chemical reactions with
light excitation, they also have a fundamental limitation:
low chemical affinities for most adsorbate molecules of
interest for chemical reactions. So judiciously incorporating
more reactive materials, in the form of individual atomic
reactive sites, multi-atomic reactive regions, or entire
layers of new materials with greater chemical affinities,
plasmon-induced chemistry can be substantially extended
to more types of chemical reactions and processes. In these
more complex, “antenna-reactor” constructs, one can also
observe other important electronic processes: specifically,
the desorption of adsorbates from surfaces due to the hot
electrons excited by plasmon decay. Electronic desorption
processes were discovered and studied decades ago on
bulk metal surfaces, but with metal nanoparticles, where
plasmons can readily be excited by direct illumination,
these processes become almost universal. The plasmon-
induced desorption of adsorbates from binding sites can



eliminate the irreversible binding, known as “poisoning” of
reactive sites, an extremely common problem for
conventional thermocatalysts. This process can also be
used to modify reactive chemical outcomes, removing
reactive adsorbates abruptly before a reaction can proceed
further offers a new way to control the product of a
chemical reaction. Thermocatalysts have no similar ability
for active chemical control.
This book embodies an entirely new, twenty-first century
path forward for the control of chemical processes. The low
reaction temperatures and record efficiencies that have
been observed thus far in plasmonic photochemistry truly
tantalize us. The incredible boost in the efficiencies of
visible light sources, such as LEDs, have made photons
extraordinarily inexpensive. Is this the new path forward
for chemistry? Will this direction transition into a new,
light-based chemical industry where low-temperature, low-
pressure light-induced photocatalytic reactions ultimately
make the massive chemical plants of the twentieth century
obsolete? If that is the case, what does the next generation
of chemists and chemical engineers need to learn about
light-particle interactions to master this new type of light-
based chemical reactivity? Will sunlight, a free source of
photons energetic enough to drive these reactions, be used
to directly drive these types of chemistries instead of using
photovoltaics as intermediaries? Perhaps photosynthesis,
the object of our millennia-old fascination, will finally be
realistically copied – along with the low temperatures and
high efficiencies characteristic of nature’s processes – with
precisely designed and engineered nanoantennas and
nanoreactors. We eagerly look forward to many exciting
advances in this field, for years to come.

Houston, TX, USA
14 October 2020
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Introduction
Pedro H.C. Camargo1 and Emiliano Cortés2
1Department of Chemistry, University of Helsinki,
Helsinki, Finland
2Faculty of Physics, Nanoinstitute Munich, University of
Munich (LMU), Munich, Germany

Catalysis is central to move toward a more sustainable
future and enable our society to transition to a circular
economy. For this reason, the possibility of harvesting
sunlight to drive, accelerate, and control chemical
reactions via photocatalysis has fascinated scientists for
years. The unique optical properties of metal nanoparticles
in the visible and near-infrared ranges turn them into ideal
candidates for sunlight-activated catalysts. In fact, is has
been recently established that the excitation of the
localized surface plasmon resonance (LSPR) in these
systems can be employed to drive and accelerate a variety
of chemical reactions. This has led to the rise of plasmonic
catalysis as a new frontier in catalysis, photocatalysis, and
photoelectrocatalysis.
Plasmonic catalysis is the acceleration of a chemical
reaction due to a plasmon excitation. To understand this
simple definition is necessary to incorporate concepts from
various research fields such as heterogeneous catalysis,
nano-optics, physical chemistry, and material science. This
book emerged as a necessity for unifying concepts, ideas,
techniques, and advances in the rapidly growing field of
plasmonic catalysis. To the best of our knowledge, this is
the first book dedicated to this emerging area of research,
covering its most important concepts and recent
developments. To do so, a big, diverse, and heterogeneous
group of world leaders in the field prepared exciting



contributions for this book. The book comprises 10
chapters encompassing topics such as theoretical
considerations of using plasmons for catalysis, optical and
catalytic properties in plasmonic nanoparticles and hybrid
systems, their synthesis, the fundamentals and mechanisms
by which plasmonic excitation leads to the acceleration of
reaction rates, examples and discussion of plasmonic
catalysis applied to important chemical transformations,
plasmonic catalysts based on earth-abundant materials,
plasmonic electrocatalysis, and plasmonic metal–
semiconductor heterostructures. Here is a quick overview
of the main aspects covered in each chapter.
The book starts by describing in Chapter 1 the theoretical
framework of plasmon excitation and decay in the context
of plasmonic catalysis. Energy conversion from photons to
molecules and transfer from the plasmonic catalyst to the
environment are the fundamental processes that take place
in a plasmon-catalyzed chemical reaction. The chapter
provides a detailed theoretical analysis of plasmon
excitation, decay mechanisms, energy transfer, and carrier
injection across different interfaces, near-field and
scattering enhancements, and photoheating. Toward the
end of the chapter and in order to exemplify these
theoretical concepts, the chapter overviews a series of
applications and experiments where these phenomena can
be spotted. As such, this chapter sets the ground to
understand the physics behind the uses of plasmons for
chemistry.
We move next to the characterization and properties of
plasmonic catalytic systems in Chapter 2. From
conventional heterogeneous catalysis methods to plasmonic
techniques, this chapter tackles the integration of
conventional methods as well as new methods able to
unravel the optical, electronic, and chemical properties of
these systems. Different approaches can be followed in



order to study chemical reactions mediated by plasmons
either at the ensemble level or at the nanoscale, as well as
to disentangle the role of light, heat, and carriers in the
underlying mechanism. This chapter groups techniques
with different temporal, spatial, and chemical resolution in
order to gain deeper insight of the behavior of plasmonic
catalysts under light illumination.
It has been recognized that the optical properties arising
from the LSPR excitation are strongly dependent on several
physical and chemical parameters that define the
plasmonic nanoparticles. These include size, shape,
composition, and structure (solid or hollow interiors) of the
nanoparticles. Because these properties are related to the
performances in plasmonic catalysis, the synthesis of
plasmonic nanoparticles where these parameters can be
tightly controlled has gained increased attention. In fact,
this is important not only to optimize performances, but
also to unravel–structure performance relationships that
may aid on the rational design of plasmonic catalysts with
desired performances for a reaction of interest. In this
context, Chapter 3 discusses the fundamentals and
important examples on the controlled synthesis of metal
nanoparticles that are relevant for plasmonic catalysis. The
chapter begins by focusing on several methods for the
controllable synthesis of Ag, Au, Cu, and Al nanoparticles.
The chapter pays particular attention on shape control, in
which morphologies such as quasispheres, nanocubes,
nanowires, among others, are described. Then, different
assemblies having these nanoparticles are presented.
These colloidal assemblies are important as they often
outperform their individual counterparts due to the
formation of electromagnetic hot spots, which can enhance
plasmonic catalytic activities. The chapter then moves to
bimetallic nanoparticles. This is attractive because
nanoparticles having a plasmonic and a catalytic metal


