

Edited by
Pedro H.C. Camargo and Emiliano Cortés

Plasmonic Catalysis

From Fundamentals to Applications

Table of Contents

[Cover](#)

[Title Page](#)

[Copyright](#)

[Prologue](#)

[Introduction](#)

[1 Theory of Plasmonic Excitations](#)

[1.1 Introduction](#)

[1.2 Dynamics of Plasmon Excitation and Decay](#)

[1.3 Hot Electrons: Energy Distribution and Mechanisms of Generation](#)

[1.4 Charge Transfer Mechanisms Associated with Plasmons](#)

[1.5 Plasmonic Near-Field Enhancement](#)

[1.6 Plasmonic Scattering](#)

[1.7 Photoheating](#)

[1.8 Example Applications](#)

[1.9 Outlook](#)

[Acknowledgements](#)

[References](#)

[2 Characterization and Properties of Plasmonic-Catalytic Nanostructures from the Atomic Scale to the Reactor Scale](#)

[2.1 Overview](#)

[2.2 Ensemble Studies and Mechanistic Mysteries](#)

[2.3 Single/Subparticle Measurements – Toward Uncovering Mechanisms](#)

2.4 Ultrafast Spectroscopy and Emerging Techniques - A Promising Future

2.5 Outlook

Acknowledgments

References

3 Synthesis of Plasmonic Nanoparticles for Photo- and Electrocatalysis

3.1 Introduction

3.2 Monometallic Plasmonic Nanoparticles

3.3 From Monometallic NP Films to Composite NP Architectures

3.4 SERS Studies of Photo- and Electrocatalysis

References

4 Plasmonic Catalysis Toward Hydrogenation Reactions

4.1 Introduction

4.2 Hydrogenation of Alkenes and Alkynes

4.3 Hydrogenation of Aldehydes and Ketones

4.4 Reduction of Nitro Compounds

4.5 Outlook

References

5 Plasmonic Catalysis, Photoredox Chemistry, and Photosynthesis

5.1 Introduction

5.2 Energy Conversion Following Plasmonic Excitation

5.3 Plasmon-Excitation-Assisted Charge Transfer Reactions

5.4 Plasmon-Excitation-Driven Processes Relevant for Fuel Generation

5.5 Outlook

Acknowledgments

References

6 Plasmonic Catalysis for N₂ Fixation

6.1 Introduction

6.2 Reaction Mechanism and Evaluation of N₂ Fixation

6.3 N₂ Fixation Through NFE

6.4 N₂ Fixation Through DHEI into N₂ Molecules

6.5 HET from a Plasmonic Metal to a Semiconductor

6.6 Outlook

References

7 Untangling Thermal and Nonthermal Effects in Plasmonic Photocatalysis

7.1 Introduction

7.2 Tools and Techniques for Product Analysis and Temperature Measurement

7.3 Photothermal Catalysis

7.4 Discriminating Thermal and Nonthermal Effects

7.5 Outlook

References

8 Earth-Abundant Plasmonic Catalysts

8.1 Introduction

8.2 MoO_{3-x}- and WO_{3-x}-Based Plasmonic Catalysts

8.3 Molybdenum and Tungsten Bronzes-Based Plasmonic Catalysts

8.4 Cu_{2-x}E (E = S, Se, Te)-Based Plasmonic Catalysts

8.5 Outlook

References

9 Plasmon-Enhanced Electrocatalysis

9.1 Introduction

9.2 Principles and Mechanism

9.3 Plasmon-Enhanced Electrocatalytic Systems

9.4 Outlook

Acknowledgements

References

10 Plasmonic Metal/Semiconductor Heterostructures

10.1 Introduction

10.2 Working Principles

10.3 Fabrication of Metal/Semiconductor Heterostructures

10.4 Design of Metal/Semiconductor Heterostructures

10.5 Photocatalytic Reactions Mediated by Plasmonic Heterostructures

10.6 Outlook

Acknowledgments

References

Epilogue

References

Index

End User License Agreement

List of Illustrations

Chapter 1

[Figure 1.1 Schematic representation of the typical electronic states in two ...](#)

[Figure 1.2 \(a\) Schematic diagram of metal nanoparticles driven at a low freq...](#)

[Figure 1.3 \(a\) Schematic diagram of the band structure of gold, depicting th...](#)

[Figure 1.4 Free electron model in a system without boundaries. \(a\) Classical...](#)

[Figure 1.5 Effects of boundaries in the plasmon dynamics. \(a\) Excitation of ...](#)

[Figure 1.6 \(a\) Internal channels for the decay of the plasmon in an NC, as w...](#)

[Figure 1.7 \(a\) Typical distribution of excited electrons in an optically dri...](#)

[Figure 1.8 \(a\) Diagram showing the different types of excited carriers insid...](#)

[Figure 1.9 \(a\) Plasmonic systems increase the molecular signal in Raman spec...](#)

[Figure 1.10 Enhancement factor maps of Au NCs with different geometries, imm...](#)

[Figure 1.11 \(a\) Scattering plasmonic nanoparticles can be used to extend the...](#)

[Figure 1.12 Plasmonic nanoparticles as photoheaters. \(a\) Single particle. Di...](#)

[Figure 1.13 Comparison of thermal effects and indirect HE injection. These i...](#)

[Figure 1.14 \(a\) Autonomous water-splitting photocatalytic unit, where charge...](#)

Chapter 2

[Figure 2.1 A spatiotemporal summary of plasmonic photocatalytic processes, h...](#)

[Figure 2.2 Key characterization techniques in plasmonic photocatalysis, span...](#)

[Figure 2.3 \(a\) A demonstration of decreasing absorption of molecules over ti...](#)

[Figure 2.4 GC/MS graphical overview. \(a\). Schematic overview of the main comp...](#)

[Figure 2.5 \(a\) Ensemble plasmonic photocatalytic rate enhancement as a funct...](#)

[Figure 2.6 \(a\) KIE experiment from the previously discussed Linic's work dem...](#)

[Figure 2.7 Eyring plots at various \(a\) wavelengths and \(b\) intensities. The ...](#)

[Figure 2.8 Schematic of UV/Vis spectroscopy in \(a\). extinction measurement mo...](#)

[Figure 2.9 Diffuse reflectance infrared Fourier transform spectroscopy as a ...](#)

[Figure 2.10 \(a\) Representative SEM micrographs of the sample. \(b\) Dark-field...](#)

[Figure 2.11 \(a\) Activity as a function of rod spacing. The black squares ind...](#)

[Figure 2.12 \(a\) Representative EELS point spectra for the electron beam loca...](#)

[Figure 2.13 \(a\) TEM micrograph of Pd nanocube reactor adjacent to Au plasmon...](#)

[Figure 2.14 \(a\) Schematic of ultrafast spectroscopy vs. surface-enhanced Ram...](#)

[Figure 2.15 \(a\) Schematic of TERS experimental setup. \(b\) TERS signal from d...](#)

[Figure 2.16 Summary of chemical processes known to under desorption by elect...](#)

[Figure 2.17 Ultrafast Electron Microscopy \(UEM\) can reveal acoustic-phonon d...](#)

Chapter 3

[Figure 3.1 TEM images of quasispherical gold NPs with different diameters ob...](#)

[Figure 3.2 TEM images of gold NRs with increased average AR and resonance wa...](#)

[Figure 3.3 SEM images of the gold nanocrystals synthesized with shape evolut...](#)

[Figure 3.4 TEM image and corresponding UV-vis-NIR extinction spectrum \(exper...](#)

[Figure 3.5 TEM images of Au nanostars in order of increasing size \(a-f\). Sca...](#)

[Figure 3.6 Vis/NIR extinction spectra of as-synthesized gold nanostars of in...](#)

[Figure 3.7 \(a\) LSPR spectrum of silver colloids in the size range of c. 40-1...](#)

[Figure 3.8 SEM image of Ag nanowires \(a, b\) \[37, 38\] and TEM image of Ag NPs...](#)

[Figure 3.9 \(a\) Surface energies \(\$\gamma\$ \) of Ag_{100} and Ag_{111} for different s...](#)

[Figure 3.10 SEM \(a\), TEM \(b, c\), HRTEM images \(d\), and SAED pattern \(e\) of t...](#)

[Figure 3.11 \(a\) TEM image of monodisperse Cu nanospheres with an average dia...](#)

[Figure 3.12 Schematic illustrations of the synthesis process and characteriz...](#)

[Figure 3.13 Size control of aluminum nanocrystals.](#)
[\(a\) Reaction scheme for t...](#)

[Figure 3.14 Synthesis and characterization of anisotropic aluminum nanocryst...](#)

[Figure 3.15 Schematic representation of the formation and transfer of an int...](#)

[Figure 3.16 \(a\) Scheme showing morphological and structural changes involved...](#)

[Figure 3.17 \(a\) Scheme of the synthesis of Ag core-satellite superstructures...](#)

[Figure 3.18 \(a\) One-step synthesis of Au@Ni superstructures. \(b\) Extinction ...](#)

[Figure 3.19 Characterization of Au and Au@Pt NWs by \(a\) TEM, \(b\) HAADF-STEM-...](#)

[Figure 3.20 AgPd tipping on the 804 nm Au NBPs. \(a\) Schematic illustration o...](#)

[Figure 3.21 4-ATP oxidation induced by hot electrons. \(a\) Raman spectra of A...](#)

[Figure 3.22 Counter-half-reaction-promoted hot electron photorecycling \[59\]....](#)

[Figure 3.23 *In situ* SERS spectra acquired during the dehalogenation of 4-iod...](#)

[Figure 3.24 \(a\) SERS for revealing the electron transfer between Au and CdS ...](#)

Chapter 4

[Figure 4.1 Three mechanisms are at play in plasmonic catalysis. Each mechani...](#)

[Scheme 4.1 Schematic representation of the different catalyst designs for PN...](#)

[Scheme 4.2 Styrene to ethylbenzene hydrogenation with concave Pd NC \[16\]....](#)

[Scheme 4.3 Styrene to ethylbenzene hydrogenation with Au NPs \[20\].](#)

[Scheme 4.4 Acetylene to ethylene partial hydrogenation with Pd@Al NPs \[22\]....](#)

[Scheme 4.5 Phenylacetylene to styrene partial hydrogenation with Au-Ag-Pt NP...](#)

[Scheme 4.6 Hydrogenation of 2-methyl-3-buten-2-ol catalyzed by Pd@Au nanotri...](#)

[Scheme 4.7 Hydrogenation of anchored phenylacetylene over an Au-Pt bimetalli...](#)

[Scheme 4.8 Carbonyl reduction under light irradiation catalyzed by Ag NCs \[3...](#)

[Figure 4.2 Proposed mechanism for the hydrogenation of carbonyl compounds wi...](#)

[Scheme 4.9 Selective C=O reduction of cinnamaldehyde with plasmon-enhanced c...](#)

[Scheme 4.10 Styrene oxide and acetophenone reduction under light irradiation...](#)

[Scheme 4.11 Furfural to furfuryl alcohol reduction under light irradiation c...](#)

[Figure 4.3 Proposed mechanism for light initiated selective hydrogenation of...](#)

[Scheme 4.12 Furfural to furfuryl alcohol reduction under light irradiation c...](#)

[Scheme 4.13 Selective C=O hydrogenation of \$\alpha,\beta\$ -unsaturated aldehydes under v...](#)

[Scheme 4.14 Nitroarene reduction.](#)

[Figure 4.4 Proposed mechanism for the 4-nitrophenol hydrogenation by \$\text{BH}_4^-\$...](#)

[Scheme 4.15 Nitrate Reduction under light irradiation catalyzed by \$\text{Ag}/\text{Cu}@\text{R-T}\$...](#)

[Scheme 4.16 Nitroaromatic coupling.](#)

[Figure 4.5 Mechanism for the photocatalytic reduction of nitroaromatic compo...](#)

[Scheme 4.17 Selective coupling of nitrobenzene to azoxybenzene under visible...](#)

[Scheme 4.18 Selective hydrogenation of azobenzene under light irradiation ca...](#)

[Scheme 4.19 Selective coupling of nitrobenzene to hydrazobenzene under visib...](#)

Chapter 5

[Figure 5.1 Energy \(\$E\$ \) vs. density of states \(DOS\) diagrams illustrating the ...](#)

[Figure 5.2 Schematics for LSPR-excitation-induced charge transfer in \(a,b\) a...](#)

[Figure 5.3 Plasmon-excitation-induced photocharging and photopotential of me...](#)

[Figure 5.4 A plot of \$RT\ln\(R_f/R_b\)\$ for a LSPR-excitation-driven reaction as a ...](#)

[Figure 5.5 Plasmon-excitation-induced photoredox reactions. Depiction of \(a\)...](#)

[Figure 5.6 Plasmon-excitation-driven \$\text{H}_2\text{O}\$ splitting. \(a\) A photoelectrochemic...](#)

[Figure 5.7 Visible-light-driven \$\text{CO}_2\$ reduction on Au NPs. \(a\) TOFs for \$\text{CH}_4\$ and...](#)

[Figure 5.8 Plasmon-excitation-driven CO₂RR on Au NPs promoted by the imidazo...](#)

[Figure 5.9 The role of EMIM-BF₄ in plasmon-excitation-driven CO₂RR. The lowe...](#)

[Figure 5.10 Competition between plasmon-excitation-driven CO₂RR and HER on A...](#)

[Figure 5.11 Effect of light intensity on the activity of plasmon-excitation-...](#)

[Figure 5.12 \(a\) Schematic of in situ single-NP-level SERS spectroscopy for t...](#)

Chapter 6

[Figure 6.1 Schematic illustrations of the decay of LSPR in metallic NPs \(upp...](#)

[Figure 6.2 Generic reaction pathways for N₂ reduction to NH₃ on heterogeneou...](#)

[Figure 6.3 \(a\) Cross-sectional view and \(b\). magnified view SEM images of an ...](#)

[Figure 6.4 \(a\) Illustration of the experimental procedures for the preparati...](#)

[Figure 6.5 \(a\) Schematic of N₂ fixation on AuRu_x \(b\) TEM image of AuRu_{0.31}c...](#)

[Figure 6.6 \(a\) Schematic diagram of an Os-Au composite NP for NH₃ synthesis....](#)

[Figure 6.7 \(a\) Intraband excitation of a plasmonic semiconductor \(CB to CB\) ...](#)

[Figure 6.8 \(a\) TEM and \(b\) HRTEM images of the 0.5% Ag/KNbO₃ composite. \(c,d...](#)

[Figure 6.9 \(a\) SEM \(left\) and TEM \(right\) images of the Au/TiO₂-OV sample. \(...](#)

[Figure 6.10 \(a\) HRTEM images of the single Au/end-CeO₂ nanostructure. \(b\) Ex...](#)

[Figure 6.11 Scanning electron microscope image of Au-NPs \(a\) and Ru \(b\) on N...](#)

[Figure 6.12 \(a\) Layout of the NH₃ synthesis device bearing the Nb-SrTiO₃ pho...](#)

[Figure 6.13 \(a\) Schematic of the reaction cell. \(b,c\) FESEM images for NH₃ and N₂H₄ i...](#)

[Figure 6.14 \(a\) Schematic of the reaction cell. \(b\) SEM images of Au-NPs/SrTiO₃...](#)

[Figure 6.15 IPCE action spectra of the two-electrode systems using \(a\) Au-NP...](#)

Chapter 7

[Figure 7.1 Typical gaseous reaction system for investigating plasmonic photo...](#)

[Figure 7.2 Temperature gradient model of the catalyst bed. Due to the short ...](#)

[Figure 7.3 Photographs of a multi-thermocouple setup. \(a\) 0.5 mm sheath diam...](#)

[Figure 7.4 Comparison of thick and thin thermocouples under unheated, blue light ...](#)

[Figure 7.5 Morphology and size distribution of Ru-Cs/MgO. \(a\) TEM image, sca...](#)

[Figure 7.6 NH₃ synthesis under dark thermal and heated white light illuminat...](#)

[Figure 7.7 Light-only NH₃ synthesis rates and measured temperatures. \(a\) Mea...](#)

[Figure 7.8 NH₃ synthesis and light-induced thermal gradients for \$T_e = 325\$ °C...](#)

[Figure 7.9 Direct and indirect illumination. \(a\). Schematic representation of...](#)

[Figure 7.10 Direct and indirect illumination of Ru-Cs/MgO for NH₃ synthesis ...](#)

[Figure 7.11 Characterization of Rh-based photocatalyst. TEM images of \(a\) Rh...](#)

[Figure 7.12 CH₄ selectivity and production rate under illuminated and dark c...](#)

[Figure 7.13 CO₂ methanation reactions, carried out with a ~3 mm thick Rh-s/T...](#)

[Figure 7.14 Comparison of heated \(dark thermal\) and unheated \(light-only\) CO](#)

[Figure 7.15 CO₂ methanation under dark thermal and illuminated conditions. \(...\)](#)

[Figure 7.16 CO₂ methanation using direct vs. indirect illumination. For top ...](#)

[Figure 7.17 Extracted nonthermal reaction rate and apparent quantum efficien...](#)

Chapter 8

[Figure 8.1 \(a\) The schematic illustration of plasmonic excitation on metalli...](#)

[Figure 8.2 The normalized optical extinction due to LSPR in solutions and fi...](#)

[Figure 8.3 Several doping mechanisms with host cations \(orange spheres\) and ...](#)

[Figure 8.4 Two typical different band structures of plasmonic semiconductors...](#)

[Figure 8.5 A schematic illustration of the surface plasmon decay process via...](#)

[Figure 8.6 \(a\) Photograph of the \$\text{MoO}_{3-x}\$ nanosheets dispersed in ethano...](#)

[Figure 8.7 \(a\) TEM image of the Pd/ \$\text{MoO}_{3-x}\$ hybrid and \(inset\) particle ...](#)

[Figure 8.8 \(a\) The UV/vis diffuse reflectance spectra of Meso- \$\text{WO}_{2.83}\$ and Mes...](#)

[Figure 8.9 \(a\) A schematic illustration to prepare hydrogen molybdenum bronz...](#)

[Figure 8.10 TDOS and PDOS of \(a\) pristine \$\text{MoO}_3\$ and \(b\) heavily hydrogen-dope...](#)

[Figure 8.11 \(a\) UV-vis-NIR diffuse reflectance spectra for the \$\text{Pt}/\text{H}_x\text{MoO}_{3-y}\$...](#)

[Figure 8.12 \(a\) The crystal structure of \$\text{Rb}_{0.33}\text{WO}_3\$. \(b\) UV-vis-NIR diffuse r...](#)

[Figure 8.13 \(a\) Illustration of the process to prepare \$\text{WO}_2\text{-Na}_x\text{WO}_3\$ hybrid. \(b...](#)

[Figure 8.14 \(a\) Optical absorption spectra of the obtained different nanostr...](#)

[Figure 8.15 \(a\) The vis-NIR spectra of different \$\text{Cu}_{2-x}\text{S}\$ nanowires. \(b\)...](#)

[Figure 8.16 \(a\) The extinction spectrum of the NPs dispersed in \$\text{CHCl}_3\$ oleyla...](#)

Chapter 9

[Figure 9.1 \(a\) Dynamics of the plasmon excitation/relaxation process in a me...](#)

[Figure 9.2 Representative reactions under focus in this chapter, reflecting ...](#)

[Figure 9.3 \(a\) HER volcano plot for metals and benchmark MoS₂ and Ni₂P elect...](#)

[Figure 9.4 \(a\) Unit cell cross-section showing the components of an expanded...](#)

[Figure 9.5 \(a\) Schematic representation of the complete methanol \(MOR\) and e...](#)

[Figure 9.6 \(a\) Volcano plot of CO₂RR partial current density at -0.80 V agai...](#)

Chapter 10

[Figure 10.1 The formation of the Schottky barrier at a metal/semiconductor i...](#)

[Figure 10.2 EQE of electron transfer in an Au/TiO₂ heterostructure. The red ...](#)

[Figure 10.3 Schematics showing different strategies for fabricating metal/se...](#)

[Figure 10.4 Schematics of energy levels of semiconductors that are potential...](#)

[Figure 10.5 Controlling the electron transfer efficiency by tuning \$\Phi_{SB}\$. Inse...](#)

[Figure 10.6 Optimizing the electron transport in semiconductors. \(a\) Faster ...](#)

[Figure 10.7 Metal/semiconductor heterostructures with anisotropic metal nano...](#)

[Figure 10.8 AuCu/TiO₂ heterostructures for the CO₂ reduction reaction. Hot e...](#)

[Figure 10.9 Active sites at metal/semiconductor interfaces. \(a\) The oxidatio...](#)

Figure 10.10 Photochemical reactions catalyzed by plasmonic metal/semiconduc...

Plasmonic Catalysis

From Fundamentals to Applications

Edited by

Pedro H.C. Camargo

Emiliano Cortés

WILEY-VCH

Editors

Prof. Pedro H.C. Camargo

University of Helsinki
Department of Chemistry
A.I. Virtasen aukio 1
PO Box 55
00014 Helsinki
Finland

Prof. Emiliano Cortés

University of Munich (LMU)
Faculty of Physics
Nanoinstitute Munich
Königinstr. 10
80539 Munich
Germany

Cover

Kindly provided by Few Good Geeks Oy

All books published by **WILEY-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.:

applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2021 WILEY-VCH GmbH, Boschstr.
12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language

without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-34750-6

ePDF ISBN: 978-3-527-82695-7

ePub ISBN: 978-3-527-82696-4

oBook ISBN: 978-3-527-82697-1

Prologue

Naomi J. Halas¹ and Peter Nordlander²

¹Department of Chemistry, Laboratory for Nanophotonics, Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States

²Laboratory for Nanophotonics, Department of Electrical and Computer Engineering, and Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States

Humans have long been fascinated by the chemical reactions of nature: from plant growth to the putrefaction of waste, we have marveled, explored and hoped to mimic nature's processes in the hopes of achieving similar chemical transformations. Many of the chemical mysteries that fascinated ancient humans were frequently reactions facilitated by enzymes, nature's catalysts, which had been highly optimized, some for many millions of years, accelerating reaction rates with tremendous specificity. But the energy sources of nature's chemical reactions were not initially obvious. So when first alchemists, then chemists, began to attempt chemical transformations, the only energy sources they could rely upon were those they could control: fire, for raising temperatures, and eventually, pressure, with the advent of strong materials in which to contain and confine chemical reactions.

Chemistry became a vast and mature science in the last two centuries, opening entire new fields ranging from organic chemistry, allowing us to synthesize the molecules of nature in our own ways, to physical chemistry, advancing our understanding of the phases of matter, the elements, and eventually, the atom and quantum mechanics. But the

energy toolkit of the chemist – the way energy was applied to scale reaction barriers – remained largely unchanged. With the dawn of our understanding of electricity came electrochemistry. While electrical current could now be harnessed to drive chemical reactions, our understanding of electromagnetism had not progressed far enough at that point for us to understand how to use light to directly deliver energy into a chemical reaction. Einstein’s insight, followed by the advent of modern, controllable light sources, brought us new ways to deposit energy into chemical reactions. Still, the ultralow efficiencies that haunted the first chemists largely remained. The catalysts developed for conventional energy sources brought advances, but still proved to be so limited that the chemical industry became the single largest consumer of energy on the entire planet.

Our modern understanding of how to deliver light energy efficiently to chemical reactions, to lower reaction barriers and direct chemical outcomes, is still in its infancy. But advances made possible by the nanoscience revolution of the past twenty years, in particular in nanophotonics, brought us the concept of nanoscale, optical frequency “antennas,” capable of capturing light from the far field and localizing it in confined volumes whose dimensions are compatible with chemical processes. Ironically, it was Faraday, one of the fathers of electrochemistry, who also advanced the first nanoscale antennas, in the form of gold colloid that he synthesized. Noble metal nanoparticles, each with their characteristic plasmon resonances, form the foundation of localized light delivery that is the central theme of this book. Shape modification to control the photon energy that can be coupled into nanoparticles provides an important “tuning knob” to control localized energy delivery even further, in new ways.

Our modern knowledge of condensed matter physics opened the door to understanding the specific processes that illuminated noble metal nanoparticles could deliver to chemical reactions. The collective electronic, or plasmon, resonance, a coherent oscillation of its delocalized electrons, is responsible for an extremely strong coupling between incident light waves and the nanoparticles. The quanta of light energy deposited into a metal nanoparticle can be dissipated in several important, and ultimately useful, ways. The coherent oscillation can be damped by coupling to phonons, resulting in highly efficient photothermal heating at the nanoparticle surface and in its direct surroundings. The plasmon can also decay in two ways by emitting a photon: direct radiative decay, i.e., scattering, an efficient process particularly for large nanoparticles; and the radiative recombination of hot carriers, also known as plasmon-induced photoluminescence, an indirect and relatively rare process, but one that can provide important information regarding the actual electron temperature within the nanoparticle. But perhaps most importantly, plasmons can decay by the excitation of an energetic “hot” electron-hole pair within the nanoparticle. The nonequilibrium carriers excited by this process can transfer from the surface of the metal nanoparticle, to, or from, the molecular orbitals of an adsorbate molecule on the metal nanoparticle’s surface. The transfer of an electron to an otherwise unoccupied orbital of an adsorbate molecule, creating a transient negative ion state, can substantially lower the barrier to molecular dissociation. Hot carriers can also transfer their energy to adsorbed molecules through Auger-like shake-up processes, leaving the molecule in an excited state. Thus we see how optically excited “plasmonic” nanoparticles can, in relatively simple processes, photocatalyze a chemical reaction that would normally require high temperatures to achieve the same molecular

rearrangement. What is required, however, is the energy of the plasmon excitation exceeds that of the energy of the unoccupied molecular orbital with respect to the Fermi energy of the metal. It is a substantial challenge for theoretical chemists to calculate these energy offsets with high accuracy: it is the key to using this process for many more plasmon-mediated chemical reactions, and a current critical challenge for this field. This effect is also further complicated by the electronic structure of the metal itself: for example, metals with prominent occupied d-bands, such as gold can produce both hot and warm electrons, and cold and warm holes, for a substantial range of excitation energies. The energy required for a straightforward charge transfer process to an adsorbate orbital may dictate a preference for certain noble metal nanoparticles over others.

While noble metal nanoparticle “antennas” possess several properties that can efficiently drive chemical reactions with light excitation, they also have a fundamental limitation: low chemical affinities for most adsorbate molecules of interest for chemical reactions. So judiciously incorporating more reactive materials, in the form of individual atomic reactive sites, multi-atomic reactive regions, or entire layers of new materials with greater chemical affinities, plasmon-induced chemistry can be substantially extended to more types of chemical reactions and processes. In these more complex, “antenna-reactor” constructs, one can also observe other important electronic processes: specifically, the desorption of adsorbates from surfaces due to the hot electrons excited by plasmon decay. Electronic desorption processes were discovered and studied decades ago on bulk metal surfaces, but with metal nanoparticles, where plasmons can readily be excited by direct illumination, these processes become almost universal. The plasmon-induced desorption of adsorbates from binding sites can

eliminate the irreversible binding, known as “poisoning” of reactive sites, an extremely common problem for conventional thermocatalysts. This process can also be used to modify reactive chemical outcomes, removing reactive adsorbates abruptly before a reaction can proceed further offers a new way to control the product of a chemical reaction. Thermocatalysts have no similar ability for active chemical control.

This book embodies an entirely new, twenty-first century path forward for the control of chemical processes. The low reaction temperatures and record efficiencies that have been observed thus far in plasmonic photochemistry truly tantalize us. The incredible boost in the efficiencies of visible light sources, such as LEDs, have made photons extraordinarily inexpensive. Is this the new path forward for chemistry? Will this direction transition into a new, light-based chemical industry where low-temperature, low-pressure light-induced photocatalytic reactions ultimately make the massive chemical plants of the twentieth century obsolete? If that is the case, what does the next generation of chemists and chemical engineers need to learn about light-particle interactions to master this new type of light-based chemical reactivity? Will sunlight, a free source of photons energetic enough to drive these reactions, be used to directly drive these types of chemistries instead of using photovoltaics as intermediaries? Perhaps photosynthesis, the object of our millennia-old fascination, will finally be realistically copied – along with the low temperatures and high efficiencies characteristic of nature’s processes – with precisely designed and engineered nanoantennas and nanoreactors. We eagerly look forward to many exciting advances in this field, for years to come.

Houston, TX, USA
14 October 2020

*Naomi J. Halas
Peter Nordlander*

Introduction

Pedro H.C. Camargo¹ and Emiliano Cortés²

¹Department of Chemistry, University of Helsinki, Helsinki, Finland

²Faculty of Physics, NanoInstitute Munich, University of Munich (LMU), Munich, Germany

Catalysis is central to move toward a more sustainable future and enable our society to transition to a circular economy. For this reason, the possibility of harvesting sunlight to drive, accelerate, and control chemical reactions via photocatalysis has fascinated scientists for years. The unique optical properties of metal nanoparticles in the visible and near-infrared ranges turn them into ideal candidates for sunlight-activated catalysts. In fact, it has been recently established that the excitation of the localized surface plasmon resonance (LSPR) in these systems can be employed to drive and accelerate a variety of chemical reactions. This has led to the rise of plasmonic catalysis as a new frontier in catalysis, photocatalysis, and photoelectrocatalysis.

Plasmonic catalysis is the acceleration of a chemical reaction due to a plasmon excitation. To understand this simple definition is necessary to incorporate concepts from various research fields such as heterogeneous catalysis, nano-optics, physical chemistry, and material science. This book emerged as a necessity for unifying concepts, ideas, techniques, and advances in the rapidly growing field of plasmonic catalysis. To the best of our knowledge, this is the first book dedicated to this emerging area of research, covering its most important concepts and recent developments. To do so, a big, diverse, and heterogeneous group of world leaders in the field prepared exciting

contributions for this book. The book comprises 10 chapters encompassing topics such as theoretical considerations of using plasmons for catalysis, optical and catalytic properties in plasmonic nanoparticles and hybrid systems, their synthesis, the fundamentals and mechanisms by which plasmonic excitation leads to the acceleration of reaction rates, examples and discussion of plasmonic catalysis applied to important chemical transformations, plasmonic catalysts based on earth-abundant materials, plasmonic electrocatalysis, and plasmonic metal-semiconductor heterostructures. Here is a quick overview of the main aspects covered in each chapter.

The book starts by describing in [**Chapter 1**](#) the theoretical framework of plasmon excitation and decay in the context of plasmonic catalysis. Energy conversion from photons to molecules and transfer from the plasmonic catalyst to the environment are the fundamental processes that take place in a plasmon-catalyzed chemical reaction. The chapter provides a detailed theoretical analysis of plasmon excitation, decay mechanisms, energy transfer, and carrier injection across different interfaces, near-field and scattering enhancements, and photoheating. Toward the end of the chapter and in order to exemplify these theoretical concepts, the chapter overviews a series of applications and experiments where these phenomena can be spotted. As such, this chapter sets the ground to understand the physics behind the uses of plasmons for chemistry.

We move next to the characterization and properties of plasmonic catalytic systems in [**Chapter 2**](#). From conventional heterogeneous catalysis methods to plasmonic techniques, this chapter tackles the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. Different approaches can be followed in

order to study chemical reactions mediated by plasmons either at the ensemble level or at the nanoscale, as well as to disentangle the role of light, heat, and carriers in the underlying mechanism. This chapter groups techniques with different temporal, spatial, and chemical resolution in order to gain deeper insight of the behavior of plasmonic catalysts under light illumination.

It has been recognized that the optical properties arising from the LSPR excitation are strongly dependent on several physical and chemical parameters that define the plasmonic nanoparticles. These include size, shape, composition, and structure (solid or hollow interiors) of the nanoparticles. Because these properties are related to the performances in plasmonic catalysis, the synthesis of plasmonic nanoparticles where these parameters can be tightly controlled has gained increased attention. In fact, this is important not only to optimize performances, but also to unravel-structure performance relationships that may aid on the rational design of plasmonic catalysts with desired performances for a reaction of interest. In this context, [**Chapter 3**](#) discusses the fundamentals and important examples on the controlled synthesis of metal nanoparticles that are relevant for plasmonic catalysis. The chapter begins by focusing on several methods for the controllable synthesis of Ag, Au, Cu, and Al nanoparticles. The chapter pays particular attention on shape control, in which morphologies such as quasispheres, nanocubes, nanowires, among others, are described. Then, different assemblies having these nanoparticles are presented. These colloidal assemblies are important as they often outperform their individual counterparts due to the formation of electromagnetic hot spots, which can enhance plasmonic catalytic activities. The chapter then moves to bimetallic nanoparticles. This is attractive because nanoparticles having a plasmonic and a catalytic metal