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Preface

Promising advances in high-power electronics and the challenges facing modern
power system operation in terms of integration of large-scale renewable generation
and energy storage is necessitating the construction of high-voltage direct current
(HVDC) transmission worldwide. Meshed multi-terminal DC grids are transport-
ing bulk energy over longer distances, interconnecting far-flung asynchronous AC
network, and are being operated with higher redundancy, efficiency, and relia-
bility. Since the conception of real-time analog simulators (known as transient
network analyzers (TNAs)) and subsequently real-time digital power system sim-
ulators in the 1970s through to the 1990s, one of their principal applications has
been for the testing of control and protection functions in a hardware-in-the-loop
(HIL) configuration for HVDC systems prior to their commissioning. Currently,
real-time digital electromagnetic transient (EMT) simulators are used in every sec-
tor of electrical power chain: generation, transmission, distribution, and consump-
tion. Moreover, real-time EMT simulators are also frequently employed in the
transportation (automotive and railway traction), aviation, and marine industries,
wherein the electrical systems share many structural and functional commonali-
ties with terrestrial AC–DC networks. While the design, testing, and commission-
ing of local control and protection functions of system equipment is the primary
objective of real-time EMT simulation, it is also paramount for global dynamic and
interactive studies of large-scale power systems for wide-area control, protection,
and system operator training. EMT simulation of large AC–DC grids in real time
is a significant challenge due to the need for detailed device-level modeling of sys-
tem components while simultaneously reproducing the system-level interactions
accurately by accommodating large system sizes. These contrasting requirements
place an enormous burden on the simulator latency constraints and the hardware
selection for implementing the real-time simulation.

EMTs are the consequence of the interplay between the electric and mag-
netic fields in power system equipment when the system is perturbed from
its steady-state operation by an event such as the switching of a line, a
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xxii Preface

fault, or a lightning strike. A widely accepted classification of EMT is into
four categories: low-frequency oscillations (0.1 Hz–3 kHz) e.g. temporary
overvoltages, slow-front surges (50 Hz–20 kHz) e.g. switching overvoltages,
fast-front surges (10 kHz–3 MHz) e.g. lightning overvotages, and very fast-front
surges (100 kHz–50 MHz) e.g. circuit breaker restrike overvoltages. The switch-
ing on and off of power semiconductor devices such as insulated gate bipolar
transistors (IGBTs) also generates transients albeit at the device-level, and they
are typically in the 1–20 MHz range. The transients propagate near to the speed
of light from their inception point and spread throughout the system causing
extensive damage if not interrupted or absorbed. Of all the studies done in
power systems, the modeling required to simulate EMT is the most complex.
The higher the frequency of the transient, the more complex the modeling of
any equipment becomes and the smaller the size of the network it spreads to.
Conversely, low-frequency transients entail simpler modeling of equipment and
propagate over a wider scale requiring the analysis of a larger network. For a
particular EMT case study, the factors that influence the modeling complexity of
any equipment are the distributed nature of parameters, frequency-dependency,
and the inherent nonlinearities in the device. Accordingly, the extent to which
each of these phenomena is accurately modeled for every equipment determines
the computational burden experienced by the simulator. The selection of model
decomposition strategy, numerical solution algorithm, and time-step also depends
on these same factors. All of the above considerations need to be observed to
successfully design and implement a real-time EMT simulation.

Of the many digital processors currently available on the market, field-
programmable gate arrays (FPGAs) are the sole processor technology capable
of meeting the rigorous real-time constraints and large hardware resource
capacity required for AC–DC grid emulation with detailed equipment modeling.
FPGAs contain numerous configurable logic resources, distributed memory, and
inputs/outputs that can provide massive hardware parallelism for emulating
detailed power system component models simultaneously. Currently available
commercial FPGAs offer millions of logic gates, high-bandwidth on-chip memory,
and ultrafast transceivers. The recent development of FPGA technology is not
only in terms of improving their timing performance and enlarging their hard-
ware resource capacity but also in terms of streamlining an integrated design tool
ecosystem. The high-level synthesis (HLS) design methodology using C/C++ pro-
gramming language instead of the conventional hardware description language
(HDL) is explored as a new means of modularizing the AC–DC grid to reduce
the hardware design cycle while maintaining a high synthesis efficiency. The
synthesized hardware modules can then be pipelined efficiently with optimized
performance regarding the resource usage and latency requirements.
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Preface xxiii

This book intends to provide a detailed exposition of FPGA hardware based
real-time EMT emulation for the fundamental components used in AC–DC
power systems. Specific focus is afforded to detailed device-level models for their
hardware realization in a massively parallel and deeply pipelined manner, and
decomposition techniques for emulating large systems. In the various chapters
of the book, while the hardware emulation may have been done on FPGAs from
different generations or vendors, the underlying principles of model decomposi-
tion and parallel solution algorithms are generally applicable on any device. This
book is intended for two groups of readers: graduate students in a university and
professional research engineers and scientists in the industry. University students
pursuing masters and doctoral degrees will find state-of-the-art presentation of
the material on real-time EMT simulation of AC–DC grids. Such material can
inspire and motivate advanced research ideas for their projects, dissertations, and
publications. For industry experts, the book provides relevant academic research
developments and implementation knowledge that they can incorporate in their
respective product development process. The book is organized as follows: after
giving a brief introduction of FPGA architecture and design flow in Chapter 1,
Chapter 2 introduces the concepts of hardware emulation building blocks for
fundamental power system components necessary for real-time EMT simulation:
linear lumped passive elements, transmission lines, and nonlinear elements.
Chapters 3 and 4 cover power transformers and rotating electrical machines
building from simpler lumped linear models to detailed nonlinear magnetic
equivalent circuit based models and finite element models. Chapter 5 describes
the hardware emulation techniques for digital protective relays. Chapter 6
addresses the emerging and challenging topic of adaptive time-stepping based
real-time EMT simulation. Chapter 7 discusses power semiconductor compo-
nent models and their hardware emulation varying in complexity from simple
system-level switch models to detailed device-level nonlinear behavioral and
physics-based electrothermal models. Chapters 8–10 cover the modeling and
emulation of various building blocks of DC grids: AC/DC converters, DC/DC
converters, and DC circuit breakers. Finally, Chapter 11 culminates in examining
the challenge of real-time EMT simulation of large-scale AC and DC grids.

Venkata Dinavahi
Edmonton, Alberta, Canada
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xxvii

List of Acronyms

AC alternating current
APU application processing unit
ASIC application specific integrated circuit
ATP alternative transients program
AVM average value model
AVR automatic voltage regulator
AXI advanced eXtensible interface
BJT bipolar junction transistor
BRAM block random access memory
CDSM clamp double submodule
CFM curve-fitting model
CLB configurable logic block
CPS cyber physical system
CPU central processing unit
DAC digital to analog converter
DC direct current
DCFM dynamic curve-fitting model
DDR4 double data rate fourth-generation
DEM detailed equivalent model
DMA direct memory access
DSP digital signal processing (processor)
DUT device-under-test
EMT electro-magnetic transient
FACTS flexible alternating current transmission system
FBSM full-bridge submodule
FDLM frequency dependent line model
FEM finite element method
FF flip-flop
FFT fast Fourier transform
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xxviii List of Acronyms

FIFO first-in first-out
FMC FPGA mezzanine card
FPGA field programmable gate array
FPU floating point unit
FSM finite state machine
GPIO general purpose IO
GPU graphical processing unit
GT gigabit transceiver
GTH gigabit transceiver H
GTX gigabit transceiver X
GTY gigabit transceiver Y
HBSM half-bridge submodule
HDL hardware description language
HEBB hardware emulation building block
HHB hybrid HVDC breaker
HIL hardware-in-the-loop
HLS high-level synthesis
HVDC high voltage direct current
I/O input/output
IGBT insulated gate bipolar transistor
JTAG joint test action group
KCL Kirchhoff’s current law
KVL Kirchhoff’s voltage law
LCS load commutation switch
LTE local truncation error
LUT look-up table
LVDS low-voltage differential signaling
lwIP light weight Internet protocol
MAC media access layer
MFT medium frequency transformer
MMC modular multi-level converter
MMF magnetomotive force
MOSFET metal oxide semiconductor field-effect transistor
MOV metal oxide varistor
MPSoC multi-processor system-on-chip
MTDC multi-terminal direct current
MVDC medium voltage direct current
NBM nonlinear behavioral model
NLD nonlinear diode
NPC neutral-point-clamped
N–R Newton–Raphson


