
Lecture Notes in Mechanical Engineering

José Machado
Filomena Soares
Justyna Trojanowska
Sahin Yildirim   Editors

Innovations in 
Mechatronics 
Engineering



Lecture Notes in Mechanical Engineering

Series Editors

Francisco Cavas-Martínez, Departamento de Estructuras, Universidad Politécnica
de Cartagena, Cartagena, Murcia, Spain

Fakher Chaari, National School of Engineers, University of Sfax, Sfax, Tunisia

Francesco Gherardini, Dipartimento di Ingegneria, Università di Modena e Reggio
Emilia, Modena, Italy

Mohamed Haddar, National School of Engineers of Sfax (ENIS), Sfax, Tunisia

Vitalii Ivanov, Department of Manufacturing Engineering Machine and Tools,
Sumy State University, Sumy, Ukraine

Young W. Kwon, Department of Manufacturing Engineering and Aerospace
Engineering, Graduate School of Engineering and Applied Science, Monterey,
CA, USA

Justyna Trojanowska, Poznan University of Technology, Poznan, Poland

Francesca di Mare, Institute of Energy Technology, Ruhr-Universität Bochum,
Bochum, Nordrhein-Westfalen, Germany



Lecture Notes in Mechanical Engineering (LNME) publishes the latest develop-
ments in Mechanical Engineering—quickly, informally and with high quality.
Original research reported in proceedings and post-proceedings represents the core
of LNME. Volumes published in LNME embrace all aspects, subfields and new
challenges of mechanical engineering. Topics in the series include:

• Engineering Design
• Machinery and Machine Elements
• Mechanical Structures and Stress Analysis
• Automotive Engineering
• Engine Technology
• Aerospace Technology and Astronautics
• Nanotechnology and Microengineering
• Control, Robotics, Mechatronics
• MEMS
• Theoretical and Applied Mechanics
• Dynamical Systems, Control
• Fluid Mechanics
• Engineering Thermodynamics, Heat and Mass Transfer
• Manufacturing
• Precision Engineering, Instrumentation, Measurement
• Materials Engineering
• Tribology and Surface Technology

To submit a proposal or request further information, please contact the Springer
Editor of your location:

China: Ms. Ella Zhang at ella.zhang@springer.com
India: Priya Vyas at priya.vyas@springer.com
Rest of Asia, Australia, New Zealand: Swati Meherishi at
swati.meherishi@springer.com
All other countries: Dr. Leontina Di Cecco at Leontina.dicecco@springer.com

To submit a proposal for a monograph, please check our Springer Tracts in
Mechanical Engineering at http://www.springer.com/series/11693 or contact
Leontina.dicecco@springer.com

Indexed by SCOPUS. All books published in the series are submitted for
consideration in Web of Science.

More information about this series at http://www.springer.com/series/11236

mailto:ella.zhang@springer.com
mailto:priya.vyas@springer.com
mailto:swati.meherishi@springer.com
mailto:Leontina.dicecco@springer.com
http://www.springer.com/series/11693
mailto:Leontina.dicecco@springer.com
http://www.springer.com/series/11236


José Machado • Filomena Soares •

Justyna Trojanowska • Sahin Yildirim
Editors

Innovations in Mechatronics
Engineering

123



Editors
José Machado
Department of Mechanical Engineering
University of Minho
Guimarães, Portugal

Justyna Trojanowska
Poznan University of Technology
Poznan, Poland

Filomena Soares
Department of Industrial Electronics
University of Minho
Guimarães, Portugal

Sahin Yildirim
Department of Mechatronics Engineering,
Faculty of Engineering
Erciyes University
Kayseri, Turkey

ISSN 2195-4356 ISSN 2195-4364 (electronic)
Lecture Notes in Mechanical Engineering
ISBN 978-3-030-79167-4 ISBN 978-3-030-79168-1 (eBook)
https://doi.org/10.1007/978-3-030-79168-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-79168-1


Preface

This volume of Lecture Notes in Mechanical Engineering gathers selected papers
presented at the first International Scientific Conference ICIE’2021, held in
Guimarães, Portugal, on June 28–30, 2021. The conference was organized by
School of Engineering of University of Minho, throughout MEtRICs and
ALGORITMI Research Centres.

The aim of the conference was to present the latest engineering achievements
and innovations and to provide a chance for exchanging views and opinions con-
cerning the creation of added value for the industry and for the society. The main
conference topics include (but are not limited to):

• Innovation
• Industrial Engineering
• Mechanical Engineering
• Mechatronics Engineering
• Systems and Applications
• Societal Challenges
• Industrial Property

The organizers received 213 contributions from 24 countries around the world.
After a thorough peer review process, the committee accepted 126 papers written by
412 authors from 18 countries for the conference proceedings (acceptance rate of
59%), which were organized in three volumes of Springer Lecture Notes in
Mechanical Engineering.

This volume, with the title “Innovations in Mechatronics Engineering,” specif-
ically reports on innovative control and automation concepts for applications in a
wide range of fields, including industrial production, medicine and rehabilitation,
education and transport, with a special focus on cutting-edge control algorithms for
mobile robots and robot manipulators, innovative industrial monitoring strategies
for industrial process, improved production systems for smart manufacturing, and
discusses important issues related to user experience, training and education, as well
as national developments in the field of mechatronics. Last but not least, it provides
a timely overview and extensive information on trends and technologies behind the
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future developments of mechatronics systems in the era of Industry 4.0. This book
consists of 41 chapters, prepared by 147 authors from 10 countries.

Extended versions of selected best papers from the conference will be published
in the following journals: Sensors, Applied Sciences, Machines, Management and
Production Engineering Review, International Journal of Mechatronics and Applied
Mechanics, SN Applied Sciences, Dirección y Organización, Smart Science,
Business Systems Research, and International Journal of E-Services and Mobile
Applications.

A special thank to the members of the International Scientific Committee for
their hard work during the review process.

We acknowledge all that contributed to the staging of ICIE’2021: authors,
committees, and sponsors. Their involvement and hard work were crucial to the
success of ICIE’2021.

José MachadoJune 2021
Filomena Soares

Justyna Trojanowska
Şahin Yildirim
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Screwing Process Monitoring Using MSPC
in Large Scale Smart Manufacturing

Humberto Nuno Teixeira1(B), Isabel Lopes1, Ana Cristina Braga1, Pedro Delgado2,
and Cristina Martins2

1 ALGORITMI Research Centre, University of Minho, Guimarães, Portugal
b6440@algoritmi.uminho.pt

2 Bosch Car Multimedia Portugal SA, Braga, Portugal

Abstract. The ability to obtain useful information to support decision-making
from big data sets delivered by sensors can significantly contribute to enhance
smart manufacturing initiatives. This paper presents the results of a study per-
formed in an automotive electronics assembly line. An approach that uses Mul-
tivariate Statistical Process Control based on Principal Component Analysis
(MSPC-PCA) was applied to early detect undesirable changes in the screwing
processes performance by extracting relevant information from the torque-angle
curve data. Since the data of different torque-angle curves are not aligned, the
proposed approach includes the linear interpolation of the original data to enable
Principal Component Analysis (PCA). PCA proved to be an appropriate tech-
nique to obtain significant information from the process variables, which consist
of the successive value of the torque at constant angular intervals. Score plots and
multivariate control charts were used to detect defective tightening and identify
behaviors that represent inefficient tightening. This is a new approach that can
be applied to effectively monitor screwing processes in the assembly of different
products either periodically or in real-time.

Keywords: Multivariate Statistical Process Control (MSPC) · Principal
Component Analysis (PCA) · Screwing process · Smart manufacturing

1 Introduction

Modern manufacturing systems need to provide high quality products developed in
efficient, fast and cost reduced processes [1]. The increased diversity of products also
implies less time to ensure that the process is capable of producing appropriate quality [2].
Problems that affect quality are often related to assembly errors [3]. There are two basic
categories of assembly tasks: parts mating and parts joining. Fasteners are commonly
used to join components together in industry. The screwdrivers allow tightening of
threaded fasteners with a specified torque value [4]. The usage of modern equipment
involves complex parameter settings of and assessment requirements [5].

Assembly process control is a complex problem whose solution must consider all
the particularities and connection requirements of a given mating [6]. Therefore, a high

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Machado et al. (Eds.): icieng 2021, LNME, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-030-79168-1_1
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level of process automation demands a high level of automated monitoring and control
[2]. Errors detection should occur at an early stage of the process to avoid any damage
and to ensure that the assembly is completed according to the requirements and speci-
fications [7]. Thus, to prevent technical risks, it becomes important to develop methods
for providing process related information to the operator [8].

Most automatic screw fastening processes are monitored using torque sensors and
a target torque for a consistent assembly is usually established. However, monitoring
torque alone does not ensure the required clamping force. The torque applied to provide
the desired clamping force in bolted joints can differ significantly for the same bolt type
due to the combined effect of several factors, such as thread and under head friction,
thread deformations and variations in bolt diameter. Therefore, problems during the
tightening operation must be detected to avoid wrong conclusions about the screwing
process quality. To obtain more complete information about the tightening operation
performance, both torque and rotation angle should be monitored [9]. The torque-angle
curves provide relevant information to properly qualify the capability of tightening tools
[10].

Smartmanufacturing aims to support accurate and timely decision-making from real-
timedata deliveredby sensors [11]. Thequickdetectionof changes, particularly increases
in process variability, is essential for quality control [12]. Statistical Process Control
(SPC) is frequently employed to monitor and detect relevant changes in manufacturing
processes [13].When Principal ComponentAnalysis (PCA) technique is implemented to
monitor industrial processes,Hotelling’sT2 andSquaredPredictionError (SPE) statistics
are used for the detection of process disturbances which can originate failures. However,
although control charts allow to detect deviations from normal operating region, they do
not indicate reasons for the deviations [14]. Once the fault is exposed, the contribution of
each original variable for T2 or SPE statistics can be determined based on contribution
plots. The contributions plot shows the most affected variables, so that the causes can
be identified and actions to bring the process to the statistical control region can be
implemented [15].

The monitoring and control of screwing process parameters has been addressed by
several studies [7–9, 16]. Many of the proposed methods were designed to control the
screwing process of specific parts and their generalization ability has not been proven. It
was also noticed that error detection effectiveness is often assessed based on simulated
experiments. Furthermore, the multivariate nature of the screwing processes is not con-
templated by the exiting monitoring approaches. In industrial context, the monitoring
strategies for automated tightening processes are generally focused on torque, torque-
angle, torque rate and variation of rate monitoring [17]. For this purpose, an individual
analysis of each monitored variable is usually performed to verify their conformance to
specifications during each tightening operation. The investigation of causes of variation
is not an integral part of these strategies. Therefore, a more extended application in real
scenarios is still needed in most cases. For this reason, methods that provide a broader
understanding of the screwing processes to the operator should be developed to sup-
port the definition of more informed improvement initiatives and analyze their impact
over a sequence of tightening operations. This is particularly relevant for processes with
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short operating cycles, since when a change in the process is verified a high number of
tightening operations can be affected.

In this paper, an approach is proposed to monitor screwing processes’ through a
visual representation of their performance over time and to assist the identification of
factors responsible for inefficient tightening based on torque-angle curves data. This
approach was tested and refined based on its application to the screwing process of an
assembly line of Bosch Car Multimedia Portugal. PCA was performed using the torque-
angle curves data collected by the screwing machine controller. To enable PCA, the
data of different torque-angle curves were aligned by performing linear interpolations.
Then, the process was monitored in different periods using multivariate control charts.
The structure of the paper is organized as follows. Section 2 presents the approach
steps through its application on the assembly line screwing process and the respective
results. In Sect. 3, the main results of the study are discussed. Section 4 summarizes the
conclusions derived from the study and presents recommendations for future research.

2 Screwing Process Monitoring and Analysis

2.1 Sample Definition

The screwing process analysis was performed using a data set composed of 12327 obser-
vations (Table 1). All observations belong to the same product type and were executed
in a unique workplace. The product is an automotive electronics system which is assem-
bled by placing seven screws according to a predetermined sequence. The overall data
set includes data concerning defective (“bad”) and non-defective (“good”) tightening
operations. The first sample includes only 7 non-sequential cases classified as “bad”.
These data were included in the analysis to better test the accuracy of the PCA model
by considering a higher diversity of unsuccessful cases. Samples 2 to 5 are composed
of sequential cases and include all operations performed in a working day.

Table 1. Description of the screwing process data samples.

Sample 1 2 3 4 5

Date 22/09/2017 29/09/2017 02/10/2017 11/10/2017 12/10/2017

Result Good – 2273 3189 2959 3880

Bad 7 5 7 2 5

Number of cases 7 2278 3196 2961 3885

2.2 Data Interpolation

A preliminary analysis of original data collected from a screwdriver at regular time
intervals revealed significant fluctuations in the amplitude of the rotation angle intervals
(Table 2), since the angular displacement of the screw is not constant. Therefore, linear
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interpolation was the method selected to align the data and generate a torque value to
each rotation angle of the predefined scale. To provide a quick result, an algorithm in R
code that performs linear interpolations was developed. The obtained information allows
to represent the different torque-angle curves in the same scale.

Table 2. Extract from a screwing process data set.

Angle 4 6 11 15 17 21 22 28 30 35 38 39 44
Torque 10,9 11 11,1 11,2 11,5 11,6 11,7 12 12,1 12,2 12,3 12,4 12,4
Angle 51 55 58 62 72 73 83 89 93 96 99 103 106
Torque 12,3 12,4 12,6 12,8 12,9 12,8 13 13,3 13,4 13,5 13,6 13,8 13,9
Angle 1 3 4 9 14 16 20 24 28 34 37 42 45
Torque 10,3 10,4 10,4 10,4 10,6 10,4 10 9,4 9,2 9 9,1 9 9,3

In this study, the linear interpolation was performed to determine values of torque in
a range between 0 and 2300° at intervals of 10°. Since the considered variables consist
of the successive value of the torque at constant angular intervals (Fig. 1), a data set
composed of 231 primary variables was obtained.

Fig. 1. Generic representation of a set of variables from a tightening operation.

2.3 Data Segmentation

The PCA model was formed by the values of 504 torque-angle curves (Fig. 2a). Only
cases classified as “good” were included in the Normal Operating Conditions (NOC)
data set and each screw, considering its position in the product, is represented by the
same number of observations. Firstly, a set of 252 observations from a sequence of 36
consecutive products obtained in sample 3 was selected. Then, to endow the NOC data
with a higher variety of behaviors, another group of 252 cases selected from samples 2
to 5 was added. Figure 2b shows three distinctive zones of a typical torque-angle curve,
classified by Shoberg [17] as Rundown (R), Snugging (S) and Elastic Clamping (EC).

The torque-angle curves were represented with the Unscrambler® and the data
analysis was performed using ProSensus MultiVariate software.
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Fig. 2. NOC torque-angle curves (a) and typical torque-angle curve (b).

2.4 Principal Components Identification and Interpretation

The number of principal components extracted by the PCA model was defined based
on the cumulative explained variation by the ordered components (Table 3). Since the
fourth principal component has little relevance, only the first three were considered.

Table 3. Variation explained by the first four principal components.

Principal component Variation explained Cumulative variation explained

First 62.24% 62.24%

Second 20.40% 82.64%

Third 3.70% 86.34%

Fourth 2.06% 88.40%

The interpretation of the principal components was performed by statistics and pro-
cess experts, based on the variables loadings’ (Fig. 3) and considering technical knowl-
edge about the process. In order to obtain a broader perspective of the tightening oper-
ation, the loadings of six secondary variables were also analyzed. These variables are
maximum torque, absolute angle, total time, end torque, end angle and screwing energy.

b c

Secondary variables Secondary variables Secondary variables

a 

Fig. 3. Loading plots of the first (a), second (b) and third (c) principal components.
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The loading plot of the first principal component (Fig. 3a) shows high loadings over
the rundown zone and a significant decrease after 1740°, that represents the instant in
which the snugging zone is reached. The higher loadings correspond to rotation angles
wherein frictionwas higher. As at the elastic clamping zone, tightening ismainly affected
by the elastic deformation of the screw, the corresponding variables’ loadings tend to
be substantially lower. After 1790°, the loadings become negative and start to assume
a decreasing trend, as more tightening operations are completed. The negative loadings
exhibited in this period are due to the decision of extending the tightening curves up to
0 after the final torque is achieved. The secondary variables’ loadings are represented
on the left side of the plot and shown with more detail below in Fig. 3a. Absolute
angle, total time and end angle have negative loadings. All the other variables assume a
positive correlation with the first component, since higher friction losses entail greater
energy expenditure and higher torques to complete the tightening operation. However,
the required clamping force is reached within a shorter period. Thus, the first principal
component refers to the torque variation during the rundown zone. It allows to distinguish
screws that exhibit high torques at the rundown zone, which is a behavior that can be
caused by differences between screws or tighter threads.

In the second principal component loading plot (Fig. 3b), negative loadings until the
angle 830 can be identified. The lowest loadings are exhibited at the beginning of the
rundownzone.Afterwards, a growing trend ismanifested.However, a decrease is verified
in the approximation to the snugging zone and after 2090°. The secondary variables that
show higher loadings are maximum torque, end torque and screw energy, since greater
torques are needed to produce the required clamping force. The screwing energy loading
is significantly higher in this principal component. Thus, the second principal component
enables to differentiate screws that have low torques at the rundown zone, a relatively
high final torque and whose tightening operation is concluded later. This behavior can
be caused by more open threads due to rework, since the tightening operation must be
repeated. Furthermore, this principal component also represents delays in engagement,
manifested by the presence of positive loadings in the absolute angle, total time and end
angle.

The third principal component loading plot exhibits several fluctuations over the
entire scale of rotation angles (Fig. 3c). These shifts reflect slope variations in the torque-
angle curves. Nevertheless, the loadings’ value remains close to 0 along the angles that
correspond to the first two-thirds of the tightening operation. Between 1260 and 1780°,
the loadings become negative and reveal a decreasing trend until the snugging zone. At
the snugging zone, the loadings are positive and significantly higher. Negative loadings
are also obtained after 2130° when most operations were already completed. The end
angle is the secondary variable which assumes the higher loading, and both end torque
and maximum torque are the only variables with negative loadings. Thus, this principal
component represents screws that manifest a gradual growth of the torque with some
fluctuations at the rundown zone followed by an interval in which the increase of the
torque ceases before the snugging zone is reached. This circumstance contributes to the
delay of the tightening operation and leads to a lower end torque. In conclusion, the third
principal component refers to differences between threads. The thread crests can often
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exhibit irregularities or slightly different formats (e.g., rounded, sharpened, flat) that can
result in sudden variations in the torque evolution.

2.5 Control Limits Definition

To identify both defective and inefficient tightening, control limits defined by the confi-
dence intervals of 99% and 99.73% were determined and represented using ProSensus
MultiVariate. In order to test the reliability of the PCA model, the defective cases were
represented with the NOC observations in the Hotelling’s T2 and SPE control charts
defined based on the first three principal components (Fig. 4). Both charts show all the
observations classified as “bad” above the control limits. However, in the SPE control
chart the distance to the limits is shorter for a set of 8 cases that reached higher torques.

Fig. 4. Hotelling’s T2 (a) and SPE (b) control charts of the defective tightening cases.

2.6 Behavior Identification

The scatter score plot formed by the first two principal components (Fig. 5) was used
to analyze the NOC observations. This analysis allowed to identify nine cases outside
the limit defined by the confidence interval of 99.73%. Three correspond to significant
delays at the beginning of the tightening operation (nearly 2 turns), five exhibit low
torques during the entire tightening operation, and one case manifests a delay of nearly
1 turn in which the torque values are low at the rundown zone and high at the end. The
first group is closer to the negative side of the first principal component axis. Whereas
the second group is located at a similar distance from the negative side of both principal
components’ axes. These behaviors correspond to delays in engagement andwell succeed
reworks. The latter case is the observation that is further away from the limits. Although
these behaviors resulted from special causes of variation, they cannot be completely
removed. Thus, the cases that fall outside the limits were included in the NOC.
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Fig. 5. Scatter score plot of the NOC observations.

2.7 Process Monitoring

The process was monitored with the data from the samples described in Table 1, except
those included in the NOC. The sequential set of 11823 observations was represented
in scatter score plots, time series score plots and multivariate control charts.

In the scatter score plot formed by the first two principal components several outliers
were identified (Fig. 6a). The observations that deviate most from the distribution mean
are the cases classified as “bad” and delays in engagement. Although this plot allows to
identify unusual behaviors in each sample, it does not reveal their distribution over time.
Thus, the scores were also represented in time series score plots. These plots exhibit
the scores distribution over time with respect to each principal component, allowing to
determine if there are any trends or fluctuations and differences between samples.

Fig. 6. Scatter score plot formed by the first two principal components (a); time series score plot
of the first (b), second (c) and third (d) principal components.



Screwing Process Monitoring Using MSPC 9

In the first principal component time series score plot (Fig. 6b), several fluctuations
are shown. Furthermore, the scores tend to align above the origin of the plot. However,
this trend is more marked in the interval formed by the observations of samples 4 and 5.
At this period, the duration of the tightening operations was shorter and higher torques
at the rundown zone were attained. Since the first principal component represents the
torque variation during the rundown zone, the scores of the cases with higher torques
are located above the origin. In contrast, the scores that fall below the lower limit mainly
correspond to defective tightening, delays and observations that exhibit low torques
during the rundown zone. The scores distribution is more centered around the origin
and shows lower dispersion in the second principal component time series score plot
(Fig. 6c), which has lower accuracy in detecting delays. Thus, only observations that
represent delays of approximately 3 turns or more comparing to the mean are outside
the limits. Nevertheless, this plot is more effective in detecting observations with low
torques during the entire tightening operation and shows all the defective cases below
the lower limit. The existence of low torques during the rundown zone can be caused by
product rework, since in most cases this behavior is verified in the torque-angle curves
of the seven screws applied to the same product. The period formed by the observations
of samples 4 and 5 includes a considerable number of cases with low torques at the
rundown zone. This characteristic also occurs in a significant number of cases of sample
2 and is less frequent in sample 3. The third principal component time series score
plot (Fig. 6d) manifests high dispersion in the scores’ distribution in all the analyzed
samples. However, at short periods the process becomes slightlymore stable. The greater
dispersion reflects a higher diversity of slope variations in the torque-angle curves. The
observations identified above the upper limit comprise defective cases and the most
extreme delays, whereas below the lower limit only a group of four observations that
reveal very atypical variations in the torque-angle curve was detected.

The data sample in which greater instability is observed is sample 3. In the interval
between observations 3435 and 3729, most of the scores lie above the origin in the
plot of Fig. 6b. At the same time, a steep decrease of the scores related to the second
principal component is verified and a higher number of observations below the origin
is shown in the plot of Fig. 6d. Based on the analysis of the torque-angle curves that
correspond to the observations of this interval (Fig. 7a) it was found that high torques are
exhibited during the entire tightening operation and no delays occurred. A significant
number of delays was verified thereafter in the period between observations 3730 and
4025 (Fig. 7b). This fact is reflected by the number of observations outside the limit
defined by the confidence interval of 99.73% in the three time series score plots.

a b

Fig. 7. Torque-angle curves: between 3435 and 3729 (a), and between 3730 and 4025 (b).
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The Hotelling’s T2 control chart (Fig. 8a) shows several observations above the
limits. The highest points correspond to the screwing cases classified as “bad”. However,
some observations which relate to delays and low torques at the rundown zone are also
above the limits. In the SPE control chart (Fig. 8b), the observations which are further
away from the control limits refer to defective tightening. Whereas observations that
correspond to delays, although they are above the limits, reveal much lower deviations
from the principal components’ subspace. In addition, a small group of observations that
were concluded considerably earlier are also outside the limits of this chart.

Fig. 8. Hotelling’s T2 control chart (a) and SPE control chart (b)

3 Discussion of Results

In this study, an approach for screwing processes monitoring using Multivariate Sta-
tistical Process Control based on Principal Component Analysis (MSPC-PCA) was
developed and tested with data collected from a manual screwdriver of an automo-
tive electronics assembly line. A PCAmodel that is deemed to represent the NOC of the
process for a specific product type was defined and validated according to the proposed
approach. The results show that 86.34% of the total variation can be explained only by
three principal components. Since the analysis involves 231 primary variables, a univari-
ate analysis would be extremely time consuming and would not consider correlations
between variables. The interpretation of the principal components’ physical meaning
enabled to more accurately analyze the information provided by the monitoring tools.
Moreover, it was possible to develop a detailed understanding of the process and to
ascertain the causes of unusual behaviors. The structure of the principal components
was partially influenced by the decision of assigning 0 to the variables that succeed the
final torque to avoid missing values in the scale of rotation angles. Another option could
be to maintain the value of the final torque until the end of the scale.

The time series score plots enabled to observe fluctuations in the scores’ distribution,
which represent sudden or gradual changes that affect the tightening behavior over time.
These shifts are more visible in the first and second principal components time series
score plots, since they are related to delays and increase of the number of reworks. The
Hotelling’s T2 and SPE control charts show all the observations related to defective
tightening above the control limits. In addition, cases that exhibit unusual behaviors,
such as delays or low torques at the rundown zone, were also easily identified both in
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the score plots and control charts. Some of these observations formed distinct groups of
outliers in the scatter score plot of the first two principal components. Comparing both
control charts, it can be verified that delays are more easily detected in Hotelling’s T2,
since those cases reflect more significant deviations from the distribution mean.

MSPC-PCA can be applied using an appropriate software available in the market.
If the proposed approach is used to monitor screwing processes in real-time, this func-
tionality must also be provided by the software package. The screwdriver operator and
the responsible by the screwing process should be able to monitor the process using four
main tools, such as the scatter score plots formed by pairs of principal components, time
series score plots concerning each principal component, Hotelling’s T2 and SPE control
charts. The uncommon behaviors depicted in the scatter score plots should be promptly
identified and classified considering the principal components’ physical meaning and
making comparisons with the NOC observations scores, namely groups that are fur-
ther away from the distribution mean. Furthermore, the knowledge acquired from the
PCA model definition must also be used to interpret points outside the control limits,
patterns and trends both in the time series score plots and multivariate control charts.
Whenever significant anomalies are detected, their causes should be investigated con-
sidering the process variables which contributed most to the identified shifts or inferred
based on experience. Subsequently, appropriate corrective actions must be planned and
implemented.

4 Conclusion

This paper proposes an approach that provides the ability to monitor the overall screw-
ing process behavior over time and considers the multivariate nature of each tightening
operation. The defined approach uses PCA to extract relevant information from corre-
lated variables that consist of the successive values of the torque at constant angular
intervals. Afterwards, scatter score plots, time series score plots and multivariate control
charts developed based on the defined PCA model are applied to enable the process
monitoring in different perspectives. The application of the proposed approach to the
study data showed the capacity of these tools to detect defective tightening. Screwing
cases that reveal unusual behaviors are also identified and classified. Thus, performing
linear interpolations to align the screwing process data proved to be an essential and
appropriate decision for the successful application of PCA.

The case study enabled to define and validate a PCA model that represents the NOC
of a workplace for a specific product type. Considering the obtained results, Bosch Car
Multimedia Portugal decided to monitor its screwing processes in real-time based on the
defined approach. The same procedure will be adopted to define NOCmodels to monitor
other combinations of products and workplaces. It is expected that real-time monitoring
will contribute to achieve significant improvements, particularly the reduction of oper-
ating cycles due to a higher awareness to delays and the identification of components
out of specifications (e.g., tighter threads, irregularities in thread crests) which can often
result in defective tightening. Each NOC model must be updated whenever adjustments
are made in the process. This task requires considerable time and effort from the people
involved. Therefore, the ability to perform self-adaptive model updating is highly desir-
able in this context. The PCA model used to enable the MSPC is based on data related
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to screws placed in seven different positions. In order to guarantee greater homogeneity,
a PCA model for each screw joint can be defined. However, a more significant techni-
cal and human effort would be needed to coordinate the process monitoring due to the
increase of the amount of data and tools involved.

Future work will address the development of an automatic classifier which performs
feature recognition of the screwing process observations and their prompt association to
specific behavior categories. Furthermore, it is intended to identify patterns or trends in
the monitored data that can be associated with failure modes of the screwing equipment
by analyzing the process evolution over time. Afterwards, this information will be used
to prevent or early detect failures in the screwing equipment.
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Abstract. Anewmethod of selection ofmaterials at the design step is presented in
this paper. The method takes into recyclability of materials. The authors compare
the effectiveness of neural networks (a multilayer perceptron, radial basis function
networks, and self-organizing feature map - SOFM networks) as modelling tools
aiding the selection of compatible materials in ecodesign. The best artificial neural
networks were used in an expert system. The input data for the selection of mate-
rials was start point to initiate the study. The input data, specified in cooperation
with designers, include both technological and environmental parameters which
guarantee the desired compatibility of materials. Next, models were developed
using the selected neural networks. The models were assessed and implemented
into an expert system. The authors show which models best fit their purpose and
why. Models aiding the compatible materials selection help boost the recycling
properties of designed products. Neural networks are a very good tool to support
the selection of materials in the ecodesign. This has been proven in the article.

Keywords: Compatibility · Neural networks · Classification models · Expert
system · Materials selection

1 Introduction

Nowadays, fast development of environmental awareness is observed. Enterprises are
increasingly focusing on environmentally friendly solutions due to legal regulations.
Producers’ attitudes are also shaped by marketing campaigns that promote eco-friendly
products. Creating customer demand, they force manufacturers to supply eco-friendly
products to the market. Some customer groups due to greater awareness are even willing
to pay a higher price for an eco-friendly product. Manufacturers also sell products in
ecological versions cheaper.

The study, exploring the materials selection in ecodesign, is a follow up on previous
research into the application of artificial intelligence (AI) in the selection of materials
in product design to provide for their recycling compatibility. The research has been
described in [1–4]. Based on the decision tree induction methods and MLP artificial
neural networks, the proposed tools automate the materials selection in the process of
design, building upon the designer’s knowledge gained through experience.
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A newmethod supporting designers at the design stage in choosing materials that are
compatible ensures that the product is recyclable and environmentally friendly. The aim
of the authors study was to create expert system similar to human thinking in the concept
of reasoning. Functions of the created expert system allows to solve certain tasks, in the
similarly like a man who is an expert in the domain. The creation of such a system was
possible to the use of artificial neural network methods.

2 Review of Literature

The ecodesign concept combines many aspects of traditional and environmental design.
The main goal is to develop sustainable solutions that meet human needs [5]. Product
recyclability is one of the basis of ecodesign. Recycling is one of the methods of envi-
ronmental protection. It consists to reduce the amount of waste and the consumption of
natural resources [6]. Therefore, at the initial stages of the product life cycle, you should
consider what will happen to it after its end of life.

More and more ecodesign supporting tools use intelligent solutions, such as neural
networks. The article [7] presents models of life cycle assessment (LCA) based on a
BPNN, which allow estimating the amount of hazardous chemicals and the consumption
of electronic product for the entire product lifecycle. The solution described in [8] uses
the artificial neural network (ANN) for forecasting and performance of product lifecycle
assessment (LCA). Any missing data required for the LCA is estimated using the ANN.
Artificial intelligence is also applied in waste sorting is the deep learning based method,
implemented by Refined Technologies of Sweden [9]. It recognizes products or product
models with a high degree of similarity.

Many researchers have described the application of neural networks methodolo-
gies across different scientific and practical domains. Numerous research papers discuss
Kohonen networks applied for multidimensional data visualization to evaluate classifi-
cation possibilities of various coal types [10], collision free path planning and control
of wheeled mobile robot [11], or parametric fault clustering in analog electronic circuits
with the use of a self-organizing artificial neural network [12].

Radial basis function (RBF) networks are also widely discussed in the literature as a
tool supporting, among others, rotor fault detection of the converter fed induction motor
[13], local dynamic integration of ensemble in prediction of time series [14], predicting
the corrections of the Polish time scale UTC(PL) (Universal Coordinated Time) [15], or
accurate load forecasting in a power system [16]. However, solutions implementing the
RBFN, Kohonen networks or MLP in ecodesign are scarce. Hence the authors’ interest
in the application of neural networks.

The method aiding the selection of materials in the ecodesign, which used neural
networks was shown in the article. While developing the expert system, the authors used
their experience from solutions supporting ecodesign [17–19] and creative of neural
networks [4, 20–22].

3 Methods

Materials selection for product components is aided with the use of MLP, RBF and
SOFM networks. Neural networks are very good suited to the obtain of knowledge and
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experience, in this case in the range of selection of compatible materials in the process
of ecodesign.

The MLP network structure consists of many artificial neurons in a few connected
layers. The artificial neural network is a very simplified model of the brain of a living
organism, because the brain doesn’t have a perfectly layered structure in which neurons
are connected between the layers. The neural network model is very simplified. For
simpler implementation, the neural network is built symmetrically. It consists in the fact
that all neurons from one layer are connected to neurons of the next layer. The network
learning process eliminates connection redundancy [23].MLP networks have three basis
features. The network is made up of layers in which neurons are located. These neurons
in each layer may have a different number. The layers in the network connect to each
other on the principle of: each neuron from one layer with each neuron of the previous
layer. Data in the network flows from entry to exit in one direction. The network can be
divided into input, hidden (or n hidden) and output layers.

MLP network is the most universal network commonly applied for resolving various
problems, including technical ones [23]. But, RBF networks also havemany advantages.
Firstly, they are able to map any nonlinear function by a single hidden layer, unlike the
MLP network where sometimes we need more than one hidden layer. Moreover, the
RBF network typically has one hidden layer with radial neurons, each of which models
the Gaussian process based response surface [23]. Radial networks are composed of
neurons whose activation functions map (1). Their values change radially around center
c.

x → ϕ(‖x − c‖), x ∈ Rn (1)

where (‖·‖) is usually typically anEuclideannorm.Functionsϕ(‖x − c‖) are referred
to as radial basis functions.

Secondly, in the output layer we can performed to optimize simple linear transforma-
tion by means of traditional linear modelling techniques. The techniques are quick and
free from such problems as local minima, which occur in the training of MLP networks.
Therefore, we can train RBF networks in a very short time period (the difference in the
training speed can reach orders of magnitude).

Kohonen networks are one of the basic types of self-organizing networks. They train
in a way similar to the way human beings do, without defining any patterns – the patterns
are created through the training process combined with normal functioning. Owing to
their self-organizing capability, they open up new possibilities, such as adaptation to
input data they have little knowledge of. SOFM networks represent an entire group
of networks which learn by the self-organizing competitive method. On the network’s
inputs signals are set up to choose the winning neuron – the one which best corresponds
to the input vector. SOFM’s topology correct feature maps first choose the winning
neuron (by means of the Euclidean distance), and subsequently determine the training
coefficient of the winner’s neighboring neurons [23].
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Once the network is triggered by the input vector x, neurons compete among them-
selves. The winning neuron is the one whose weights are most similar to the respective
components of that vector. A topological neighborhood G(i, x) is assumed around the
ith neuron. In the standard Kohonen algorithm, the G(i, x) function is defined as follows
(2):

G(i, x) =
{
1 for d(i,w) ≤ R
0 for others

(2)

where d(i, w) represents the Euclidean distance between the winning vector wi and
the ith neuron, and R – the neighborhood radius.

We identify three stages in Kohonen networks: construction, learning, and recogni-
tion.

4 Creation of Models Based on the Neural Networks

The selection of materials in the ecodesign is possible thanks to neural network models
that were created in the following stages:

• analysis of input data for the selection of the materials (input data were developed on
the basis of real data taken into account by the designers when selecting materials),

• creating training, testing and validation kits containing examples of the selection of
materials to be used in creating neural networks and evaluation their effectiveness,

• creating models using neural networks (MLP, RBF, SOFM),
• model evaluation,
• selection of the most effective material selection models and their implementation in
the expert system.

4.1 Data Preparation

Recycling oriented ecodesign relies primarily on the material selection and methods
of connecting them. The main goal is to design a product made of the largest possible
number of standardized and recyclable materials. This has a positive impact on the envi-
ronment in the last stages of the product’s lifecycle, such as maintenance or withdrawal
from use. When selecting materials for a product, we are guided by their compliance in
terms of recycling. Mainly the chemical composition of materials determines recycling.
Special tables have been developed that show material compatibility due to recycling.

For a detailed analysis, selected properties ofmaterials have been added upon consul-
tation with designers. Parameters of material selection were chosen for AGD products.
The files have been prepared based on an analysis of properties of materials, such as:
MM - main material name (e.g. PVC), D - density in grams per cubic centimeter (e.g.,
7.88), TS - tensile strength expressed in mega Pascal (e.g., 35.5), YPE - elongation at
yield point (Re) expressed as a percentage value (e.g., 5.5), PT - processing temperature
expressed in degrees centigrade (e.g., 20.8), DC - the dielectric constant (e.g., 2.0), ME -
Young’smodulus (elasticity) expressed in gigapascal (e.g., 4.61),WA -water absorbency
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expressed as a percentage value (e.g., 22.55), RC - the recycling cost expressed in PLN
per kilogram (e.g., 4.25), where a positive value represents a profit from the sale of mate-
rial, and a negative one – the disposal cost, andAM - the addedmaterial name (e.g. ABS).
Properties of materials give inputs of MLP network and output is C - compatibility. The
data set includes 980 examples.

4.2 Material Selection by Neural Networks

In experiments authors built manymodels ofMLP neural networks. The input and output
of the network was the same for all built models (10 inputs and 1 output) (see Fig. 1).
In order to develop the best model of the neural network, various parameters were
changed in the experiments. Changed: the number of neurons in the hidden layer (5–
25), in the BFGS algorithm the number of training periods (10–120), the error function
(SOS, Entropy), the activation function in the hidden and output layer (linear, logistic,
exponential, Tanh, Softmax). Seven neural networks of varying efficacy (activity quality)
were presented in Table 1.

Fig. 1. MLP network structure.

MLP 10-23-1,MLP 10-16-1, andMLP 10-21-1 neural networkswere themost effec-
tive neural networks (100%). MLP 10-25-1 (96.87%), MLP 10-9-1 (97.12%), MLP 10-
16-1 (99.22%), and MLP 10-25-1 (96.34%) neural networks were a little less effective.
MLP 10-12-1 turned out to be the least effective (76.48%). Table 2 shows the analysis
of neural network errors. In the case of networks with lower efficiency, these networks
classified some examples incorrectly.

The MLP 10-23-1 network had 0% errors (100%, best network). MLP 10-25-1 was
slightly worse (35 errors) andMLP 10-12-1 showed the worst classification (220 errors).
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Table 1. The neural networks (MLP) models for material selection.

ID S TQ TEQ VQ TA FE FHA FOA

1 10-25-1 96.06 97.96 96.60 38 Entropy Logistic Softmax

2 10-23-1 100.00 100.00 100.00 80 SOS Tanh Linear

3 10-16-1 100.00 100.00 100.00 30 Entropy Tanh Softmax

4 10-9-1 96.79 97.96 96.59 57 Entropy Logistic Softmax

5 10-16-1 95.19 96.59 95.24 35 Entropy Logistic Softmax

6 10-25-1 96.50 97.95 94.56 39 Entropy Logistic Softmax

7 10-21-1 100.00 100.00 100.00 60 SOS Logistic Tanh

where: ID – network of id, S – MLP network structure, TQ - quality of training, TEQ – quality of
testing, VQ – quality of validation, TA - BFGS algorithm, FE - function of error, FHA – function
of hidden activation, FOA – function of output activation

Table 2. Analysis of neural network errors.

Answer of network Compatibility

Good Incompatible Limited

10-25-1-good 265 5 0

10-25-1-incompatible 10 170 15

10-25-1-limited 5 0 510

10-23-1-good 280 0 0

10-23-1-incompatible 0 175 0

10-23-1-limited 0 0 525

10-12-1-good 225 30 75

10-12-1-incompatible 10 115 30

10-12-1-limited 45 30 420

For RBF networks, the input parameters (10 inputs) for the construction of a neural
network include material properties, including eco-friendliness, the added material for
the assessment of compatibility with the main material, and one output – the decision
class, which in this case is the compatibility of materials. Table 3 shows the most impor-
tant data of the material selection models developed as RBF networks. The models have
different numbers of neurons in the hidden layer (20–60). The activation function in the
hidden layer is the Gaussian function, the activation function in the output layer is the
Softmax function, and the training algorithm (RBFT).

The best RBF network (10-58-1) reached an efficiency of 94.91%. It featured 10
inputs, 58 neurons in the hidden layer, and one output. Measured with cross entropy
(CE), the training error was 0.3956, the testing error – 0.2954, and the validation error
– 0.3512.


