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Chapter 1
Introduction

As a field of study, general biology seeks to identify dynamic processes and 
functional structures that are common to all life forms. Owing to the extreme diver-
sity of living organisms, the goal of general biology can also include identification 
of what is sufficiently widespread among life forms, and explanation of the mecha-
nistic reasons for the variation. General biology is therefore related in its methodol-
ogy to comparative biology, although the emphasis is on commonality and not the 
differences. Toward this aim, general biology integrates the results of disciplines 
such as cell biology, physiology, ecology, and others, insofar as they are not specific 
to the taxa studied. The range of topics covered by general biology acquired its pres-
ent breadth by the time when the fundamental findings in molecular biology became 
fully systematized. These topics include (see Libbert 1982) the distinction of living 
from non-living matter, metabolism, genetics, mechanisms of proliferation, embry-
ology, control mechanisms, behavior, evolution, and ecological interactions. In 
addition to a dramatic progress that has been achieved in many of these areas with 
the application of novel methods in recent years, a new emphasis on system-level 
properties that are common to different taxa has emerged (see, e.g., Alon 2006; 
Maly 2008; Klipp et al. 2009; Prokop and Csukas 2013; Rajewsky et al. 2018).

The quantitative approach has been indispensable to advancement of general 
biology. Beginning with the example of Mendel, development of statistics was 
intertwined with the progress in genetic research (see, for example, Fisher 1999), a 
process that continues with today’s machine learning and genomics. To take an 
obvious and well-studied example, whether one, two, three, or four leaves are 
formed at a time during the growth of a plant shoot is a quantitative question that we 
are to have a systematic answer for if general understanding of plant habits is the 
goal. However, development of self-organization science in the twentieth century 
(e.g., Haken 1983) has shown that the more fundamental problem of why a defined 
number of discrete organs (leaves) is formed in such cases, instead of a random 
number of them or, say, a continuous collar of light-capturing tissue, is also a prob-
lem to be answered through application of quantitative methods. In this example as 
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in many others of its nature, the emergence of the biologically functional pattern is 
a quantitative effect arising in a system of interacting elements (cells, molecules) 
and cannot be explained—whether qualitatively or with precision—other than as a 
property of the dynamics of the system components’ interaction. Although applica-
tion of the methods of dynamical systems research to biology has a considerable 
pedigree (see, e.g., Rosen 1970) and has impacted the development of the mathe-
matical methods themselves (Tu 1994; Jost 2005), the recent emphasis on systems 
explanations in biological science has led to a solidification of the dynamical sys-
tems approach (e.g., Murray 2002; Garfinkel et al. 2017; Chen and Zaikin 2021).

The quest for identification of processes general to all life has suffered from a 
problem threatening to reduce all answers to something very near tautology: since 
reproduction and inheritance are attributes that unquestionably belong to the defini-
tion of life, and we accept all life—whether extant or known from the paleontologi-
cal record—to have common ancestry, any features identified as common may 
simply be inherited. Indeed, this could be so whether these features be deterministi-
cally attached to all life or merely accidents of life’s origin and early evolution. 
While this problem may not be fully resolved for some time, advances in astrobiol-
ogy and particularly in methods of detection and future study of life on other planets 
(Yamagishi et al. 2019) are beginning to supply hope that juxtaposition of life as we 
know it with independent, or at least widely separated life forms may become pos-
sible. Such comparison would be uniquely informative for general biology, as it 
would enable separating the accidental, masquerading as universal, from what is 
truly universal among the properties of living matter.

For general biology, therefore, this is the time to systematize our understanding 
from the perspective of identifying, among the features common to life as we know 
it, those that are likely generalizable beyond the singular example we have been 
studying. Even if at present this may appear to be an exercise in hypothesis-making, 
demand for a well-grounded set of generalizable life attributes can become acute 
very soon with the accelerating pace of developments in astrobiology. As regards 
the generalizable planetographic conditions for life’s emergence and existence, as 
well as planetographic signatures of extant life, this direction of study is compara-
tively advanced (Yamagishi et al. 2019). What will be required following a defini-
tive discovery of extraterrestrial life—which we expect to come in the form of 
discovery of its planetographic signature—will be guidance from general biology 
with respect to the dynamic and structural features of such life that may be ratio-
nally expected, based on our experience with studying life terrestrial, so that more 
detailed data could be efficiently collected and interpreted.

General biology, now understood more narrowly as generalizable biology in the 
above sense, can, in principle, encompass a very wide range of life attributes. For 
example, requirements concerning the chemical composition of living matter may 
be addressed. Not even a review of possible directions in such a broad, interdisci-
plinary study will be attempted here. Instead, our subject will be confined to sketch-
ing out a set of dynamical attributes that is identifiable with life and can be expected 
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to be generalizable from life as we know it to its possibly unrelated forms that may 
be discovered in the future.1

Having considered the old and new motivation for identifying the general (i.e., 
generalizable) dynamical systems properties and processes that are associated with 
living matter, how can we approach this problem on our present level of understand-
ing and in a format that is both writable and readable? A compendium (the word 
from the title of the first work cited in this chapter, a classic of non-mathematical 
general biology) of dynamical systems results pertinent to generalizable biology is 
not feasible at this point, before the overall direction has been sketched out, debated, 
and accepted. What follows, therefore, is of necessity an incomplete and somewhat 
subjective version of such a sketch, but one that is intended to serve the modest 
purpose just stated.

When selecting the topics to cover and their sequence, we need to be mindful of 
the problem of circularity in all biological reasoning, which stems from the already 
mentioned issue of the subject of our study arising from self-replication. A process 
may be mechanistically fundamental with respect to another process, yet its very 
existence may be contingent on the higher-level process and its kinetics controlled 
by the latter through evolutionary dynamics, whereby fundamental processes are 
fine-tuned to answer the needs of the higher-level ones. Today’s didactic literature 
covering general biology comports with the paradigm of the cited twentieth-century 
compendium and usually adopts the mechanistic logic, proceeding from the molec-
ular basis of life, through physiology, to ecology and biogeography. Here, we will 
take a slightly different approach. Processes responsible for the very existence of 
living matter in defined forms will be considered first (ecologically abstracted bio-
mass growth kinetics, followed by elementary speciation and homeostasis). From 
there on, our sequence will be more conventional, covering elements of cell biology, 
multicellular development, ecology, ending in treatment of evolution from the 
standpoint of species interaction. A degree of circularity in the exposition, whereby 
the most elementary ecology and evolution is considered first, and more complex 
effects in the same realms last, should be seen as intentionally reflecting the men-
tioned circularity in the subject matter. With this caveat, the exposition is from the 
elementary to the complex, and from the foundational to the mechanistically 
derivative.

An additional reason—besides its being fundamental to the very existence of 
living matter—to consider biomass growth first is that useful formalisms exist in 
this area of study that are both simple and illustrative of the basic concepts of bio-
logical kinetics and analysis of systems behavior. Indeed, by introducing these on 
the example of elementary, single-species biomass kinetics, we remain in the mold 
of the didactic tradition exemplified by the cited work of Murray. The need for such 
an opening chapter arises from our desire to make this monograph accessible also to 
those readers who may be less familiar with the language of dynamical systems 

1 Since this was written, a possible phosphine biosignature has been discovered on Venus and an 
expedition for sample collection and study in situ has been proposed (Greaves et al. 2020).
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theory. In addition to covering its biological subject, the biomass kinetics chapter 
(Chap. 2) can serve as a technical introduction to the quantitative approach that is 
followed in the rest of the book. Both continuous-time models and models with 
generations will be considered, the former introducing the concepts of steady states 
and stability analysis, and the latter, emergence of oscillations, multiperiodicity, and 
apparent chaos.

The jump to speciation in the third chapter may be unexpected, yet existence of 
species is fundamental to any quantitative treatment of organismal mechanisms and 
therefore precedes them in our exposition. The concept of species as defined forms 
that living matter can take supplies the basis for having well-defined parameter val-
ues in any model. All subsequent material in the book relies on existence of a mech-
anistic structure and a set of biophysical parameters that are representative of some 
identifiable quantity of living matter. This is possible only when the living matter is 
subdivided into at least tolerably delineated varieties. With this in mind, we will 
consider (Chap. 3) the most elementary processes in evolution, which can lead to 
emergence and maintenance of species. The basic results of quasi-species theory of 
mutation-selection balance will be laid out, followed by analysis of neutral sympat-
ric speciation in a spatially well-mixed population.

Equally foundational to existence of all living matter are control processes that 
can maintain the internal environment of organisms in the variable external environ-
ment. Physiological adaptation to changing external conditions also belongs to this 
category of processes, as are the capabilities of organisms and cells to effect transi-
tions between distinct physiological states when survival requires it. On the organ-
ism as well as cell level, processing of external signals is intertwined with the 
control processes, and the processing and control functionalities often share the 
same molecular substrate and rely on closely related types of nonlinear dynamics. 
In view of this, selected elementary examples of signal processing and functional 
control will be treated together in Chap. 4, to include all-or-nothing response, oscil-
latory control, and kinetic switches on the genetic, biochemical, cellular, and organ-
ism level.

The functional structure of the cell is the central biological element that connects 
life’s molecular building blocks with the organismal structure and function. Owing 
to this, two chapters will be devoted to general biology problems that concern 
dynamical origins of the cell structure. In the first one (Chap. 5), we will deal with 
molecular self-organization in the cell. An important aspect of these processes that 
distinguishes them from molecular self-organization that may take place outside the 
biological realm is the orchestration of the molecular processes by the constraints 
imposed by the heritable cell structure (Harold 2001). How the large-scale structure 
is shaped by the kinetics of interaction of its molecular components will be addressed 
through the prism of quantitative models of cytoskeleton dynamics, cytoskeleton- 
directed and -driven motility, and spatially distributed cell signaling. Selected 
approaches to the fundamental problems of centered organization of advanced 
(eukaryotic) cells, orientational order of their cytoskeletal filaments, and overall 
polarity (directionality) of the cell structure will be highlighted. In Chap. 6, we will 
transition to treatment of system-level effects arising from mechanical forces that 
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are inherent in the elementary cell structure and that shape this structure further. 
Here—in the belief that, like the cellularity itself, the basic cytoskeletal organiza-
tion should be generalizable from the known advanced life forms—the focus will be 
on the microtubule cytoskeleton, whose mechanics will be analyzed in the situa-
tions of isolated interphase cells, cell division, and cell-cell interactions.

The mechanisms responsible for generation of the body plan of advanced organ-
isms have long been recognized among the central problems in general biology. The 
problem of multicellular morphogenesis motivated Turing in was to become one of 
the pivotal achievements of the twentieth century science: demonstrating a mecha-
nism for emergence of stable spatial patterns in an initially homogeneous molecular 
system (Turing 1952). In Chap. 7, we will examine multicellular morphogenesis on 
two examples, phyllotaxis and segmentation. Phyllotaxis—developmental arrange-
ment of leaves and other organs of vascular plants—is an example of morphogene-
sis that is in evidence in the world around us. Although its mechanistic substrate is 
widely different, as a process whereby morphological elements of the organism are 
produced repeatedly and regularly, phyllotaxis can be seen as related closely to 
segmentation in animal body plans. Outlines of our current understanding of the 
two comparatively complex and well-studied processes will serve to illustrate 
dynamical systems principles that may be broadly operational in multicellular 
morphogenesis.

Having sketched out the selected elements of general biology from the molecular 
processes to the multicellular organism form, in Chap. 8 we return to the founda-
tional biological processes of biomass growth kinetics and evolution to reconsider 
them on the level of species interaction. The focus this time will be on accounting 
explicitly for the ecological relationships (e.g., predator-prey, mutualism, or compe-
tition) as they influence the species’ population dynamics and evolutionary trajec-
tory. The ecological factors have temporal, spatial, and genome-space aspects, and 
may lead to self-organization in each of the three domains. The biomass dynamics 
considered here will be a multi-species generalization of the elementary kinetic 
laws from Chap. 2, and the ecological dynamics in the genotype space, derivative 
from the elementary formalizations for speciation given in Chap. 3. The oscillatory 
temporal pattern that can arise in a simple ecological model of Lotka and Volterra 
will be considered fist. In the remainder of the chapter, more complex, and appar-
ently aperiodic, temporal pattern of punctuated equilibrium in an explicitly genetic 
model of ecological coevolution will be analyzed, followed by a discussion of spa-
tial dynamics associated with various ecological relationships and speciation in spa-
tially distributed populations.

The breadth of the presented topics demonstrates unity of dynamical laws and 
analytical approaches across several levels of biological organization, which has 
been attained through recent research in the different fields. While much work 
remains to be done to explicitly unify biological theory on the basis of the mathe-
matical apparatus of dynamical systems, the very rough sketch of such an encom-
passing theory that is offered here may serve as an additional impetus for such 
future effort.
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Chapter 2
Biomass Growth and the Language 
of Dynamic Systems

2.1  Equilibria, Stability, and Hysteresis

Dynamics of biomass growth is fundamental to the very existence of living matter. 
Its models (see, e.g., Hastings 2000; Kot 2001) also allow us to introduce the basic 
concepts of biological kinetics and analysis of systems behavior on mathematically 
simple examples (e.g., Edelstein-Keshet 1988; Murray 2002; Riznichenko 2011). 
Consider the description of the biomass of a certain population with a single vari-
able, x. A series of instructive cases can be captured by a general form in which the 
rate of change with time t is a polynomial in x that extends only to the third power.

The simplest case is

 

dx

dt
k k xg d= −( ) ,

 (2.1)

where kg is the first-order rate constant of growth and kd, of die-off. The solution to 
Eq. (2.1) is an exponential function, and the population growth exhibits different 
properties, depending on the relationship between kg and kd. If kg > kd and x is posi-
tive, the biomass increases in an accelerated and unlimited fashion. The latter fea-
ture is, of course, nonphysical. When x = 0, no dynamics takes place. However, any 
positive value of the biomass, no matter how small, triggers the runaway growth. We 
conclude that the equilibrium point x = 0 is unstable. Biologically, it means that any 
number of organisms colonizing the space under consideration can successfully 
seed a new population. This is frequently the case with simple organisms under 
favorable growth conditions, e.g., when bacteria are inoculated into warm milk. If, 
on the contrary, kg  <  kd (and x is still positive), then the biomass shrinks and 
approaches zero in the limit. This case represents an environment that is unfavorable 
to the species in question. As before, no dynamics takes place when x = 0, but since 
any positive biomass returns to zero with time, this equilibrium point is now stable 
with respect to perturbations.
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Consider now the case where

 

dx

dt
k x k xd g= − + 2 ,

 (2.2)

kd > 0, and kg—also positive—is redefined as a second-order rate constant of growth. 
Whereas the last example was applicable to asexually reproducing organisms (or 
self-fertilizing hermaphrodites), the case represented by Eq. (2.2) can describe a 
population reproducing sexually. Since our description remains univariate, it would 
be appropriate for a population that is well-mixed and has a fixed ratio of sexes or, 
alternatively, one that consists of obligatorily cross-fertilizing hermaphrodites. Such 
organisms need to meet to reproduce, and the rate at which organisms meet pairwise 
can be thought of as being proportional to the second power of the organisms’ spa-
tial density (analogously to second-order chemical kinetics reflecting pairwise 
molecular collisions). Population effects that may arise from spatial variation will 
be left for a later chapter, and reproduction with defined generations will be consid-
ered immediately following this introductory exposition. In the absence of any spa-
tial variation and any consequential age structure, the density of organisms is simply 
proportional to the population’s total biomass, justifying the simple model behind 
Eq. (2.2).

The properties of the dynamics described by Eq. (2.2) can be deduced by exam-
ining the equation’s right-hand side. This is a parabolic function of x that has roots 
at 0 and kd/kg. It is negative between these roots and positive elsewhere. Accordingly, 
the biomass is driven to zero from any value that is smaller than kd/kg, and the equi-
librium point x = 0 is stable. Any starting value that is above kd/kg leads to an unre-
stricted further growth. In other words, a critical seeding mass is necessary to ensure 
the survival of the population, which is realistic for sexually reproducing organisms. 
At the same time, the case of Eq. (2.2) still features the unrealistic possibility of 
population explosion.

The final case in our introductory series of homogeneous models is the one where

 

dx

dt
k x k x k xd g i= − + −2 3.

 (2.3)

Here, ki is introduced as a third-order rate constant of interference between the indi-
viduals (ki > 0). The motivation for such an approach is that the population may 
experience negative effects of crowding, for example, competition for food. The 
situation captured is the one in which individuals of the population need to meet to 
interfere with each other. The interference effect of meeting in pairs could be taken 
into account by adjusting the second-order constant, already named kg (see Eq. 2.2), 
which remains a constant of growth as long as the negative effect of meeting in pairs 
does not outweigh its positive effect on the population. To reflect this situation, we 
still assume that kg is positive. The next term capturing the rate of a process whereby 
individuals meet in space is third-order in x, and the rate constant that reflects its 
effect on the population biomass is ki. Higher-order terms may be neglected because 
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they represent more infrequent events (simultaneous meeting of four or more 
individuals).

In this case (Eq. 2.3) we again have x = 0 as an equilibrium point. Other roots of 
the right-hand side (the population growth rate function) depend on the values of the 
rate constants. When kg

2 < 4kdki, there are no other equilibrium points and the rate 
function is negative for all x > 0. In other words, the population cannot be estab-
lished: x = 0 is a stable equilibrium and any starting biomass will eventually die off. 
If kg

2 happens to be exactly equal to 4kdki (which is improbable but worth consider-
ing for completeness), there is a second root, kg/(2ki), but the population growth rate 
is still negative for all x > 0 except this one value. The equilibrium point x = kg/(2ki) 
is stable with respect to perturbations that increase x but unstable with respect to 
perturbations that decrease it and therefore on the whole unstable. We can see that, 
in essence, the properties established for kg

2 < 4kdki hold in this special case as well. 
Finally, if kg

2 > 4kdki, then there are two roots in addition to x = 0:

 
x

k k k k

k
x

k k k k

k

g g d i

i

g g d i
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2

24
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− −
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The growth rate function is negative between 0 and x1, positive between x1 and x2, 
and negative for x > x2. Zero is therefore still a stable point, as is x2, but x1 is unsta-
ble. In other words, x1 represents a critical biomass: any size that is smaller will die 
off, whereas any that is larger will seed a persistent population which will eventu-
ally stabilize at size x2. This model captures the realistic properties of an isolated, 
sexually reproducing population of organisms. Its salient properties—whereby sta-
ble equilibrium points are separated by unstable equilibrium points, which can all 
be found without solving the dynamic equations themselves—are common also to 
more complex and multivariate systems.

Lastly, among the continuous-time univariate models, it is instructive to consider 
a version in which a zero-order term is present:

 

dx

dt
k k x k x k xm d g i= − + −2 3.

 (2.4)

The constant km > 0 can represent the rate of migration of organisms into the spatial 
domain where the biomass is measured—whether active or passively following a 
flux of the medium in which they reside. The behavior of this model can be visual-
ized qualitatively if we note that it is analogous to the last case, except that to find 
its equilibria we need to consider not where the three terms dependent on x equal 
zero but where they equal –km:

 − + − = −k x k x k x kd g i m
2 3 . (2.5)

Analogously to the roots of the rate function considered in the version without 
immigration, Eq. (2.5) can be satisfied at one, two, or three values of x. Interesting 
behavior can be observed when the response of the system to varying the migration 

2.1 Equilibria, Stability, and Hysteresis
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constant is analyzed. The conditions for such behavior arise when the left-hand-side 
of Eq. (2.5) is negative for all x > 0 and has two points where its derivative is zero 
(Fig. 2.1). The first of these conditions has in fact already been worked out in terms 
of the rate constants in the last example (amounting to kg

2 < 4kdki), and the second 
one requires that kg

2 > 3kdki. If km is large, immigration can only be balanced by the 
third-order term (crowding) that dominates at high x; this is the only equilibrium, 
and it is stable. By decreasing km, we can drive the system to a regime where two 
additional equilibrium points appear to the left of the original one. Of these, the left- 
most (smallest) is also stable, but the system will remain at the original equilibrium 
point, because its stability has not changed. Ultimately, however, the original point 
will meet the unstable point and both will disappear, whereupon the system will 
spontaneously transition to the remaining equilibrium point at the comparatively 
small value of x. If we now reverse the direction of change in km and drive the sys-
tem back to the regime with three equilibria in total and two stable ones, it will 
remain in the left-most equilibrium until this equilibrium disappears by merging 
with the unstable one. At that point, the system will spontaneously transition to the 
original, high-biomass steady state. Overall, we observe that the state of the system 
can depend on the history of the variation in its parameters, and there is a domain in 
the parameter space where the biomass can follow different trajectories depending 
on the direction in which the control parameter is varied. Such behavior is termed 
hysteresis. The classical univariate population study with important hysteresis 
effects is the budworm outbreak model (Ludwig et al. 1978), to which the reader 
interested in a more concrete ecological treatment can be referred.

2.2  Growth with Generations: Oscillations and Chaos

Population dynamics characterized by die-off of adult organisms following the 
breeding season are fairly common across the clades of life and can be presumed to 
be a shared feature of habitable planets with pronounced seasons. In the simplest 

0 0.5 1
x

-0.2

-0.1

0Fig. 2.1 Left-hand side 
(solid line) of Eq. (2.5). In 
this example, the biomass 
and time are unitless, 
kg = 1.9, and kd = ki = 1. 
Right-hand side (dashed 
line) is plotted for 
km = 0.089 and km = 1.605
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case, biomass xi of adult organisms of generation i depends only on the biomass 
observed in the immediately preceding generation:

 x f xi i= ( )−1 . 

In this instance, equilibria are represented by the roots of f = 1. To determine the 
stability of these equilibria, we can linearize f in the vicinity of each root x∗:

 
δ δ δi i i i

x

x x
df

dx
= − =∗

−
∗

, 1 .
 

Since the derivative of f acts on perturbation δ like the factor in a geometric progres-
sion through the generations that follow, |df/dx| < 1 means that the equilibrium is 
stable, and |df/dx| > 1 means that it is unstable.

Up to this point, the behavior of the models with generations has been analogous 
to the univariate continuous-time models considered in the last section. However, 
even the simple model with non-overlapping generations can have qualitatively dif-
ferent regimes in addition to the ones already described. Although the deviation 
from the equilibrium will eventually die down in all instances of |df/dx| < 1, it does 
so in a monotonic manner only if the derivative is positive. If the derivative is nega-
tive, the sign of the deviation from the equilibrium point alternates with each gen-
eration. In other words, we would observe damped oscillations around the stable 
steady state. The manner of the departure from the point of unstable equilibrium can 
similarly be monotonic or in a form of oscillations of increasing amplitude, depend-
ing on the sign of df/dx when |df/dx| > 1.

Models with generations can have steady states other than equilibrium points. 
One of the classical models (May and Oster 1976) has the form

 x x k x k xi i g i d i= + −− − −1 1 1
2 , 

where kg > 0 is a growth coefficient and kd > 0 s a die-off coefficient. This model, 
while it is a finite difference version of the polynomial differential equation models 
from the last section, reflects a slightly different biology than any of the preceding 
examples. It is suited to describe reproduction that is not limited by individuals’ 
encounters (positive linear term) but at the same time displays a negative effect of 
crowding (negative quadratic term). Expressing x in the units of the non-zero equi-
librium biomass,

 
x

x

x
x

k

k
g

d

= =∗
∗, ,

 

we can see that the dynamics is controlled by a single parameter, kg:

 x f x x k xi i i g i= ( ) = + −( )( )− − −1 1 11 1  
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We can further note that df dx/  at x = 1 (equilibrium) equals 1–kg. Thus, the equi-
librium is stable for 0 < kg < 2 and unstable when kg > 2. To consider the dynamic 
possibilities afforded by the discrete generations, let us plot f alongside f(2), which is 
f compounded with itself (i.e., applied sequentially twice). As can be seen in 
Fig. 2.2—where the bisector indicating the equality of the function value with the 
argument (i.e., the equality of the reduced biomass x  one or two generations apart) 
is also plotted for reference—when kg approaches 2 from below, f(2) intersects the 
bisector in the same point as f and its derivative is less than 1. This reflects the fact 
that biomass size x = 1 will be stably repeated every two generations as long as it is 
stably repeated every generation. As kg crosses above 2, however, the shapes of both 
f and f(2) indicate a loss of stability at x = 1. At the same time, two new points arise 
where f(2) intersects x xi i= −2. (It is said that a bifurcation takes place.) Each of these 
points is therefore repeated every second generation. In other words, a two-point 
cycle is born—a new type of dynamics that is not afforded by univariate models in 
continuous time. Such a stable cycle, which can attract the trajectory of the system, 
is referred to as a limit cycle. The slope of f(2) at the two cycle points (Fig. 2.2) is 
below 1 while being positive, and so demonstrates that each of these points, and 
therefore the cycle that is comprised of them, is stable.

Continuing to increase kg in this model, we observe that df(2)/dx at the period-2 
stable points decreases until it becomes smaller than −1 (Fig. 2.3). As these points 
become unstable at period 2, so do they also as points of a degenerate period-4 
cycle, as evidenced by the plot of f(4). At the same time, four distinct period-4 stable 
points are born (Fig. 2.3). Plotting the time course of a simulation starting at some 
arbitrary biomass size (Fig. 2.4a), we confirm that after a brief initial period, the 
model trajectory settles into a four-point cycle in which the biomass oscillates about 
the original “period-1” equilibrium (x = 1), taking values that alternate above and 
below it with every new generation. Analysis shows (May and Oster 1976) that 
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Fig. 2.2 Reproduction function f (dashed line) and its second iteration f(2) (solid line). The bisector 
where the function is equal to the argument is plotted for reference (dash-dot line). (a) kg = 1.8, (b) 
kg = 2.2
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period-doubling of this kind continues with the increasing growth parameter, but the 
parameter intervals leading to each new doubling progressively shorten.

It can be noted that although the standpoint afforded by our knowledge of the 
dynamics that generate the time series leads us to speak in this case of a single 
period-4 cycle, a biologist presented by data that have the appearance of the time 
series in Fig. 2.4a would be equally justified to consider that the dynamics may be 
that of a comparatively small-amplitude period-4 cycle superimposed on a larger- 
amplitude period-2  cycle. From such an independent observer’s viewpoint, time 
courses generated with the subsequent period-doubling might appear multiperiodic 
insofar as the very presence of a repeated pattern remains recognizable.

According to the definition adopted in the mathematical analysis of this type of 
models, the regime that is called chaotic is reached by the model considered here at 
around kg  =  2.57. Simulating the model with only a somewhat larger parameter 
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Fig. 2.3 Second-iteration (f(2), dashed line) and fourth-iteration (f(4), solid line) reproduction func-
tion. Dash-dot line, bisector for reference. (a) kg = 2.4, (b) kg = 2.53
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Fig. 2.4 Time course of the model with generations, starting with x = 0 5. . (a) kg  =  2.53, (b) 
kg = 2.6
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