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Preface

Distillation is the most important and the most effective technology for the fractiona-
tion of multicomponent mixtures. Fields of application are all branches of the process
industry, for instance, petroleum refineries, chemical industries, and food industries.
The often very tall distillation towers dominate the view of many chemical sites. Ac-
cording to its great importance, distillation is a highly developed technology.

The fundamental mechanism of distillation is the mass transfer between a gaseous
and a liquid phase. The driving force for this interfacial mass transfer is the difference
between the actual and the equilibrium concentration of the phases.

The book consists of 10 chapters. Chapter 1 deals with the basic principle of dis-
tillation and with some historical aspects of the art.

Chapter 2 concentrates on the thermodynamics of vapor-liquid equilibrium, since
a good knowledge of vapor-liquid equilibrium is an indispensable prerequisite for the
design of distillation processes. As compared to many other textbooks, the mixtures
are not limited to two components, but ternary mixtures along with their boiling
surfaces and triangular diagrams are considered.

The Chapters 3 — 6 deal with the thermodynamics of single-stage distillation
(Chapter 3) and multi-stage distillation (Chapter 4), which is often called rectifi-
cation, reactive distillation (Chapter 5), and batch distillation (Chapter 6). Special
attention is given as described above to ternary mixtures, since they represent a more
general case than binary mixtures most textbooks on distillation focus on.

In Chapter 7 the energy requirement of distillation processes is discussed. This
chapter demonstrates how the large energy requirement of distillation processes can
be drastically reduced by internal column coupling and intelligent process modifica-
tions.

Important examples of industrial distillation processes are presented in Chapter 8.
Here, special attention is given to processes for the fractionation of azeotropic mix-
tures.

The design of distillation columns is treated in Chapter 9 with focus on tray
columns and packed columns. Finally, the control of distillation columns is the
objective of Chapter 10 where the concept of split stream control is applied.

The prime intention of this textbook is to let the reader develop a deep understand-
ing of the art of distillation. Many fully worked out examples demonstrate the easy
applicability of the theoretical findings. These examples are arranged in boxes to

xi
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facilitate the readability of the text.

Of course, not only the authors are involved in the completion of such a com-
prehensive book. At this point we would like to thank everyone who contribut-
ed to the success of this project: Felicitas Engel, M.Sc., Philipp Fritsch, M.Sc.,
Patrick Haider, M.Sc., Florian Hanusch, M.Sc., Robert Kender, M.Sc., Thomas Klei-
ner, M.Sc., Maximilian Neumann, M.Sc., Dr.-Ing. Anna Reif, Marc Xia, M.Sc.,
Alexander Eder, B.Sc., Florian Kaufmann, M.Sc., and Jan Oettig, B.Sc., as well as
the valuable expertise of Dr.-Ing. Volker Engel. Many thanks also to Stephan Korell
for his helpful advice on the EXTEX implementation.

Johann Stichlmair,
Harald Klein,
Sebastian Rehfeldt

Munich, February 2020



Nomenclature

Latin Symbols

a
a

aeﬁ-

a/v?

SENEE

<
<.

(=)

S o o o

<7

W w

low boiler

specific surface area

specific effective interfacial area

cohesion pressure van der Waals equation
coefficient cubic equation of state of mixture
coefficient cubic equation of state of pure com-
ponent %

cross coeflicient cubic equation of state of com-
ponent % and j

activity of component ¢

area

Antoine or Wagner parameter of component ¢
binary parameter Margules and van Laar equa-
tion of component ¢ and j

high boiler (binary mixture) or intermediate
boiler (ternary mixture)

constant

co-volume van der Waals equation

coefficient cubic equation of state of mixture
coefficient cubic equation of state of pure com-
ponent %

mole amount of bottom product

width of packing channel base

bottom flow rate

virial coefficient of mixture

m?/m?
m?/m?
Pa

-m? /kmol?
-m? /kmol?

-m? /kmol?

m3

m? /kmol
m? /kmol

kmol
m
kmol/s
m? /kmol

xiii



Xiv

=

oW

o

Q

gi

Antoine or Wagner parameter of component %
virial coefficient of pure component ¢

cross virial coefficient of component ¢ and j
high boiler (ternary mixture) or intermediate
boiler (quaternary mixture)

specific or molar heat capacity

constant

second mixture virial coefficient of mixture
Antoine or Wagner parameter of component ¢
capacity factor

empiric packing factor

high boiler quaternary mixture

diameter, distance

diameter

diffusion coefficient

mole amount of overhead product (distillate)
overhead (distillate) flow rate

dispersion coefficient (eddy diffusion coeffi-
cient)

Wagner parameter of component ¢

entrainer

overall gas-side point efficiency

overall gas-side tray efficiency

exergy

friction factor

fugacity of component ¢

standard fugacity of component ¢

F'-factor (gas load)

mole amount of feed

feed flow rate

surface area fraction/mole fraction UNIQUAC
equation of component %

gravitational acceleration g = 9.81 m /s>
molar Gibbs free energy

gas flow rate of component ¢

partial molar Gibbs free energy of component ¢

NOMENCLATURE

m? /kmol
m? /kmol

J/(kg - K)
J/(kmol - K)

m® /kmol?

kmol
kmol/s

kmol
kmol/s

m/s?

J/kmol
kmol/s
J/kmol



NOMENCLATURE

Ag

molar mixing Gibbs free energy

molar excess free energy

partial molar excess free energy of component ¢
binary parameter NRTL equation of compo-
nent ¢ and j

mole amount of vapor

gas/vapor flow rate

Gibbs free energy

excess free energy

binary parameter NRTL equation of compo-
nent ¢ and j

specific or molar enthalpy

partial molar enthalpy of component %
molar mixing enthalpy

height

dynamic hold-up

dynamic hold-up below loading point
froth height

clear liquid height

liquid hold-up

height of pressure drop

static hold-up

weir height

enthalpy

enthalpy flow rate

tray spacing or packing height

Henry coefficient of component ¢ in compo-
nent j

molar hold-up of liquid

height equivalent to one theoretical plate
height of a transfer unit

stripping factor

numbers of components in mixture

mass transfer coefficient

binary parameter cubic equation of state of
component ¢ and j

J/kmol
J/kmol
J/kmol

kmol
kmol/s

J/kg
J/kmol
J/kmol
J /kmol

kmol

XV
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als
s}

ARl

<

NTU

Di
Py

Ph
Poy;
qi

J o008

o =

G

vapor-liquid equilibrium ratio of component ¢
reaction equilibrium constant

(path) length

liquid flow rate of component ¢

amount of liquid

liquid flow rate

wetted perimeter

slope of equilibrium curve

exponent

mass

mole amount of mixture in the middle vessel
molecular weight

mixture flow rate

number of equilibrium stages

exponent

mole amount

molar flow rate

number of transfer units

pitch

pressure

partial pressure of component ¢

saturation vapor pressure of pure component ¢
reference pressure

number of phases

Poynting correction of component ¢

relative van der Waals surface UNIQUAC equa-
tion of component %

caloric factor (thermal state) of the feed

heat

dimensionless concentration change

heat flow

relative van der Waals volume UNIQUAC equa-
tion of component %

molar latent heat of vaporization

ideal gas constant R = 8314 J/(kmol - K)
reactor effluent flow rate

external reboil (boilup) ratio

NOMENCLATURE

kmol/s
kmol
kmol/s

kg
kmol
kg /kmol
kmol/s

kmol
kmol/s

Pa
Pa
Pa
Pa

J /kmol
J/(kmol - K)
kmol/s



NOMENCLATURE

HH“CQCQCQ-CQ%%EU

<.

(=)

< q e
£

Yi
Yi

external reflux ratio

molar entropy

plate thickness

length of packing channel side

molar flow rate after decanter, side product
entropy

correction factor (Example 2.2)

time

temperature

boiling temperature of pure component ¢
superficial velocity

binary parameter UNIQUAC equation of com-
ponent % and j

internal energy

molar volume

partial molar volume of component %

molar mixing volume

volume

volumetric flow rate

volume fraction/mole fraction UNIQUAC equa-
tion of component ¢

mass (weight) fraction of component ¢

mass fraction of component 7 in gas phase
mass fraction of component ¢ in liquid phase
work

mole fraction liquid phase of component ¢
transformed mole fraction complete chemical
reaction of component ¢

function

transformed concentration of component ¢ in
reactive systems

mole fraction vapor phase of component %
estimated mole fraction vapor phase of compo-
nent ¢ (Example 2.3)

number of interacting molecules UNIQUAC
equation

J/uqﬂgl.K)

kmol/s
J/K

m? /kmol
m? /kmol
m? /kmol

m? /s

kg/kg
kg/kg



xviii NOMENCLATURE

number of particles or channels -
locus, dimensionless tray length -

Zi mole fraction two-phase mixture of compo- -
nent ¢

Z compressibility factor -

Zy number of independent state variables (degrees -
of freedom)

Greek Symbols

@ discharge coefficient -

a;(T) temperature function cubic equation of compo- -
nent ¢

Qi non-randomness factor NRTL equation of com- -
ponent % and j

5 relative volatility (separation factor) of compo- -
nent ¢ and j

154 mass transfer coefficient m/s

YL liquid-phase distribution -

A difference

Ap pressure drop Pa

Ap density difference kg/m?3

ASye sum of squares for g J?2 /kmol?

AN binary parameter Wilson equation of compo- -
nent ¢ and j

€ porosity, voidage, relative content -

¢ drag coeficient, orifice coeflicient -

> friction factor in Ergun equation -

n dynamic viscosity Pa-s

U contact angle °

m pole on the enthalpy—concentration diagram J/mol

m circle constant 7 = 3.14159 .

Ayj binary parameter Wilson equation of compo- .
nent ¢ and j

i chemical potential of component ¢ J /kmol

0 density kg/m?

o surface tension kg/s?



NOMENCLATURE

.
7L
¥
Pi
?;
]
Pp
Vi
Vi®
v;
w;
7}j

Subscripts

a
ac
azeo

contact time S
liquid residence time in the two-phase layer S
relative free area of a tray -
fugacity coefficient of component ¢ -
correction factor of component ¢ -
Underwood parameter -
flooding factor -
activity coefficient of component ¢ -
activity coeflicient at infinite dilution of compo- -
nent ¢

stoichiometric coefficient of component ¢ -
acentric factor of component ¢ -
binary parameter NRTL and UNIQUAC equa- -
tion of component ¢ and j

low boiler

active

azeotrope

high boiler (binary mixture) or intermediate boiler (ternary mix-
ture)

bottom product

high boiler (ternary mixture) or intermediate boiler (quaternary
mixture)

critical state variable

column

continuous phase

bubble cap

clearance under downcomer
critical

condenser, cooling

high boiler quaternary mixture
dispersed phase

downcomer

dry

overhead product (distillate)
end

Xix
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mazr
min

U n ® ® &y 3 3 g

N

entrainer
equivalent
entrainment
experimental value
froth

flooding

feed

Froude number

gas

hole

hydraulic

heating

irrigated

stage number
number of components
laminar

liquid

intermediate

mean

maximum
minimum

number of plates or steps
nominal

openings

overflow

overall gas phase
overall liquid phase
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1
Introduction

Distillation is a widely used method for separating liquid mixtures into their compo-
nents. It is the workhorse for separation in the petroleum, petrochemical, chemical,
and related industries. The consensus is that it will continue to dominate these in-
dustries in the future, too.

1.1 Principle of Distillation Separation

Distillation utilizes a very simple separation principle: an intimate contact is created
between the starting mixture and a second phase in order to enhance an effective
mass transfer between these two phases. The thermodynamic conditions are chosen
so that primarily the component to be separated from the feed mixture enters the
second phase. The phases are subsequently separated into two single phases with
different compositions.

Three steps are always involved in the implementation of this separation principle;
see Figure 1.1:

Step 1: Step 2: Step 3:
Generation ofa Mass Separation of
two-phase system transfer the phases

Figure 1.1 General principle of fractionation in thermal separation technology. The
essential mechanism is the mass transfer between two phases.
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* Generation of a two-phase system
* Mass transfer across the interface
* Separation of the phases

Many separation techniques utilize this very effective separation principle. Absorp-
tion, desorption, evaporation, condensation, and distillation involve a gaseous and a
liquid phase. Solvent extraction uses two liquid phases. Separation techniques that
utilize a fluid phase and a solid phase include adsorption, crystallization, drying, and
leaching. In most of these separation processes, the necessary two-phase system is
generated by adding an auxiliary phase to the feed mixture. The substances to be
separated collect in diluted form in the auxiliary agent. In distillation, however, the
second phase is created by partial vaporization of the liquid feed. Hence, the use of
an auxiliary substance (often called a mass separating agent), which requires costly
recovery, is avoided, and the components to be separated are recovered as relatively
pure substances. Indeed, distillation requires only energy in the form of heat, which
can subsequently be easily removed from the system. This is an important advantage
of distillation.

In practice, distillation requires intimate contacting of vapor and liquid under such
conditions that the desired components of the liquid enter the vapor phase. Gov-
erning these conditions is the vapor-liquid equilibrium. Many activities on the art
of distillation are devoted to find out how closely the vapor-liquid equilibrium can
be approached. In any case, it is necessary to separate the liquid and vapor phases
afterward.

The vapor and liquid are brought into intimate contact by countercurrent or cross-
current flow, and mass exchange occurs because the two phases are not in thermody-
namic equilibrium. The phases produced during distillation are formed by evapora-
tion and condensation of the initial mixture. The separation process can be controlled
only by the heat supply.

The basis for planning distillation processes is the knowledge of the vapor-liquid
equilibrium. As stated earlier, the separation depends primarily on the concentration
of the individual substances in the vapor and liquid phases. In this book, principles of
vapor-liquid equilibrium are discussed in Chapter 2, with special attention given to
the equilibrium of ternary and multicomponent mixtures. Thermodynamic analysis
of distillation and rectification is essential to establish the optimal conditions for mass
transfer. The decisive factor is the driving force for mass transfer, i.e. the difference
between the actual concentrations of the substances and their equilibrium concentra-
tions. Operating conditions have to ensure that this difference is sufficiently large.
Appropriate relationships and methods for determining mass transfer are described
in Chapters 3 — 6. Examples of industrially important separation processes and en-
ergy requirement are discussed in Chapters 7 and 8, respectively. Since separation is
achieved by bringing the two phases into intimate contact, in practice, the problems
created by multiphase flow and mass transfer between phases must be confronted.
The state of the art of multiphase flow is presently rather poor. Two-phase and multi-
phase flow is an underdeveloped field of fluid mechanics. As a result, just empirical
approaches are presently available for practical equipment design, as described in
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Chapter 9. Chapter 10 deals with the control of single distillation columns and of
distillation processes.

1.2 Historical

Although several authors (e.g. KRELL 1958) support the view that the art of distil-
lation has been well known to ancient Greece, this opinion has never been proven
by historians. Ancient philosophers have been, however, very close by the correct
understanding of the principles of distillation, for instance, at the mere philosophical
debate on the circulation of water in nature. Aristoteles (384-322 BCE) writes in his
Meteorologia: "... several authors support a similar view on the origin of rivers. The
water elevated by the sun and as rain condensed humidity collects ...". In the same
book, he writes later on: "That evaporated sea water is drinkable and, after condensa-
tion, does not become sea water again, that can we state from experience." However,
no practical applications of these theoretical considerations have been reported, and
no device for performing the process of distillation is described in ancient literature.
Ancient Egypt and ancient China as well had probably no knowledge of the art of
distillation. ForBEs 1970 agrees with several other authors (e.g. UNDERWoOOD 1935)
in the opinion that the art of distillation has been invented and pioneered in use in
Alexandria, Egypt, in the first century CE.

Figure 1.2 Distillation and rectification equipment taken from The Alchemy of Andreas
Libavius [LiBavius 1964]: (a) boiler, (b) oven, (c) coolers, (d) receiver, (e) headpiece, and
(f) receiver.

In the following centuries the knowledge of distillation spread widely and was used
around the eleventh century for the first time in northern Italy to produce alcoholic
beverages. The development of distillation equipment has been influenced tremen-
dously by this special field of application. An interesting distillation equipment, de-
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scribed in the book The Alchemy of Andreas Libavius, published in 1597, is illustrated
in Figure 1.2 [LiBavius 1964]; it was used for the batch distillation of alcohol.

Heat is supplied to the liquid contents of the boiler (a), built into the oven (b), and
the vapor formed was allowed to condense in two coolers (c). Cooling water was
changed periodically. The only visible process was the dripping of the condensate
into the receiver (d). This separation technique was named after the Latin word des-
tillare, which means "dripping or trickling down". Even in early times, it was well
known that a higher alcohol content could be reached by using a second distillation
step. In the apparatus shown in Figure 1.2, two distillations could be carried out si-
multaneously. Condensate from the first distillation is returned to the headpiece (e),
the so-called rectificatorium, which is heated with vapor rising from the boiler. The
vapor produced in the headpiece is condensed in the two coolers (c). A liquid with
a higher alcohol content is then collected in a second receiver (f). The term rectifi-
cation is derived from this process, which, especially in Europe, is used to describe
multistage distillation. The Latin words recte facere mean "to rectify or improve".
Indeed, up to this day, term rectification refers to a process by which a further con-
centration change is achieved after the first evaporation step.

From such devices distillation columns have been finally developed during the
following centuries. Many authors (e.g. UNDERwOOD 1935; ForBEs 1970) agree
in giving the credit of invention to the Frenchman Cellier-Blumenthal [CELLIER-
BrumenTHAL 1818]. Interesting are the circumstances that enhanced the develop-
ment of improved distillation devices.

In 1807 Napoleon organized a blockade against England, which answered by a
blockade against the European continent. In consequence, goods from the oversea
colonies no longer reached Europe, which resulted in shortages of sugarcane, among
many other goods. It was well known that sugar can be produced from beets grown
in Europe as well [ULLMANN 1969]. However, the brown sugar from beets was much
less attractive to the noblemen than the white sugar from canes. Napoleon opened
a competition for producing white sugar from beets by setting a very high prize.
A favorable process was extraction of sugar from the beets by alcohol instead of
water — a process proposed again in recent years [ULLMaNN 1969]. The alcohol was
recycled within this process. However, after longer periods of operation time, the
alcohol needed purification since some water accumulated in the alcohol. Cellier-
Blumenthal developed the first distillation column (a tray column) for this process.

In the nineteenth and twentieth centuries, the art of distillation developed rapidly
prompted by the oil and petrochemical industry [DeiBELE 1992] and by the chemi-
cal and pharmaceutical industry [Fair 1984]. The present importance of distillation
is documented by the fact that approximately 40000 distillation columns are under
operation in the United States [HuMPHREY AND SEIBERT 1992]. These columns con-
sume about 3 % of the total energy requirement of the United States [GMEHLING
ET AL. 1994].
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