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Foreword

The rise of piezoelectric materials as sensors and actuators in engineering systems
got started around 1980 and began to make an impact in the world of vibrations
about five years after that. Subsequently, it started to explode into the 90s with top-
ics such shunt damping, active control, structural health monitoring and energy
harvesting. As a result, the need to document the fundamentals and intricacies
of modeling piezoelectric materials in the context of vibrations in book form will
well serve a variation of communities. The presentation here puts the topic on a
firm mathematical footing.

The authors are uniquely qualified to provide a sophisticated analytical frame-
work with an eye for applications. Professor Kurdila has nearly four decades of
experience in modeling of multi-physics systems. He authored two other books,
one on structural dynamics, and several research monographs. Professor Tarazaga
is an experienced creator of piezoelectric solutions to vibration and control prob-
lems. Both are well published in their respective research areas of research. Their
combined expertise in researching vibratory systems integrated with piezoelectric
materials enables this complete and detailed book on the topic. This allows for a
formal theoretical background which will enable future research.

Daniel J. Inman
Ann Arbor, Michigan
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Preface

The goal of this book is to provide a self-contained, comprehensive, and
introductory account of the modern theory of vibrations of linearly piezoelectric
structural systems. While the piezoelectric effect was first investigated by the
Curies in the 1880s, and systematically investigated in the field of acoustics and
the development of sonar during the First World War, it is only much more
recently that we have seen the widespread interest in mechatronic systems that
feature piezoelectric sensors and actuators. Many of the early, now classical,
texts present piezoelectricity from the viewpoint of a material scientist such as in
[22] or [53]. Others are difficult, if not impossible, to obtain since they are out of
print. Older editions of the excellent text [20] are currently selling for prices in
excess of $600 on sites such as Amazon.com. Moreover, it is also quite difficult
to find treatments of piezoelectricity that systematically cover all the relevant
background material from first principles in continuum mechanics, continuum
electrodynamics, or variational calculus that are necessary for a comprehensive
introduction to vibrations of piezoelectric structures. The authors know of no
text that assimilates all this requisite supporting material into one source. One
text may give an excellent overview of piezoelectric constitutive laws, but neglect
to discuss variational methods. Another may cover variational methods for
piezoelectric systems, but fail to review the first principles of electrodynamics,
and so forth. A large, substantive literature on various aspects of piezoelectricity
has evolved over the past few years in archival journal articles, but much of this
material has never been systematically represented in a single text.

This book has evolved from the course notes that the authors have generated
while offering courses in active materials, smart systems, and piezoelectric
materials over the past decade at various research universities. Most recently, the
authors have taught active materials and smart structures courses that feature
piezoelectricity at Virginia Tech to a diverse collection of first year graduate
students. So much time was dedicated to the particular systems that include
piezoelectric components that this textbook emerged. The backgrounds of the
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xiv Preface

students in our classes have varied dramatically. Many students have not had a
graduate class in vibrations, continuum mechanics, advanced strength of mate-
rials, nor electrodynamics. For this reason, the notes that evolved into this book
make every effort to be self-contained. Admittedly, this text covers in one chapter
what other courses may cover over one or two semesters of dedicated study. As
an example, Chapter 3 reviews the fundamentals of continuum mechanics for
this text, a topic that is covered in other graduate classes at an introductory level
during a full semester. So, while the presentation attempts to be comprehensive,
the pace is sometimes brisk.

While preparing this text, we have tried to structure the material so that it
is presented at the senior undergraduate or first year graduate student level. It is
intended that this text provide the student with a good introduction to the topic,
one that will serve them well when they seek to pursue more advanced topics in
other texts or in their research. For example, this text can serve as a introduction
to the fundamentals of modeling piezoelectric systems, and it can prepare the
student specializing in energy harvesting when they consult a more advanced
text such as [21].

This text begins in Chapter 2 with a review of the essential mathematical tools
that are used frequently throughout the book. Topics covered include frames,
coordinate systems, bases, vectors, tensors, introductory crystallography, and
symmetry. Chapter 3 then gives a fundamental summary of topics from contin-
uum mechanics. The stress vector and tensor is defined, Cauchy’s Principle and
the equilibrium equations are derived. The strain tensor is defined, and an intro-
duction to constitutive laws for linearly elastic materials is also covered in this
chapter. Chapter 4 provides the student the required introduction to continuum
electrodynamics that is essential in building the theory of linear piezoelectricity
in subsequent chapters. The definitions of charge, current, electric field, electric
displacement, and magnetic field are introduced, and then Maxwell’s equations
of electromagnetism are studied.

Linear piezoelectricity is covered in Chapter 5. The discussion begins by intro-
ducing a physical example of the piezoelectric effect in one spatial example, and
subsequently giving a generalization of the phenomenon in terms of piezoelectric
constitutive laws. The initial-boundary value problem of linear piezoelectricity
is then derived from the analysis of Maxwell’s equations and principles of con-
tinuum mechanics. While the equations governing any particular piezoelectric
structure can be derived in principle from the initial-boundary value problem of
linear piezoelectricity, it is often possible and convenient to derive them directly
for a problem at hand. Chapter 6 discusses the application of Newton’s equations
of motion for several prototypical piezoelectric composite structural systems.
Chapter 7 provides a detailed account of how variational techniques can be used,
instead of Newton’s method, for many linearly piezoelectric structures. In some
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Preface xv

cases the variational approach can be much more expedient in deriving the
governing equations. This chapter starts with a review of variational methods and
Hamilton’s Principle for linearly elastic structures. The approach is then extended
by formulating Hamilton’s Principle for Piezoelectric Systems and Hamilton’s
Principle for Electromechanical Systems. Several examples are considered,
including the piezoelectrically actuated rod and Bernoulli–Euler beam, as well as
the electromechanical systems that result when these structures are connected to
ideal passive electrical networks. The book finishes in Chapter 8 with a discussion
of approximation methods. Both modal approximations and finite element
methods are discussed. Numerous example simulations are described in the final
chapter, both for the actuator equation alone and for systems that couple the
actuator and sensor equations.

June, 2017 Andrew J. Kurdila
Pablo A. Tarazaga
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1

Introduction

1.1 The Piezoelectric Effect

In the most general terms, a material is piezoelectric if it transforms electrical into
mechanical energy, and vice versa, in a reversible or lossless process. This trans-
formation is evident at a macroscopic scale in what are commonly known as the
direct and converse piezoelectric effects. The direct piezoelectric effect refers to the
ability of a material to transform mechanical deformations into electrical charge.
Equivalently, application of mechanical stress to a piezoelectric specimen induces
flow of electricity in the direct piezoelectric effect. The converse piezoelectric effect
describes the process by which the application of an electrical potential difference
across a specimen results in its deformation. The converse effect can also be viewed
as how the application of an external electric field induces mechanical stress in the
specimen.

While the brothers Pierre and Jacques Curie discovered piezoelectricity in 1880,
much the early impetus motivating its study can be attributed to the demands
for submarine countermeasures that evolved during World War I. An excellent
and concise history, before, during, and after World War I, can be found in [43].
With the increasing military interest in detecting submarines by their acoustic
signatures during World War I, early research often studied naval applications,
and specifically sonar. Paul Langevin and Walter Cady had pivotal roles during
these early years. Langevin constructed ultrasonic transducers with quartz and
steel composites. Shortly thereafter, the use of piezoelectric quartz oscillators
became prevalent in ultrasound applications and broadcasting. The research
by W.G. Cady was crucial in determining how to employ quartz resonators to
stabilize high frequency electrical circuits.

Vibrations of Linear Piezostructures, First Edition. Andrew J. Kurdila and Pablo A. Tarazaga.
© 2021 John Wiley & Sons Ltd.
This Work is a co-publication between John Wiley & Sons Ltd and ASME Press.
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2 1 Introduction

A number of naturally occurring crystalline materials including Rochelle salt,
quartz, topaz, tourmaline, and cane sugar exhibit piezoelectric effects. These
materials were studied methodically in the early investigations of piezoelectricity.
Following World War II, with its high demand for quartz plates, research and
development of techniques to synthesize piezoelectric crystalline materials flour-
ished. These efforts have resulted in a wide variety of synthetic piezoelectrics, and
materials science research into specialized piezoelectrics continues to this day.

1.1.1 Ferroelectric Piezoelectrics

Perhaps one of the most important classes of piezoelectric materials that have
become popular over the past few decades are the ferroelectric dielectrics. A ferro-
electric can have coupling between the mechanical and electrical response that is
several times a large as that in natural piezoelectrics. Ferroelectrics include mate-
rials such as barium titanate and lead zirconate titanate, and their unit cells are
depicted in Figure 1.1. When the centers of positive and negative charge in a unit
cell of a crystalline material do not coincide, the material is said to be polar or
dielectric. An electric dipole moment p is a vector that points from the center
of negative charge to the center of positive charge, and its magnitude is equal to|p| = q ⋅ 𝛿where q is the magnitude of the charge at the centers and 𝛿 is the separa-
tion between the centers. The limiting volumetric density of dipole moments is the
polarization vector P. Intuitively we think of the polarization vector P as measur-
ing the asymmetry of the internal electric field of the piezoelectric crystal lattice.
Ferroelectrics exhibit spontaneous electric polarization that can be reversed by the
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Figure 1.1 Barium titanate and lead zirconate titanate. (Left) Barium titanate BaTiO3

with Ba+2 cation at the center, O−2 anions on the faces, and Ti+4 cations at the corners of
the unit cell. (Right) Lead zircanate titanate PbZr

𝛼
Ti(1−𝛼)O3 with Ti+4 or Zr+4 cation at the

center, O−2 anions on the faces, and Pb+2 cations at the corners of the unit cell.


