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Preface

Anton Alekseev, Edward Frenkel, Marc Rosso,

Ben Webster, and Milen Yakimov

It is a pleasure to present this volume dedicated to Nicolai Reshetikhin, mathemati-
cian and friend we admire. Kolya, as he is affectionately known, has made a number
of groundbreaking contributions in representation theory, integrable systems, and
topology. His ideas have profoundly influenced the evolution of these fields in the
past 40 years and will certainly continue to do so for many years to come. This
book is a collection of chapters by distinguished mathematicians and physicists,
many of them Kolya’s students and collaborators, who develop further the themes
of his research. Some of these chapters are based on the talks given by their authors
at a conference in honor of Kolya’s 60th birthday held at CIRM, Luminy, in June
2018.

In this preface, we present a brief summary of some of Kolya’s discoveries.

1 Quantum Groups

Kolya’s scientific career began in St. Petersburg, then known as Leningrad, in the
late 1970s. He was a member of the famous Leningrad School led by Ludvig
Faddev. Kolya joined the Leningrad School at an opportune moment, when Faddeev,
Sklyanin, and Takhtajan were developing the quantum inverse scattering method
and applying it to statistical models such as the Heisenberg XYZ spin chain [51,
52]. Their work, synthesizing the classical inverse scattering method used in soliton
theory and the results of Bethe, Baxter, and others on the exactly solved models
of statistical mechanics, heralded a revolution in quantum integrable systems. New
powerful algebraic structures were emerging, including what came to be known as
quantum groups.

vii
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Kolya was at the forefront of this research from the start. In fact, one of his first
scientific papers [32], joint with Kulish, introduced the first quantum group, now
known as Uq(sl2), as the algebraic structure behind the higher spin generalization
of the quantum models such as the sine-Gordon and the Heisenberg XXZ spin
chain. Soon after that Sklyanin endowed the algebra Uq(sl2) with a Hopf algebra
structure [55], and just a few years later Drinfeld [12] and Jimbo [24] generalized
the construction from sl2 to an arbitrary Kac–Moody algebra. Thus, quantum groups
were born.

Since then, they have become as ubiquitous as Lie groups and Lie algebras in
many areas of mathematics and mathematical physics, far beyond the theory of
integrable systems where they originated.

Kolya played a big role in these developments. His works, such as the influential
papers [13] with Faddeev and Takhtajan and [44] with Semenov-Tian-Shansky,
elucidated the algebraic structure of quantum groups. And he also pioneered
many exciting applications of quantum groups in other fields: integrable systems,
representation theory, combinatorics, and topology. We discuss some of these works
in the next sections.

After obtaining his doctorate degree in 1984, Kolya joined the Leningrad Branch
of the Steklov Institute of the Academy of Sciences, where he worked for 5
years. In 1989, he came to Harvard University as a winner of the Harvard Prize
Fellowship. Two years later, he joined the faculty at University of California,
Berkeley. In 2021, after 30 years of service, he retired from Berkeley and joined
the Yau Center for Mathematical Sciences at Tsinghua University, Beijing. Kolya
has also held numerous visiting positions, such as Niels Bohr Visiting Professorship
at the Aarhus University and Humboldt Visiting Professorship at the Technical
University of Berlin and the Max Planck Institute for Gravitational Physics. He is
currently affiliated with the KdV Institute of the University of Amsterdam and the
St. Petersburg State University.

2 Quantum Integrable Systems

The quantum inverse scattering method was initially applied to models related to the
Lie algebra sl2, such as the XXX and XXZ model. As far as we know, Kolya was
the first to systematically extend this method to quantum models associated to other
Lie algebras. In modern language, these models correspond to finite-dimensional
representations of the Yangians Y (g), where g is a simple Lie algebra, and quantum
affine algebras Uq(̂g), where ĝ is an affine Kac–Moody algebra (including the
twisted ones). The commuting Hamiltonians acting on these representations come
from a family of commuting transfer-matrices in these algebras. Thus, one gets a
vast collection of quantum integrable systems associated to these Lie algebras.

In the case the XXX and XXZ models, which correspond to Y (sl2) and
Uq(̂sl2), respectively, the spectra of these Hamiltonians can be computed using
the algebraic Bethe Ansatz method, introduced by Bethe and developed further by
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the Leningrad School. The problem of generalizing this method to the integrable
systems associated to other Lie algebras is highly non-trivial. In a series of papers
[36–38], Kolya proposed an analogue of this method, which he dubbed analytic
Bethe Ansatz, for the quantum integrable systems associated to the Yangians and
quantum affine algebras. A crucial role in it was played by an elegant generalization
of the famous Baxter relations observed in the XXX and XXZ model.

The resulting Bethe Ansatz equations [38, 50] have been widely used in the
subject, even though the method itself remained something of a mystery. It was
finally put on a firm foundation with the advent of the theory of q-characters
developed by Kolya and Edward Frenkel [20] (see Sect. 4 below). Using this theory,
Frenkel and Hernandez [17] proved the generalized Baxter relations and gained new
insights into the analytic Bethe Ansatz.

The quantum integrable systems associated to Uq(̂g) have a limit, in which the
symmetry algebra becomes the affine Kac–Moody algebra ĝ itself. Together with
Feigin and E. Frenkel, Kolya showed how to obtain the quantum Hamiltonians of
the corresponding integrable system, called the Gaudin model, from the center of
the completed enveloping algebra of ĝ at the critical level [16]. Moreover, they were
able to describe the spectrum of the Hamiltonians of the Gaudin model in terms
of the geometric objects called opers. An interesting aspect of this construction is
that the opers are associated not to g but to the Langlands dual Lie algebra Lg of
g. The appearance of the Langlands duality here is important. It manifests a deep
connection between the Gaudin model (and its generalizations) and the geometric
Langlands correspondence developed by Beilinson and Drinfeld [3]. As far as we
know, the paper [16] was the first case study of the Langlands duality in quantum
integrable systems. Since then, dualities of this kind have been extensively studied
and connected to various dualities of quantum field theories.

Around the same time, together with Varchenko, Kolya established a link
between the Gaudin model and the critical level limit of the solutions of the
Knizhnik–Zamolodchikov (KZ) equations [49].

Closely related to this topic is another groundbreaking work [22], in which Kolya
and Igor Frenkel introduced the celebrated qKZ equations (in a special case, this
equation was also introduced by Fedor Smirnov, another alumnus of the Leningrad
School [56]). The qKZ equations have roughly the same relationship with the
quantum integrable models associated toUq(̂g) as the KZ equations with the Gaudin
models. In particular, the critical level limits of the solutions of the qKZ equations
give rise to the eigenvectors of the quantum integrable systems associated to Uq(̂g),
see [40]. Together with Jasper Stokman and Bart Vlaar, Kolya explored similar
structures for the so-called boundary qKZ equations [45, 46].

3 Topology

One of the most striking and influential applications of quantum groups is low-
dimensional topology. In the mid-1980s, Vaughan Jones and others defined stunning
new invariants of knots—most famously, the Jones polynomial, HOMFLYPT
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polynomial, and Kauffman polynomial. In a groundbreaking work [39, 57], Kolya
and Vladmir Turaev showed that these invariants were special cases of a much more
general, categorical construction that attached a knot invariant to each representation
of the quantum group associated to a simple Lie algebra. These are now called
Reshetikhin–Turaev invariants.

This work supplied an enormous family of new powerful invariants, and its
novel categorical approach opened the door to defining invariants of 3-manifolds.
This was done by Kolya with Turaev in [48]. Among other things, this gave a
mathematical interpretation of the invariants that Edward Witten had proposed
earlier in the context of the Chern-Simons theory [58] (from Witten’s perspective,
the invariant arises as the partition function of the Chern-Simons theory on
the corresponding 3-manifold). These Witten–Reshetikhin–Turaev invariants have
had tremendous influence in 3-manifold theory, topological quantum field theory
(including topological quantum computing), tensor categories, and beyond. This is
one of Kolya’s best known works.

Since then, Kolya continued making new strides in topology, making new
advances such as defining new invariants of links and tangles in 3-manifolds with the
additional datum of a flat connection in the complement [25], the recursion formulas
for knot invariants [10], and the extension of the Reshetikhin–Turaev invariants to
braided categories with weaker properties than the ribbon property usually required
[4].

4 Representation Theory and Combinatorics

Kolya has made a number of important contributions to representation theory of
quantum groups. For example, in [29], he and Anatol Kirillov introduced a family
of what came to be known as Kirillov–Reshetikhin modules over the Yangians
Y (g). These modules have been used extensively in representation theory and
combinatorics. Another important result, a bijection between semi-standard Young
tableaux and rigged configurations, was obtained by Kolya with Kerov and Kirillov
from the study of asymptotic completeness of the Bethe Ansatz equations [26]. This
led Kolya and Kirillov to new formulas for the Kostka polynomials [27, 28].

Another direction concerns deformations of W-algebras. According to the
results of the paper [16] mentioned earlier, quantum Hamiltonians of the Gaudin
model could be obtained from the center of the enveloping algebra of ĝ at the critical
level. The center, however, is not just a commutative algebra. It also has a Poisson
algebra structure due to the possibility of deforming the level away from the critical
level. It is known from [14] that this Poisson algebra is isomorphic to the classical
W-algebra associated to Lg (and this is in fact the root of the Langlands duality
mentioned earlier). Now consider the Uq(̂g)-analogue of the XXZ model, which is
a q-deformation of the Gaudin model. It turns out that the quantum Hamiltonians
of this model may also be obtained from the center at the critical level, but now of
the quantum affine algebra Uq(̂g). And this q-deformed center also has a Poisson
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algebra structure. This way, Kolya and E. Frenkel discovered in [18] q-deformations
of the classical W-algebras, in particular, a q-deformation of the classical Virasoro
algebra (corresponding to g = sl2). Together with Semenov-Tian-Shansky, they
were able to obtain this Poisson algebra by means of a q-deformed Drinfeld–
Sokolov reduction [21] (this construction was generalized to other Lie algebras in
[53]).

Two years later, Frenkel and Reshetikhin quantized these Poisson algebras [19].
Namely, they introduced the deformed W-algebra Wq,t (g) for an arbitrary simple
Lie algebra g (in the case of g = sln this algebra was constructed earlier in [2,
15, 54]). The deformed W-algebra depends on two parameters, q and t , and one
recovers the center of Uq(̂g) at the critical level in the limit t → 1. Other limits also
give rise to interesting algebras. Frenkel and Reshetikhin used the t → 1 limit in
[20] to introduce the theory of q-characters of finite-dimensional representations of
quantum affine algebras. The q-characters proved to be a powerful tool in the study
of these representations and beyond.

Recently, the deformed W-algebras and related structures appeared in the study
of four-dimensional gauge theories associated to Nakajima quiver varieties [1, 30].

5 Poisson Algebras, BV Theory, and Quantization

Poisson geometry, quantization, and Batalin–Vilkovisky (BV) structures are closely
related topics. Their connection was established in the work of Kontsevich on
quantization of Poisson manifolds using Feynman path integral [31] and in the work
of Cattaneo–Felder [5] which explained the Feynman rules used by Kontsevich in
terms of a BV structure of the Poisson σ -model.

Kolya’s interest in the topic dates back to his joint work with Takhtajan [47],
where they gave a simple formula for quantization of Kähler manifolds in terms
of Feynman graphs. Recently, in collaboration with Alberto Cattaneo and Pavel
Mnev, Kolya put forward an ambitious Cattaneo–Mnev–Reshetikhin program which
bridges the BV quantization and low dimensional topology. More precisely, the
aim of this program is to upgrade low dimensional algebraic topology to quantum
algebraic topology in order to define and compute quantum invariants of manifolds
in dimensions 2, 3, and 4 by gluing them from simple pieces (e.g., tetrahedra or
cubes).

This program is still under development, but significant progress has already been
achieved. The first important result is a better formulation of quantum field theory
(QFT) on manifolds with boundary. While BV formalism is the standard tool of
treating symmetries in the bulk, the Batalin–Fradkin–Vilkovisky formalism (BFV)
is needed to understand the symmetry at the boundary. The combined BV-BFV
theory was stated at the classical level in [6], and the quantum version was addressed
in [7]. Interesting partial results include applications to integrable systems [8] and
an example of a BF theory verifying Atiyah–Segal type gluing axioms [9].
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6 Other Works

The scope of Kolya’s research has been extremely broad, and he has made
substantial contributions in numerous directions in addition to those described in
the previous sections.

Throughout his career, he has actively worked on the semiclassical structures
behind quantum groups. He has made key contributions to the geometry of Poisson–
Lie groups and the dynamics of related integrable systems, such as the ones in [23]
on the symplectic foliation of the standard Poisson–Lie groups and the associated
Coxeter–Toda lattices. He introduced powerful representation theoretic methods
to study degenerate integrability on non-Coxeter symplectic leaves [42] and spin
Calogero–Moser integrable systems [43].

Kolya has done extensive research on quantum groups at roots of unity. In his solo
paper [41], he constructed quasitriangular structures on the unrestricted quantum
groups at roots of unity. In a joint paper with De Concini et al. [11], he described the
tensor product structure of the finite-dimensional representations of these algebras
and developed a general axiomatic setting of Cayley–Hamilton Hopf algebras.

He was also very much involved in the study of random matrices, random
processes, and random surfaces. Jointly with Andrei Okounkov, he obtained integral

Reshetikhin’s mathematical descendants at the Luminy conference. From left to right: David
Keating, Noah Snyder, Sevak Mkrtchyan, Qingtao Chen, Aaron Brookner, Alexander Shapiro,
Ben Webster, Peter Tingley, Nicolai Reshetikhin, Theo Johnson-Freyd, Olya Mandelshtam, Harold
Williams, Kurt Trampel, Meredith Shea, Kent Vashaw, Raeez Lorgat, Gus Schrader, and Kai Chieh
Chen
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representations of the correlation functions of the Schur process and used them
to obtain explicit formulas for the asymptotic correlation functions for 3D Young
diagrams in the bulk limit [33]. This paper inspired much subsequent research on
determinantal processes and their asymptotic behavior. In another paper [34], Kolya
and Okounkov carried out a detailed study of random skew 3D partitions and their
various asymptotics expressed in terms of Airy and Pearcey kernels. These ideas led
to a remarkable duality that was proposed by Kolya, Okounkov, and Vafa between
the topological A-model in string theory and a classical statistical mechanical model
of crystal melting [35].

Kolya has brought up many outstanding graduate students. According to the
Mathematics Genealogy Project, as of the summer of 2020, Kolya had 20 students
and 33 descendants. He has said that the opportunity to work with graduate students
is one of the joys of being in academia.

A conference to mark Kolya’s 60th birthday took place at Centre International
de Rencontres Mathématiques, Luminy, in June 2018. It was funded by the National
Science Foundation grant DMS-1803265 and the European Research Council
project MODFLAT.

In conclusion, we wish Kolya many more years of health, productivity, success,
and inspiration.

Genève 4, Switzerland Anton Alekseev

Berkeley, CA, USA Edward Frenkel

Paris Cedex 13, France Marc Rosso

Waterloo, ON, USA Ben Webster

Boston, MA, USA Milen Yakimov
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To Nikolai Reshetikhin on his 60th birthday with admiration.

Abstract We present new examples of finite-dimensional Nichols algebras over
fields of positive characteristic. The corresponding braided vector spaces are not of
diagonal type, admit a realization as Yetter-Drinfeld modules over finite abelian
groups, and are analogous to braidings over fields of characteristic zero whose
Nichols algebras have finite Gelfand-Kirillov dimension.

We obtain new examples of finite-dimensional pointed Hopf algebras by
bosonization with group algebras of suitable finite abelian groups.
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1 Introduction

1.1 Overview

This is a contribution to the classification of finite-dimensional pointed Hopf
algebras in positive characteristic. Beyond the classical theme of cocommutative
Hopf algebras—see, for instance, [CF] and the references therein—the problem
was considered in several recent works [CLW, HW, NW, NWW1, NWW2, W].
As in various of these papers, the focus of our work is on finite-dimensional
Nichols algebras over finite abelian groups. Let k be an algebraically closed field
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of characteristic p ≥ 0. When p = 0, such Nichols algebras are necessarily of
diagonal type and their classification was achieved in [H]. When p > 0, finite-
dimensional Nichols algebras of diagonal type of rank 2 and 3 were classified in
[HW, W]. Notice that there are more examples than in characteristic 0: indeed, 1 in
the diagonal is no longer excluded.

Example 1.1 Assume that p > 0. Given θ ∈ N, we set Iθ = {1, 2, . . . , θ}. Let q =
(qij )i,j∈Iθ ∈ k

θ×θ be a matrix with qii = 1 = qij qji for all i �= j ∈ Iθ . Let(V , c) be
a braided vector space of dimension θ , of diagonal type with matrix q with respect
to a basis (xi)i∈Iθ , that is c : V ⊗ V → V ⊗ V is given by c(xi ⊗ xj ) = qij xj ⊗ xi .
Then the corresponding Nichols algebra is

B(V ) = sq(V ) := T (V )/〈xpi , i ∈ Iθ , xixj − qij xj xi, i < j ∈ Iθ 〉.

Clearly, dim sq(V ) = pθ .

Furthermore, if p > 0, then there are finite-dimensional Nichols algebras over
abelian groups that are not of diagonal type, a remarkable example being the Jordan
plane that has dimension p2 [CLW] (it gives rise to pointed Hopf algebras of order
p3, see [NW]), in contrast with characteristic 0, where it has Gelfand-Kirillov
dimension 2. In fact, Nichols algebras over abelian groups with finite Gelfand-
Kirillov dimension and assuming p = 0 were the subject of the recent papers
[AAH1, AAH2]. Succinctly, the main relevant results in loc. cit. are the following:

• It was conjectured in [AAH1] that finite GK-dimensional Nichols algebras of
diagonal type have arithmetic root system; the conjecture is true in rank 2 and
also in affine Cartan type [AAH2].

• A class of braided vector spaces arising from abelian groups was introduced
in [AAH1]; they are decomposable with components being points and blocks.
Assuming the validity of the above Conjecture, the finite GK-dimensional
Nichols algebras from this class were classified in [AAH1].

Beware that there are finite GK-dimensional Nichols algebras over abelian
groups that do not belong to the referred class, see [AAH1, Appendix].

The braided vector spaces in the class alluded to above can be labeled with
flourished Dynkin diagrams. The main result of [AAH1] says that the Nichols
algebra of a braided vector space in the class has finite Gelfand-Kirillov dimension
if and only if its flourished Dynkin diagram is admissible.

From now on we assume that p > 2. (The case p = 2 has to be treated
separately.) In the present paper, we show, adapting arguments from [AAH1], that
the Nichols algebras of many braided vector spaces of admissible flourished Dynkin
diagrams are finite-dimensional. This result extends Example 1.1 and the Jordan
plane [CLW] and is reminiscent of a familiar phenomenon in Lie algebras in positive
characteristic. By bosonization we obtain many new examples of finite-dimensional
pointed Hopf algebras.
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1.2 The Main Result

To describe more precisely our main Theorem we need first to discuss blocks.
For k < � ∈ N0, we set Ik,� = {k, k + 1, . . . , �}, I� = I1,�.
A block V(ε, �), where ε ∈ k

× and � ∈ N≥2, is a braided vector space with a
basis (xi)i∈I� such that for i, j ∈ I�, 1 < j :

c(xi ⊗ x1) = εx1 ⊗ xi, c(xi ⊗ xj ) = (εxj + xj−1)⊗ xi . (1.1)

In characteristic 0, the only Nichols algebras of blocks with finite GKdim are
the Jordan plane B(V(1, 2)) and the super Jordan plane B(V(−1, 2)); both have
GKdim = 2. In our context with p > 2, the Jordan plane B(V(1, 2)) has dimension
p2 [CLW]; see Lemma 3.1. Our starting result is that the super Jordan plane
B(V(−1, 2)) has dimension 4p2, see Proposition 3.2. For simplicity a block V(ε, 2)
of dimension 2 is called an ε-block. We also prove that a block V(ε, 2) has finite-
dimensional Nichols algebra only when ε = ±1, see Proposition 3.3.

The braided vector spaces in this paper belong to the class analogous to the one
considered in [AAH1]. Briefly, (V , c) belongs to this class if

V = V1 ⊕ · · · ⊕ Vt ⊕ Vt+1 ⊕ · · · ⊕ Vθ , (1.2)

c(Vi ⊗ Vj ) = Vj ⊗ Vi, i, j ∈ Iθ , (1.3)

where Vh is a εh-block, with ε2
h = 1, for h ∈ It ; and dimVi = 1 with braiding

determined by qii ∈ k
× (we say that i is a point), i ∈ It+1,θ ; the braiding between

points i and j is given by qij ∈ k
× while the braiding between a point and

block, respectively two blocks, should have the form as in (4.1), respectively (6.1).
For convenience, we attach to (V , c) a flourished graph D with θ vertices, those
corresponding to a 1-block decorated with �, those to −1-block decorated with �
and the point i with

qii◦ . If i �= j are points, and there is an edge between them
decorated by q̃ij := qij qji when this is �= −1, or no edge if q̃ij = 1. If h is a
block and j is a point, then there is an edge between h and j decorated either by
Ghj if the interaction is weak and Ghj �= 0 is the ghost, cf. (4.2), or by (−,Ghj ) if
the interaction is mild and Ghj is the ghost; but no edge if the interaction is weak
and Ghj = 0. There are no edges between blocks and we assume that the diagram is
connected by a well-known reduction argument.

This class of braided vector spaces together with those of diagonal type does not
exhaust that of Yetter-Drinfeld modules arising from abelian groups; there are still
those containing a pale block as in [AAH1, Chapter 8]. Synthetically our main result
is the following.
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Theorem 1.2 Let V be a braided vector space as in the following list, then
dim B(V ) <∞.

(a) V has braiding (4.1) and is listed in Table 1, or
(b) V has braiding (5.1) and is listed in Table 2, or
(c) V has braiding (6.1), or
(d) V has braiding (7.1) and is listed in Table 3.

By bosonization with suitable abelian groups, we get examples of finite-
dimensional pointed Hopf algebras in positive characteristic.

Concrete examples of such Hopf algebras are described in Sects. 3.3, 4.5, 5.3,
6.1, and 7.3. We also give a presentation by generators and relations of the Nichols
algebras; references to this information and the dimensions are also given in the
Tables.

All braided vector spaces in this Theorem belong to the class described above
except those in (d) that contain a pale block.

Table 1 Finite-dimensional Nichols algebras of a block and a point

V diagram q22 G B(V ) dimK dimB(V )

L(1,G ) � G 1• 1 discrete §4.3.1 pr+1 pr+3

L(−1,G ) � G −1• − 1 discrete §4.3.2 2r+1 2r+1p2

L(ω, 1) � 1 ω• ∈ G
′
3 1 §4.3.5 33 33p2

L−(1,G ) � G 1• 1 discrete §4.3.3 2
r
2 p

r
2+1 2

r
2+2p

r
2+3

L−(−1,G ) � G −1• − 1 discrete §4.3.4 2
r
2+1p

r
2 2

r
2+3p

r
2+2

C1 � (−1,1) −1• − 1 1 §4.4 16 64p2

1.3 Contents of the Paper

Section 2 is devoted to preliminaries. The next Sections contain the examples of
finite-dimensional Nichols algebras and some realizations over abelian groups; each
Section describes a family of braided vector spaces with a certain decomposition as
we describe now. In Sect. 3 we compute Nichols algebras of a block. In Sect. 4 we
present examples of Nichols algebras corresponding to one block and one point,
while in Sect. 5 we consider the case one block and several points. Section 6
is devoted to examples of several blocks and one point. Finally in Sect. 7 we
give examples of finite-dimensional Nichols algebras whose braided vector spaces
decompose as one pale block and one point.
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Table 2 Finite-dimensional Nichols algebras of a block and several points, ω ∈ G
′
3

V diagram B(V ) dimB(V )

L(Aθ−1), � 1 −1• −1 −1◦ . . .
−1◦ −1 −1◦ §5.2.7 p226

θ > 2 θ − 1 vertices p22(θ−1)(θ−2)

L(A2, 2) � 2 −1• −1 −1◦ §5.2.6 p2212

L(A(1|0)2;ω) � 1 −1• ω −1◦ §5.2.2 p22734

L(A(1|0)1;ω) � 1 −1• ω2 ω◦ §5.2.1 p22432

L(A(1|0)3;ω) � 1 ω• ω2 −1◦ §5.2.3 p22734

L(A(1|0)1; r) � 1 −1• r−1 r◦ , r ∈ G
′
N , N > 3 §5.2.1 p224N2

L(A(2|0)1;ω) � 1 −1• ω ω2

◦ ω ω2

◦ §5.2.4 p22839

L(D(2|1);ω) � 1 −1• ω ω2

◦ ω2 ω◦ §5.2.5 p22839

Table 3 Finite-dimensional Nichols algebras of a pale block and a
point

V ε q̃12 q22 B(V ) dimK dim B(V )

Ep(q) 1 1 −1 Sect. 7.1 2p 2pp2

E+(q) −1 1 1 Sect. 7.2 2p 23p

E−(q) −1 1 −1 Sect. 7.2 2p 23p

E�(q) −1 −1 −1 Sect. 7.2 24p2 26p2

2 Preliminaries

2.1 Conventions

The q-numbers are the polynomials

(n)q =
n−1
∑

j=0

qj , (n)!q =
n
∏

j=1

(j)q,

(

n

i

)

q
= (n)!q

(n− i)!q(i)!q
∈ Z[q],

n ∈ N, 0 ≤ i ≤ n. If q ∈ k, then (n)q , (n)!q ,
(

n
i

)

q
denote the evaluations of (n)q,

(n)!q,
(

n
i

)

q
at q = q.

Let GN be the group of N -th roots of unity, and G
′
N the subset of primitive roots

of order N ; G∞ = ⋃

N∈NGN . All the vector spaces, algebras, and tensor products
are over k.

All Hopf algebras have bijective antipode.
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2.2 Yetter-Drinfeld Modules

Let � be an abelian group. We denote by ̂� the group of characters of �. The
category k�

k�
YD of Yetter-Drinfeld modules over the group algebra k� consists of �-

graded �-modules, the �-grading being denoted by V = ⊕g∈�Vg; that is, hVg = Vg
for all g, h ∈ �. If g ∈ � and χ ∈ ̂�, then the one-dimensional vector space k

χ
g ,

with action and coaction given by g and χ , is in H
HYD. Let W ∈ k�

k�YD and (wi)i∈I
a basis of W consisting of homogeneous elements of degree gi , i ∈ I , respectively.
Then there are skew-derivations ∂i , i ∈ I , of T (W) such that for all x, y ∈ T (W),
i, j ∈ I

∂i(wj ) = δij , ∂i(xy) = ∂i(x)(gi · y)+ x∂i(y). (2.1)

For a definition of Yetter-Drinfeld modules over arbitrary Hopf algebras we refer,
e.g., to [R, 11.6].

2.3 Nichols Algebras

Nichols algebras are graded Hopf algebras B = ⊕n≥0B
n in H

HYD coradically
graded and generated in degree one. They are completely determined by V := B1 ∈
H
HYD and it is customary to denote B = B(V ). If W ∈ k�

k�
YD as in Sect. 2.2, then

the skew-derivations ∂i induce skew-derivations on B(W). Moreover, an element
w ∈ Bk(W), k ≥ 1, is zero if and only if ∂i(w) = 0 in B(W) for all i ∈ I . A
pre-Nichols algebra of V is a graded Hopf algebra in H

HYD generated in degree one,
with the one-component isomorphic to V .

Example 2.1 Let V be of dimension 1 with braiding c = ε id. Let N be the smallest
natural number such that (N)ε = 0. Then B(V ) = k[T ]/〈T N 〉, or B(V ) = k[T ] if
such N does not exist.

A braided vector space V is of diagonal type if there exists a basis (xi)i∈Iθ of V
and q = (qij )i,j∈Iθ ∈ k

θ×θ such that qij �= 0 and c(xi ⊗ xj ) = qij xj ⊗ xi for all
i, j ∈ I = Iθ . Given a braided vector space V of diagonal type with a basis (xi), we
denote in T (V ), or B(V ), or any intermediate Hopf algebra,

xij = (adc xi) xj , xi1i2...iM = (adc xi1) xi2...iM , (2.2)

for i, j, i1, . . . , iM ∈ I, M ≥ 2. A braided vector space V of diagonal type is of
Cartan type if there exists a generalized Cartan matrix a = (aij ) such that qij qji =
q
aij
ii for all i �= j .

Theorem 2.2 If V is of Cartan type with matrix a that is not finite, then
dim B(V ) = ∞.
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Proof The argument in [AAH2, Proposition 3.1] is characteristic-free and applies
here because there are infinite real roots in the root system of a. ��

3 Blocks

We consider braided vector spaces V(ε, 2) with braiding (1.1), ε2 = 1.

3.1 The Jordan Plane

Here we deal with V = V(1, 2). In characteristic 0, B(V) is the well-known algebra
presented by x1 and x2 with the relation (3.1). In positive characteristic, B(V) is a
truncated version of that algebra.

Lemma 3.1 ([CLW]) B(V) is presented by generators x1, x2 and relations

x2x1 − x1x2 + 1

2
x2

1 , (3.1)

x
p

1 , (3.2)

x
p

2 . (3.3)

Also dim B(V) = p2 and {xa1xb2 : 0 ≤ a, b < p} is a basis of B(V). ��
In characteristic 2, the relations of B(V) are different.
Let � = Z/p = 〈g〉. We realize V in k�

k�
YD by g · x1 = x1, g · x2 = x2 + x1,

deg xi = g, i ∈ I2. Thus the Hopf algebra B(V)#k� has dimension p3.

3.2 The Super Jordan Plane

Let V = V(−1, 2) be the braided vector space with basis x1, x2 and braiding

c(xi ⊗ x1) = −x1 ⊗ xi, c(xi ⊗ x2) = (−x2 + x1)⊗ xi, i ∈ I2. (3.4)

Let g be a generator of the cyclic group Z. We realize V(−1, 2) in kZ

kZ
YD by g ·x1 =

−x1, g · x2 = −x2 + x1, deg xi = g, i ∈ I2. As in (2.2),

x21 = (adc x2) x1 = x2x1 + x1x2. (3.5)
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The Nichols algebra B(V(−1, 2)) = T (V(−1, 2))/J (V(−1, 2)) (called the super
Jordan plane) was studied in [AAH1, 3.3] over fields of characteristic 0. Assuming
p > 2, the basic features of B(V(−1, 2)) are summarized here:

Proposition 3.2 The defining ideal J (V(−1, 2)) is generated by

x2
1 , (3.6)

x2x21 − x21x2 − x1x21, (3.7)

x
p

21, (3.8)

x
2p
2 . (3.9)

The set B = {xa1xb21x
c
2 : a ∈ I0,1, b ∈ I0,p−1, c ∈ I0,2p−1} is a basis of B(V) and

dim B(V) = 4p2.

Proof Since ∂2(x21) = 0, we have that ∂2(x
n
21) = 0 for every n ∈ N. Also ∂1(x21) =

x1 and g · x21 = x21. Both (3.6) and (3.7) are 0 in B(V) being annihilated by ∂1 and
∂2, cf. (2.1). From (3.6) and (3.7) we see that in B(V)

x2
2x1 = x1(x

2
2 + x21), (3.10)

x21x1 = x1x2x1 = x1x21. (3.11)

By the preceding, we have

∂1(x
n
21) =

∑

1≤i≤n
xi−1

21 ∂1(x21)x
n−i
21 = nx1x

n−1
21 .

Hence xp21 = 0, i.e., (3.8) holds. Next we prove (3.9). Clearly ∂1(x
n
2 ) = 0 for every

n ∈ N. We observe that

g · x2
2 = (−x2 + x1)

2 = x2
2 − x21, ∂2(x

2
2) = g · x2 + x2 = x1.

Setting for simplicity a := x21 and b := x2
2 , we have for any n ∈ N:

∂2(x
2n
2 ) =

∑

1≤i≤n
x

2(i−1)
2 ∂2(x

2
2)

(

g · x2(n−i)
2

)

=
∑

1≤i≤n
bi−1x1 (b − a)n−i .

By (3.7), (3.10), and (3.11) we have

ax1 = x1a, bx1 = x1(b + a), ba = a(a + b), (3.12)
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hence

∂2(x
2n
2 ) = x1

∑

1≤i≤n
(b + a)i−1 (b − a)n−i .

We prove recursively that for all n ∈ N

(b − a)n = bn − nabn−1, An :=
∑

i∈In
(b + a)i−1 (b − a)n−i = nbn−1. (3.13)

The case n = 1 is evident. We start with the first identity:

(b − a)n+1 = (b − a) (b − a)n = (b − a)(bn − nabn−1)

= bn+1 − nbabn−1 − abn + na2bn−1 = bn+1 − (n+ 1)abn

as desired. For the second identity we use the first:

An+1 = (b − a)n + (b + a)An = bn − nabn−1 + (b + a)nbn−1 = (n+ 1)bn.

The claim is proved; summarizing we have

∂2(x
2n
2 ) = nx1x

2(n−1)
2 . (3.14)

In particular, this implies (3.9).
We now argue as in [AAH1, 3.3.1]. The quotient ˜B of T (V) by (3.6)–(3.9)

projects onto B(V) and the subspace I spanned by B is a left ideal of ˜B,
by (3.7), (3.11). Since 1 ∈ I , ˜B is spanned by B. To prove that ˜B � B(V), we
just need to show that B is linearly independent in B(V). We claim that this is
equivalent to prove that B ′ = {xc2xb21x

a
1 : a ∈ {0, 1}, b ∈ I0,p−1, c ∈ I0,2p−1} is

linearly independent. Indeed, ˜B is spanned by B ′ since the subspace spanned B ′ is
also a left ideal; if B ′ is linearly independent, then the dimension of ˜B is 4p2, so
B should be linearly independent and vice versa. Suppose that there is a non-trivial
linear combination of elements of B ′ in B(V) of minimal degree. As

∂1(x
c
2x

b
21) = b xc2x

b−1
21 x1, ∂1(x

c
2x

b
21x1) = xc2x

b
21, (3.15)

such linear combination does not have terms with a or b greater than 0. We claim
that the elements xc2, c ∈ I0,2p−1, are linearly independent, yielding a contradiction.
By homogeneity it is enough to prove that they are �= 0. If c is even this follows
from (3.14). If c = 2n+ 1 with n < p, then

∂2(x
2n+1
2 ) = ∂2(x

2n
2 )g · x2 + x2n

2 = −nx1x
2n−1
2 + x2n

2 .

Again a degree argument gives the desired claim. ��
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Let � = Z/2p. We may realize V(−1, 2) in k�
k�
YD by the same formulas as

above; thus B(V)#k� is a pointed Hopf algebra of dimension 8p3.

3.3 Realizations

Let H be a Hopf algebra. A YD-pair for H is a pair (g, χ) ∈ G(H)×Homalg(H,k)

such that

χ(h) g = χ(h(2))h(1) g S(h(3)), h ∈ H. (3.16)

Let kχg be a one-dimensional vector space with H -action and H -coaction given by
χ and g respectively; then (3.16) says that kχg ∈ H

HYD.
If χ ∈ Homalg(H,k), then the space of (χ, χ)-derivations is

Derχ,χ (H,k) = {η ∈ H ∗ : η(h�) = χ(h)η(�)+ χ(�)η(h)∀h, � ∈ H }.

A YD-triple for H is a collection (g, χ, η) where (g, χ) is a YD-pair for H ,
η ∈ Derχ,χ (H,k), η(g) = 1 and

η(h)g1 = η(h_2)h_1g2S(h_3), h ∈ H. (3.17)

Given a YD-triple (g, χ, η) we define Vg(χ, η) ∈ H
HYD as the vector space with a

basis (xi)i∈I2 , whose H -action and H -coaction are given by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, δ(xi) = g ⊗ xi, h ∈ H, i ∈ I2;

the compatibility is granted by (3.16), (3.17). As a braided vector space, Vg(χ, η) �
V(ε, 2), ε = χ(g).

Consequently, if H is finite-dimensional and ε2 = 1, then B(Vg(χ, η))#H is a
Hopf algebra satisfying

dim
(

B(Vg(χ, η))#H
) =

{

p2 dimH, when ε = 1,

4p2 dimH, when ε = −1.
(3.18)

3.4 Exhaustion in Rank 2

We recall some facts from [AAH1, §3.4].
Let H be a Hopf algebra with bijective antipode and V ∈ H

HYD. Let 0 = V0 �

V1 · · · � Vd = V be a flag of Yetter-Drinfeld submodules with dimVi = dimVi−1+
1 for all i. Then V diag := grV is of diagonal type. If B is a pre-Nichols algebra
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of V , then it is a graded filtered Hopf in H
HYD and Bdiag := gr B is a pre-Nichols

algebra of V diag.

Proposition 3.3 Let ε ∈ k
×. If dim B(V(ε, 2)) <∞, then ε2 = 1.

Proof Let V = V(ε, 2); it has a flag as above and Vdiag is the braided vector space
of diagonal type with matrix (qij )i,j∈I2 , qij = ε for all i, j ∈ I2. Hence

dim B(Vdiag) ≤ dim B(V(ε, 2)). (3.19)

Step 1 If ε /∈ G∞, then dim B(V(ε, 2)) = ∞.

Proof Here dim B(Vdiag) = ∞ by Example 2.1 and (3.19) applies. ��
Step 2 If ε ∈ G

′
N , N ≥ 4, then dim B(V(ε, �)) = ∞ for all � ≥ 2.

Proof Here Vdiag is of Cartan type with Cartan matrix

(

2 2−N

2−N 2

)

. Thus

Theorem 2.2 and (3.19) apply. ��
Step 3 Let ε ∈ G

′
3. Then dim B(V(ε, 2)) = ∞.

Proof The proof of [AAH1, §3.5 – Step 3] holds verbatim. ��
The Proposition is proved. ��

4 One Block and One Point

4.1 The Setting and the Statement

Let (qij )1≤i,j≤2 be a matrix of invertible scalars and a ∈ k. We assume that ε := q11
satisfies ε2 = 1. Let V be a braided vector space with a basis (xi)i∈I3 and a braiding
given by

(c(xi ⊗ xj ))i,j∈I3 =
⎛

⎝

εx1 ⊗ x1 (εx2 + x1)⊗ x1 q12x3 ⊗ x1

εx1 ⊗ x2 (εx2 + x1)⊗ x2 q12x3 ⊗ x2

q21x1 ⊗ x3 q21(x2 + ax1)⊗ x3 q22x3 ⊗ x3

⎞

⎠ . (4.1)

Let V1 = 〈x1, x2〉 (the block) and V2 = 〈x3〉 (the point). Let � = Z
2 with canonical

basis g1, g2. We realize (V , c) in k�
k�
YD as Vg1(χ1, η) ⊕ k

χ2
g2 with suitable χ1, χ2,

and η, where V1 = Vg1(χ1, η), while V2 = k
χ2
g2 . Thus V1 � V(ε, 2); thus we use the

notations and results from Sect. 3.2.
The interaction between the block and the point is q12q21; it is

weak if q12q21 = 1, mild if q12q21 = −1, strong if q12q21 /∈ {±1}.
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In characteristic 0, we introduced a normalized version of a called the ghost,
which is discrete when it belongs to N. In our context, p > 2, we need a variant of
this notion. First we say that V has discrete ghost if a ∈ F

×
p . When this is the case,

we pick a representative r ∈ Z of 2a by imposing

r ∈
{

{1− p, . . . ,−1}, ε = 1,

{1, . . . , 2p − 1} ∩ 2Z, ε = −1; set G :=
{

−r, ε = 1,

r, ε = −1.
(4.2)

Then G is called the ghost. In this Section we consider the following braided vectors
spaces with braiding (4.1), where the ghost is discrete and q22 ∈ G∞:

L(q22,G) : weak interaction, ε = 1;
L−(q22,G) : weak interaction, ε = −1;
C1 : mild interaction, ε = q22 = −1, G = 1.

In this Section, we shall prove part (a) of Theorem 1.2.

Theorem 4.1 Let V be a braided vector space with braiding (4.1). If V is as in
Table 1, then dim B(V ) <∞.

To prove the Theorem, we consider K = B(V )co B(V1). By [HS, Proposi-
tion 8.6], B(V ) � K#B(V1) and K is the Nichols algebra of

K1 = adc B(V1)(V2). (4.3)

Now K1 ∈ B(V1)#k�
B(V1)#k�

YD with the adjoint action and the coaction given by

δ = (πB(V1)#k� ⊗ id)�B(V )#k�. (4.4)

In order to describe K1, we set

zn := (adc x2)
nx3, n ∈ N0. (4.5)

4.2 Weak Interaction

Here q12q21 = 1. In general,

c2|V1⊗V2
= id ⇐⇒ q12q21 = 1 and a = 0. (4.6)


