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Preface

Soon after rubber’s discovery as a remarkable material in the 18" century, the
application of particulate fillers — alongside vulcanization — became the most
important factor in the manufacture of rubber products, with the consumption of
these particulate fillers second only to rubber itself. Fillers have held this important
position not only as a cost savings measure by increasing volume, but more
importantly, due to their unique ability to enhance the physical properties of rubber,
a well-documented phenomenon termed “reinforcement.” In fact, the term filler is
misleading because for a large portion of rubber products, tires in particular, the
cost of filler per unit volume is even higher than that of the polymer. This is
especially true for the reinforcement of elastomers by extremely fine fillers such as
carbon black and silica. This subject has been comprehensively reviewed in the
monographs “Reinforcement of Elastomers,” edited by G. Kraus (1964), “Carbon
Black: Physics, Chemistry, and Elastomer Reinforcement,” written by J.-B.
Donnet and A. Voet (1975), and “Carbon Black: Science and Technology,” edited
by J.-B. Donnet, R. C. Bansal, and M.-J. Wang (1993). There has since been much
progress in the fundamental understanding of rubber reinforcement, the application
of conventional fillers, and the development of new products to improve the
performance of rubber products.

While all agree that fillers as one of the main components of a filled-rubber
composite have the most important bearing on improving the performance of
rubber products, many new ideas, theories, practices, phenomena, and observations
have been presented about how and especially why they alter the processability of
filled compounds and the mechanical properties of filled vulcanizates.

This suggests that the real world of filled rubber is so complex and sophisticated
that multiple mechanisms must be involved. It is possible to explain the effect of
all fillers on rubber properties ultimately in similar and relatively nonspecific terms,
i.e., the phenomena related to all filler parameters should follow general rules or
principles. It is the authors’ belief that, regarding the impact of filler on all aspects
of rubber reinforcement, filler properties, such as microstructure, morphology, and
surface characteristics, play a dominant role in determining the properties of filled
rubbers, hence the performance of rubber products, via their effects in rubber. These
effects, which include hydrodynamic, interfacial, occlusion, and agglomeration of
fillers, determine the structure of this book.



The first part of the book is dedicated to the basic properties of fillers and their
characterization, followed by a chapter dealing with the effect of fillers in rubber.
Based on these two parts, the processing of the filled compounds and the
properties of the filled vulcanizates are discussed in detail. The last few chapters
cover some special applications of fillers in tires, the new development of filler-
related materials for tire applications, and application of fumed silica in silicone
rubber. All chapters emphasize an internal logic and consistency, giving a full
picture about rubber reinforcement by particulate fillers. As such, this work is
intended for those working academically and industrially in the areas of rubber and
filler.

We would like to express our heartfelt thanks to Wang’s colleagues at the EVE
Rubber Institute Mr. Weijie Jia, Mr. Fujin He, Dr. Bin Wang, Dr. Wenrong Zhao,
Dr. Hao Zhang, Dr. Mingxiu Xie, Dr. Yudian Song, Dr. Feng Liu, Dr. Liang
Zhong, Dr. Bing Yao, Dr. Dan Zhang, Dr. Kai Fu, and Mr. Shuai Lu for their
assistance in preparing this book. Special thanks are due to the EVE Rubber
Institute, Qingdao, China and Cabot Corporation, USA. Without their firm backing
and continuous understanding, this effort could not have been accomplished.

Meng-Jiao Wang, Sc. D., Professor
EVE Rubber Institute, Qingdao, China

Michael Morris, Ph. D., Cabot Corporation
Billerica, Massachusetts USA
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Manufacture of
Fillers

The history of particulate fillers used in rubber is almost as long as that of rubber
itself! 1. One aspect of filler addition has been improvement of rubber properties.
Another aspect was extension of the rubber with less expensive materials. After
Hancock developed the earliest device using rollers to crumb natural rubber (NR)
in 1820, and the two-roll mill for NR mastication and compounding was patented
by Chaffee in 1836 and 1841, incorporation of inert fillers in finely divided
particulate form became standard practice. Fillers such as ground limestone,
barites, clay, kaolin, etc. were used in order to extend and cheapen the compounds
since it was found that in natural rubber, quite a bit of filler could be added without
detracting too much from the final vulcanizate properties. Zinc oxide was
originally used for its whiteness, and later was found to have some reinforcing
effect, becoming known as an “active” filler. Carbon black, which was known as a
black pigment, was also found to be able to improve the rubber properties
significantly at low concentrations, especially the stiffness. Systematic studies of
the effect of fillers had been reported by Heinzerling and Pahl in Germany in 1891.
Part of this effect may be due to its activating effect on many vulcanization
accelerators for which zinc oxide is still utilized. In 1904, Mote in England,
discovered the reinforcing effect of carbon black. He reported that the tensile
strength of the filled NR increased drastically, compared with the values obtained
with the techniques of that time. Although automobiles had been around and
running on rubber tires for more than a decade, the importance of this discovery
was recognized and developed when black tires were demonstrated to have better
wear resistance than white ones, which contained mainly zinc oxide as a filler.
Carbon black is now the most important filler used in rubber. In the last century,
the production techniques and designation of types of carbon black have developed
rapidly.

In the meantime, non-black fillers have also developed. Among these non-black ones,
the first reinforcing filler, calcium silicate, was introduced in 1939. It was prepared by
wet precipitation from sodium silicate solution with calcium chloride. In further
development of the process, the calcium was leached out by hydrochloric acid to yield
a reinforcing silica pigment of comparable particle size. About 10 years later, direct
precipitation of silica from sodium silicate solution had developed to a commercial
process and this is still a major process today. In 1950, a different type of anhydrous
silica appeared, which was made by reacting silicon tetrachloride or silica chloroform
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(trichlorosilane) with water vapor in a hydrogen-oxygen flame. Because of the high
temperature at the formation (about 1400°C), this pyrogenic silica has a lower
concentration of silanol groups on the surface than the precipitated silicas. The latter
contain about 88%—92% SiO, and have ignition losses of 10%—14%, whereas
pyrogenic silica contains 99.8% silica. Because of its lower surface concentration of
silanols, ultra-high purity with total impurities in many cases below 100 ppm (parts per
million), and much higher price, pyrogenic silica is mainly used as a filler for high cost
compounds such as silicone rubber.

In contrast, since the beginning of the industrial-scale production of fine-particle
silicas and silicates in 1948, precipitated silica manufacturers have always desired to
find their products used in tires as well. Whereas silicas were rapidly able to replace up
to 100 percent of carbon black in shoe sole materials and also made their way into the
mechanical goods sector, mostly as blends with carbon blacks, their use in tires in any
quantities worth mentioning has long been limited to two types of compounds: off-the-
road tread compounds containing 10 phr to 15 phr of silica blended with carbon black
in order to improve tear properties, and textile and steel cord bonding compounds
containing 15 phr of silica, again blended with carbon black, in combination with
resorcinol/formaldehyde systems!*].

During the two oil crises in the 1970s, which had led to a steep rise in the price of
carbon black, the question arose whether silica in tires could be an alternative to
carbon black. When the price of oil fell and the fear of a lack of availability of carbon
blacks subsided, this question was soon forgotten, especially since the price of silica
was always higher than that of carbon black, at least in Japan and the USA. Experience
has shown that silicas only have a chance to be used in tires if they offer technological
advantages which are superior to those of carbon blacks.

Two developments have created a new opportunity for silicas to be used in tires: the
increased awareness of the pollution from industry and the necessity of protecting the
environment have given rise to a call for tires combining a long service life with
driving safety and low fuel consumption. The introduction of bifunctional organosilanes
as coupling agents now permits the reinforcing mechanism of silicas to be controlled
by chemical means'*”. Based on systematic studies of surface characteristics, polymer-
filler interactions, and better understanding of compounding and processing, silica was
successfully used to replace carbon black as the principal filler in the tread compound
of the “green tire” patented in 1992\ Since then, the application of precipitated silica
in tire has been continuously growing, not only in tread compounds, but also in other
parts of tires.

In the last two decades, research on rubber reinforcement with particulate fillers and
the development of new fillers have been very hot. Since the main fillers used in the
rubber industry are still carbon blacks and silicas, the topics of this book will focus on
these two materials and their derivatives.



1.1  Manufacture of Carbon Black

m 1.1 Manufacture of Carbon Black

The history of carbon black manufacture is very long, such as in China, about 3000
B.C., carbon black for pigment use was made by burning vegetable oils in small lamps
and collecting the carbon on a ceramic lid; in Egypt, carbon black was used as a
pigment for paints and lacquers. Starting in 1870, natural gas began to be used as the
feedstock for carbon black manufacture. Over a couple of decades, the channel process
was developed in which small gas flames burning in restricted air supply impinged on
iron channels. In 1976, the last channel black plant was closed in the USA, due to the
pollution of smoke plumes.

A critical event in the development of the carbon black industry was the discovery of
the benefits of carbon black as a reinforcing agent for rubber in 1904 As the
automobile became ubiquitous during the 1920s, the application of pneumatic tires
grew rapidly and soon by-passed other applications, causing rapid growth in
consumption of carbon black. Also in the 1920s, two other processes concerning
carbon black production were introduced, both using natural gas as feedstock, but
having better yields and lower emissions than the channel process. One was the
thermal black process, in which a brick checker is employed and works alternately by
absorbing heat from a natural gas air flame, and then giving up heat to crack natural
gas to carbon and hydrogen. The other process was the gas furnace process, which is
no longer practiced.

The oil furnace process was first introduced by Phillips Petroleum at its plant in Borger,
Texas, in 1943. This process rapidly replaced all others for the production of carbon
black for use in rubber. In a modern version of the oil furnace process, carbon black
yields range from 65% downward depending on the surface area of the product.
Product recovery is essentially 100% as a result of high efficiency bag filters. The
overwhelming majority of carbon black reactors today are based on the oil furnace
process.

1.1.1 Mechanisms of Carbon Black Formation

The formation of particulate carbon involves either pyrolysis or incomplete combustion
of hydrocarbon materials. Enormous literature has been published to describe the
mechanism of carbon black formation, from a series of lectures by Michael Faraday at
the Royal Institution in London in the 1840s”), to a more recent intensive review!’.
Since Faraday’s time, many theories have been proposed to account for carbon

formation, but controversy still exists regarding the mechanism.

Mechanisms of carbon black formation must account for the experimental observations
of the unique morphology and microstructure of carbon black. These include the
presence of nodules, or particles, multiple growth centers within some nodules, the
fusion of nodules into large aggregates, and the paracrystalline or concentric layer
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plane structure of the aggregates. It is generally accepted that the mechanism of
formation involves a series of stages as follows:

Formation of gaseous carbon black precursors at high temperature — This
involves dehydrogenation of primary hydrocarbon molecular species to atomic carbon
or primary free radical and ions which condense to semi-solid carbon precursors (or
poly-nuclear-aromatic sheet) and/or formation of large hydrocarbon molecules by
polymerization which then is dehydrogenated to particle precursors”). Taking
production of furnace black with high aromatic feedstock as an example, Figure 1.1
represents several of the possible paths that feedstock can take as it is mixed with the
primary fire in the reactor at the early stage. The primary fire has excess oxygen,
carbon dioxide, and water, all of which act as combustion (or oxidation) reactants to
the feedstock molecules. These molecules can react with and break up any feedstock
molecules into small combustion species; any feedstock that goes this route is lost for
carbon black production. As there is a limit to oxidative species, the remaining
feedstock can either be broken down by pyrolysis or survive and become directly
involved in carbon black formation reactions. Typical pyrolysis species are hydrogen,
acetylene, and polyynes, which are essentially chained acetylenes. At least two
formation paths are thought to occur. The first one is ring growth from acetylene,
polyyne,or polycyclic aromatic hydrocarbon (PAH) collision with PAH molecules.
When the number of rings reaches five or six, the molecules become thermally stable
and will only be attacked by remaining oxidant molecules. These PAH molecules will
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Figure 1.1 Formation of gaseous carbon black precursors



1.1  Manufacture of Carbon Black

eventually stack up after collisions and then begin to form the crystallites which are
found in the finished primary particles. The other route to carbon black occurs as the
acetylene polymerizes (polyacetylene) to form long chain polyynes which also reach a
thermally stable size and begin to collide with the large PAH molecules. These
polyynes can then restructure themselves to increase the crystallite size or provide the
amorphous portion of the carbon black particles. Once these particles grow to about
one to two nanometers they tend to become spherical and are referred to as carbon
black precursors.

Nucleation — Because of increasing mass of the carbon particle precursors through
collision, the larger fragments are no longer stable and condense out of the vapor phase
to form nuclei or growth centers.

Particle growth and aggregation — In this period, three processes go on
simultaneously as shown in Figure 1.2: condensation of more carbon precursors on the
existing nuclei, coalescence of small particles into larger ones, and formation of new
nuclei. Coalescence and growth seem to predominate. The products of this stage are
“proto-nodules”.
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Figure 1.2 Particle growth and aggregation

Surface growth — Surface growth includes the processes in which the small
species attach to or deposit on the surfaces of existing particles or aggregates,
forming the nodules and aggregates with their characteristic onion micro-structure
(note: aggregates are permanent structures cemented by carbon). The surface
growth represents about 90% of total carbon yield. It is responsible for the stability
of the aggregates because of the continuous carbon network formation. Aggregates
are formed and cemented in this stage.
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Agglomeration — Once no more carbon is forming and aggregation ceases, aggregates
collide and adhere by van der Waals forces but there is no material to cement them
together, hence they form temporary structures (agglomerates).

Aggregate gasification — After its formation and growth, the carbon black surface
undergoes reaction with the gas phase, resulting in an etched surface. Species such as
CO;,, H,0, and of course any residual oxygen attack the carbon surface. The oxidation
is determined by gas phase conditions, such as temperature, oxidant concentration, and
flow rates.

Practically, the carbon black morphology and surface chemistry can be well-controlled
by changing the reaction parameters. For furnace carbon blacks, the reaction temperature
is the key variable that governs the surface area. The higher the temperature, the higher is
the pyrolysis rate and the more nuclei are formed, resulting in an earlier stop of the
growth of the particles and aggregates due to the limitation of starting materials.
Therefore, with higher reaction temperature, achieved by adjusting air rate, fuel rate, and
feedstock rate, the surface area of carbon black can be increased. Addition of alkali metal
salts into the reactor can modify the aggregation process, influencing carbon black
structure. At the reactor temperature, the salts of alkali metals, such as potassium, are
ionized. The positive ions adsorb on the forming carbon black nodules and provide some
electrostatic barrier to internodule collisions, resulting in lower structure'™.

The time scale of carbon black formation varies substantially across the range of
particle sizes found in commercial furnace blacks. For blacks with surface areas
around 120 m?/g, the carbon black formation process from oil atomization to quench
takes less than 10 milliseconds. For blacks with surface areas around 30 m’/g,
formation times are a few tenths of a second.

1.1.2 Manufacturing Process of Carbon Black

1.1.2.1 Oil-Furnace Process

The oil-furnace process accounts for over 95 percent of all carbon black produced in
the world. It was developed in 1943 and rapidly displaced previous gas-based
technologies because of its higher yields and the broader range of blacks that could be
produced. It also provides highly effective capture of particulates and has greatly
improved the environment around carbon black plants. As indicated in the mechanism
discussion, it is based on the partial combustion of residual aromatic oils. Because
residual oils are ubiquitous and are easily transported, the process can be practiced
with little geographic limitation. This has allowed construction of carbon black plants
all over the world. Plants are typically located in areas of tire and rubber goods
manufacture. Because carbon black is of relatively low density, it is far less expensive
to transport feedstock oil than to transport the black.

For nearly 80 years since its invention, the oil-furnace process has undergone several
cycles of improvement. These improvements have resulted in increased yields, larger
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process trains, better energy economy, and enhanced product performance. A
simplified flow diagram of a modern furnace black production line is shown in
Figure 1.3\ This is intended to be a generic diagram and contains elements from
several operators’ processes. The principal pieces of equipment are the air blower,
process air and oil preheaters, reactors, quench tower, bag filter, pelletizer, and
rotary dryer. The basic process consists of atomizing the preheated oil in a
combustion gas stream formed by burning fuel in preheated air. The atomization is
carried out in a region of intense turbulent mixing. Some of the atomized feedstock
is combusted with excess oxidant in the combustion gas. Temperatures in the region
of carbon black formation range from 1400°C to over 1800°C. The details of reactor
construction vary from manufacturer to manufacturer and are confidential to each
manufacturer. Leaving the formation zone, the carbon black containing gases are
quenched by spraying water into the stream. The partially cooled smoke is then
passed through a heat exchanger where incoming air is preheated. Additional quench
water is used to cool the smoke to a temperature consistent with the life of the bag
material used in the bag filter. The bag filter separates the unagglomerated carbon
black from the by-product tail gas which contains nitrogen, hydrogen, carbon
monoxide, carbon dioxide, and water vapor. It is mainly nitrogen and water vapor.
The tail gas is frequently used to fuel the dryers in the plant, to provide other process
heat, or sometimes is burned to manufacture steam and electric power either for
internal plant use or for sale.
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Figure 1.3 Flow diagram of a modern furnace black process

The fluffy black from the bag filter is mixed with water, typically in a pin mixer, to
form wet granules. These are dried in a rotary dryer, and the dried product is conveyed
to bulk storage tanks. For special purposes, dry pelletization in rotary drums is also
practiced. Most carbon black is shipped by rail or in bulk trucks. Various semi-bulk
containers are also used including IBC’s and large semi-bulk bags. Some special
purpose blacks are packed in paper or plastic bags.

While the reactor and its associated air-moving and heat-exchange equipment are
where the properties of the black are determined, they tend to be dwarfed by the bag
collectors, the dryers, and particularly the storage tanks.
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Feedstocks

Feedstocks for the oil-furnace process are heavy fuel oils. Preferred oils have high
aromaticity, are free of suspended solids, and have a minimum of asphaltenes. Suitable
oils are catalytic cracker residue (once residual catalyst has been removed), ethylene
cracker residues, and distilled heavy coal tar fractions. Other specifications of
importance are freedom from solid materials, moderate to low sulfur, and low alkali
metals. The ability to handle such oils in tanks, pumps, transfer lines, and spray
nozzles is also a primary requirement.

Reactor

The heart of a furnace black plant is the furnace or reactor where carbon black
formation takes place under high temperature, partial combustion conditions. The
reactors are designed and constructed to be as trouble-free as possible over long
periods of operation under extremely aggressive conditions. They are monitored
constantly for signs of deterioration in order to ensure constant product quality. The
wide variety of furnace black grades for rubber and pigment applications requires
different reactor designs and sizes to cover the complete range, though closely related
grades can be made in the same reactor by adjusting input variables. Reactors for
higher surface area and reinforcing grades operate under high gas velocities,
temperatures, and turbulence to ensure rapid mixing of reactant gases and feedstock.
Lower surface area and less reinforcing grades are produced in larger reactors at lower
temperatures, lower velocities, and longer residence time. Table 1.1 lists carbon
formation temperatures, and residence times for the various grades of rubber blacks.

Table 1.1 Reactor conditions for various grades of carbon blacks

Surface Temperature/°C |Residence Maximum
area/(m Ig) time/s velocity/(m/s)

N100 series 1800 0.008

N200 series 120 0.010 180-400
N300 series 80 1550 0.031

N500 series 42 1 30-80
N700 series 25 1400 1.5 0.5-1.5
N990 thermal 8 1200-1350 10 10

A key development in the carbon black reactor technology was the development of the
zoned axial flow reactor for reinforcing blacks in the early 1960s™®. The reactor
consists of three zones. The first zone is a combustion zone in which fuel and air are
completely burned to produce combustion gases with excess oxygen. This gas flow is
accelerated to high velocity in a throat zone with intense turbulent mixing. The
feedstock is injected either into this throat zone or just ahead; therefore, the reacting
gases issue from the throat into a second cylindrical zone as a turbulent diffusion jet.
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Depending on the desired black, the jet may be allowed to expand freely, or may be
confined by bricking. Downstream of the reaction zone is a water quench zone. The
throughput of a single reactor train varies from manufacturer to manufacturer and with
grade of black. The largest reactors in operation have capacities of over 30,000 metric
tons per year. Many producers operate smaller reactors in parallel. Reactors are
typically designed to make a series of related blacks. Air and gas may be introduced to
the primary combustion zone either axially, tangentially, or radially. The feedstock can
be introduced into the primary fire either axially or radially in the high velocity section
of the mixing zone. The high velocity section may be Venturi-shaped or consist of a
narrow diameter choke. Plants may have from one to several operating trains.

Carbon black reactors are made of carbon steel shells lined with several courses of
refractory. The most severe services are in the combustor and in the throat zone.
Different manufacturers take different approaches to these elements, some using
exotic materials or selected water cooled metal surfaces, others using conventional
materials and limiting temperatures to what their materials can stand. Most
manufacturers achieve refractory life of one to several years. For the rubber grade
carbon blacks, at least three different reactor designs must be used to make this range
of furnace blacks. Figure 1.4 and Figure 1.5 show the designs of commercial reactors
found in patents.

The quality and yield of carbon black depend on the quality and carbon content of the
feedstock, the reactor design, and the input variables. Surface area in particular is
controlled by adjusting the temperature in the reaction zone. Structure is adjusted by
introducing potassium into the combustion gas. This may be done in any of a variety of
ways.
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The energy utilization in the production of one kilogram of oil-furnace carbon black is
in the range of (9—16)x10" J, and the yields are 300—660 kg/m’ depending on the grade.
The energy inputs to the reactor are the heat of combustion of the preheated feedstock,
heat of combustion of natural gas, and the thermal energy of the preheated air. The
energy output consists of the heat of combustion of the carbon black product, the heat
of combustion and the sensible heat of the tail gas, the heat loss from the water quench,
the heat loss by radiation to atmosphere, and the heat transferred to preheat the primary
combustion air.

1.1.2.2 The Thermal Black Process

Thermal black is a large particle size and low structure carbon black made by the
thermal decomposition of natural gas, coke oven gas, or liquid hydrocarbons in the
absence of air or flames. Its economic production requires inexpensive natural gas.
Today it is among the most expensive of the blacks regularly used in rubber goods. It
is used in rubber and plastics applications for its unique properties of low hardness,
high extensibility, low compression set, low hysteresis, and excellent processability. Its
main uses are in O-rings and seals, hose, tire inner liners, V-belts, other mechanical
goods, and in cross-linked polyethylene for electrical cables.

The thermal black process dates from 1922. The process is cyclic using two refractory-
lined cylindrical furnaces or generators about 4 m in diameter and 10 m high. During
operation, one generator is being heated with a near stoichiometric ratio of air and off-
gas from the making generator whereas the other generator, heated to an average
temperature of 1300°C, is fed with natural gas. The cycle between black production
and heating is five minutes alternating between generators, resulting in a reasonably
continuous flow of product and off-gases to downstream equipment. The effluent gas
from the make cycle, which is about 90% hydrogen, carries the black to a quench



