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Preface
Every two years, Groupe Polyphénols (GP) hosts the
International Conference on Polyphenols (ICP). The XXIX
ICP was the first one to be held in the United States in
Madison, Wisconsin, on the campus of the University of
Wisconsin–Madison (UW–Madison), from July 16 to 20,
2018. Groupe Polyphénols also hosted the 9th Tannin
Conference (TC) concurrently with the XXIX ICP. Groupe
Polyphénols was founded in 1972 and is the world’s
premier society of scientists in the fields of polyphenol
chemistry, synthesis, bioactivity, nutrition, industrial
applications, and ecology.
Madison is Wisconsin’s state capital (the capitol building is
shown on the front cover) and one of the nicest cities in the
great lakes region. UW–Madison is a top ranked University
(25th worldwide and 19th in the USA) and has a lovely
campus with miles of lakefront and beautiful scenery
adjacent to the state capitol. This venue for the XXIX ICP
and 9th TC was fitting because Wisconsin’s cranberry
industry provides 60 percent of the world’s supply of
cranberries and is the state’s largest fruit industry. The
cranberry industry is also strongly dependent on the
polyphenolic composition of the fruit. Cranberries are
harvested in the fall after they turn from yellow‐green to
bright red, as shown on the front cover. The fruits are
harvested by flooding the marsh (also called cranberry
bogs). After removing the fruits from the vine, they float to
the surface and are corralled with a floating boom and
conveyed into trucks (as depicted on the front cover). The
fruits are either transferred to a packaging facility for the
fresh fruit market or to a frozen storage facility for
subsequent processing into juice or sweetened dried



cranberries (SDC). In both cases the bright red color of the
fruit is a critical component of processing because the fruit
is sorted based on color before packaging as fresh fruit or
processing for juice and SDC (a processing line after
sorting is also shown on the front cover). The color is a
function of six anthocyanins, cyanidin 3‐O‐galactoside,
cyanidin 3‐O‐glucoside, cyanidin 3‐O‐arabinoside, peonidin
3‐O‐galactoside, peonidin 3‐O‐glucoside, and peonidin 3‐O‐
arabinoside. In addition to the anthocyanins, cranberries
contain a large diversity of other monomeric polyphenols,
especially flavonol glycosides, and contain simple phenols
such as hydroxycinnamic acids and hydroxybenzoic acids.
Cranberries also contain proanthocyanidins, which are just
as important to the economic value of the fruit as the
anthocyanins. The importance of proanthocyanidins to the
cranberry market is a result of pioneering research from
the late 1990s in which “A‐type” interflavan bonds were
discovered to be the structural feature of cranberry
proanthocyanidins that is associated with the prevention of
adherence of P‐fimbriated E. coli to uroepithelial cells, the
putative mechanism in the prevention of urinary tract
infections. Proanthocyanidin content is now used to market
cranberry products (including juice, sweetened dried
cranberries, and dietary supplements) and consumers
widely recognize cranberries as healthy. Therefore, all of
the subjects that were discussed at the XXIX ICP and 9th

TC and the chapters of this volume of Recent Advances in
Polyphenol Research are of direct importance to
Wisconsin’s cranberry industry. The role of polyphenols in
this industry is an excellent example of the importance of
polyphenol research in general.
The XXIX ICP and 9th TC were attended by 189 registrants
from 23 countries, with 62 invited and contributed
presentations and 104 posters. This seventh edition of
Recent Advances in Polyphenol Research presents 11



chapters that represent the work of the invited speakers at
the XXIX ICP and 9th TC and reflect the depth of science in
this important field of natural product chemistry. The
conference included sessions on the chemistry and physical
chemistry of polyphenols; synthesis, genetics and metabolic
engineering of polyphenols; the effects of polyphenols on
the nutrition and health of humans and animals; the role of
polyphenols in plants and ecosystems; applied research on
polyphenols; and a special session devoted to the 9th Tannin
Conference.
We owe a special thanks to Hannah Scott and Laura
Richards from the Campus Events Services, UW–Madison,
for their professional and excellent organization of the
conference. Finally, we thank all of the participants, some
who traveled a great distance to come to Madison, for
making the conference a very enjoyable event and a
wonderful learning experience.

Jess Dreher Reed
Victor Armando Pereira de Freitas
Stéphane Quideau
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