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Preface
Major challenges lay ahead in providing food, feed, and
fibre for increasing population on the planet using
diminishing water and nutrient resources and being faced
with pronounced climate change and variability. There are
increasingly severe shortages of good‐quality water to be
used for irrigation as well as exacerbated frequency and
severity of droughts in the areas reliant on rain‐fed food
production. Moreover, raw materials used in producing
some fertilizers (e.g. P and K) are becoming scarce and
expensive, and the high price of energy (production of N
fertilizers has a high energy demand) combine to push
fertilizer prices up. Food security is also threatened by
declining average yield increases of staple crops in recent
years, emphasizing the need for a shift in thinking about
food production.
Sustainable agricultural intensification has been
increasingly popular and important in expanding food
production and enhancing efficiency of water and nutrient
use in a range of agricultural systems, particularly in Africa
and Asia. Increasing efficiency of water and nutrient use
(i.e. increasing food production per unit of water and
nutrient input) is crucial in (i) maintaining food security
and food quality for increased global population and (ii)
decreasing potentially negative environmental impacts of
growing food, feed, and fibre.
Improved root systems capable of efficient acquisition of
water and nutrients from soils underpin increased
efficiency of utilization of soil resources that is essential for
sustainable agricultural intensification of food production.
The importance of roots has been recognized by scientists
worldwide, with the number of published research papers


