

Educational Communications and Technology:
Issues and Innovations

Laurie O. Campbell
Richard Hartshorne
Ronald F. DeMara *Editors*

Perspectives on Digitally-Mediated Team Learning

ASSOCIATION FOR
EDUCATIONAL
COMMUNICATIONS &
TECHNOLOGY

Springer

Educational Communications and Technology: Issues and Innovations

Series Editors

J. Michael Spector

Department of Learning Technologies

University of North Texas, Denton, TX, USA

M. J. Bishop

College of Education, Lehigh University

University System of Maryland, Bethlehem, PA, USA

Dirk Ifenthaler

Learning, Design and Technology

University of Mannheim, Mannheim, Baden-Württemberg, Germany

Allan Yuen

Faculty of Education, Runme Shaw Bldg, Rm 214

University of Hong Kong, Hong Kong, Hong Kong

This book series, published collaboratively between the AECT (Association for Educational Communications and Technology) and Springer, represents the best and most cutting edge research in the field of educational communications and technology. The mission of the series is to document scholarship and best practices in the creation, use, and management of technologies for effective teaching and learning in a wide range of settings. The publication goal is the rapid dissemination of the latest and best research and development findings in the broad area of educational information science and technology. As such, the volumes will be representative of the latest research findings and developments in the field. Volumes will be published on a variety of topics, including:

- Learning Analytics
- Distance Education
- Mobile Learning Technologies
- Formative Feedback for Complex Learning
- Personalized Learning and Instruction
- Instructional Design
- Virtual tutoring

Additionally, the series will publish the bi-annual AECT symposium volumes, the Educational Media and Technology Yearbooks, and the extremely prestigious and well known, Handbook of Research on Educational Communications and Technology. Currently in its 4th volume, this large and well respected Handbook will serve as an anchor for the series and a completely updated version is anticipated to publish once every 5 years.

The intended audience for Educational Communications and Technology: Issues and Innovations is researchers, graduate students and professional practitioners working in the general area of educational information science and technology; this includes but is not limited to academics in colleges of education and information studies, educational researchers, instructional designers, media specialists, teachers, technology coordinators and integrators, and training professionals.

More information about this series at <http://www.springer.com/series/11824>

Laurie O. Campbell
Richard Hartshorne • Ronald F. DeMara
Editors

Perspectives on Digitally-Mediated Team Learning

Springer

Editors

Laurie O. Campbell
Learning Sciences and Educational
Research
University of Central Florida
Orlando, FL, USA

Richard Hartshorne
Learning Sciences and Educational
Research
University of Central Florida
Orlando, FL, USA

Ronald F. DeMara
Electrical Engineering and
Computer Science
University of Central Florida
Orlando, FL, USA

ISSN 2625-0004 ISSN 2625-0012 (electronic)
Educational Communications and Technology: Issues and Innovations
ISBN 978-3-030-77613-8 ISBN 978-3-030-77614-5 (eBook)
<https://doi.org/10.1007/978-3-030-77614-5>

© Association for Educational Communications and Technology 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: G  werbestrasse 11, 6330 Cham, Switzerland

Preface

As information continues expanding and occupational knowledge becomes increasingly specialized, the ability to work effectively on diverse teams becomes increasingly vital. The trend towards more robust collaboration, knowledge management, and communication skills is an increasingly central skill for today's students who will become tomorrow's workers in STEM fields. Thus, providing learners with teamwork, collaboration, communication, and problem-solving opportunities across diverse disciplines is becoming a more necessary, but often overlooked, aspect of education in a variety of fields. Further complicating this issue is that such skills are not typically developed via traditional instructional practices. One potential manner to simultaneously address these issues is through revisioning pedagogical practices, transitioning from more passive, teacher-centered to more active, collaborative, student-centered instructional approaches. Considering the unprecedented emphasis on education, both nationally and globally, the ever-escalating needs and the broad implications of establishing research-based evidence and guidelines for promoting innovative pedagogical practices that support team-based learning are increasingly critical to achieve success.

Solving multifaceted problems to address societal concerns supports the need to build teams that can solve complex issues. In that vein, various disciplines can support team dynamics through digitally mediated team learning (DMTL). DMTL is positioned within known bodies of learning science literature including but not limited to: (a) Computer-Supported Collaborative Learning (CSCL), (b) Computer-Mediated Communication (CMC), (c) Team-Based Learning (TBL), (d) Case-Based Collaborative Learning (CBCL), (e) Collaborative Learning (CL), (f) Cooperative Learning (CoPL), (g) Problem-Based Learning (PBL), (h) Learning Analytics (LA), and (i) Educational Data Mining (EDM). Further, DMTL embraces technological applications that afford learners opportunities to solve problems, develop ideas, and co-construct learning outcomes, either asynchronously and synchronously, whether students are in the same room or across the world, providing for ease of communication, documentation of process, and co-construction of solutions and idea.

DMTL-focused pedagogical approaches can leverage advancing learning technologies toward attaining great potential to increase educational efficacy,

scalability, and diversity across fields and levels. The activities that support team design, group problem solving, and project collaboration have always been a prominent and even defining attribute of effective pedagogy. Especially in the last two decades and into the foreseeable future, team design skills are receiving increasing importance as the complexity of knowledge acquisition, retention, and transfer marches ever forward. The rising tide of complexity necessitates future graduates at all levels and across numerous fields to function effectively as disciplinary specialists who work together closely and frequently during most phases of product development and research. The need and benefit for learners to become immersed in collaborative learning activities have been highlighted, in order to elevate their needed proficiency in team-based skills. Thus, the priority for advancing forward-looking educational technologies demonstrating the most significant potential to advance team-based instruction is vital and broadly impacting across fields as learning partners, group project teams, and collaborative design projects rely heavily on team-based and collaborative learning. Research in DMTL is especially timely due to the recent proliferation of virtual collaboration technologies ranging from laptops and other mobile devices, tablets, Wi-Fi-enabled networking, sensors, cameras, and embedded devices.

This book emerged as a response to the need to support transactional communication leading to transformative learning and, more specifically, the National Science Foundation *Principles for the Design of Digital Science, Technology, Engineering, and Mathematics (STEM) Learning Environments* awarded grant [DCL-NSF 18-017], grant DRL-1825007 titled *Synthesis and Design Workshop: Digitally-Mediated Team Learning* resulted from a collaborative effort of the editors to address these emerging pedagogical needs. The workshop that took place during the spring of 2019, at the University of Central Florida included 88 researchers, educators, and practitioners from across the United States. Participants explored effective and scalable team-based learning in digital environments and projected how varying aspects of the field would morph and grow in the subsequent 1, 3, and 5 years. Out of a desire to highlight current work in the field of those practicing aspects of DMTL, the creation of this book was initiated. Thus, this book will explore technology-supported pedagogical approaches that facilitate teamwork, collaboration, communication, and problem-solving opportunities in diverse disciplines and is motivated by expanding the learning science research base regarding how constructivist pedagogical principles and strategies, including structured, collaborative, active, contextual, and engaging instructional settings, can support foundational instruction and improve student interest and achievement.

This book showcases full-length manuscripts advancing transformative pedagogical approaches for technology-enhanced team learning within varied disciplines and includes contributions from interdisciplinary researchers, developers, and educators focused on the facilitation of adaptable digital environments for highly effective, rewarding, and scalable team-based and collaborative learning. More specifically, this book highlights theoretical works and empirical studies that explore ways in which technology-enabled pedagogical principles and practices facilitate student interest, while also providing an exploration of logistical factors

associated with revisioning pedagogical approaches and informing the design of instructional settings in various subject areas in K-12 and higher education. Further, these works will assist administrators, instructors, and course developers in creating effective learning environments to best meet the needs of all students, while simultaneously addressing technology-supported pedagogical and logistical challenges commonly seen in K-12 and higher education.

Book Sections

At its core, this book is focused on advancing knowledge on technology-enabled team and collaborative learning. The chapters within will inform immediate and future research and practice related to: (a) harnessing learning analytics for optimal team learning; (b) innovative pedagogical approaches utilizing technology-enabled team and collaborative learning; (c) traditional and emerging technological applications to support and promote team-based learning; and (d) logistical and other issues for broadening participation and presence in team learning. The explorations and outcomes related to these topics are of interest to researchers, educators, and industry as they could inform the creation of beneficial, scalable, sustainable, and transportable educational solutions for developing team learning and interactive learning environments through digital means. This book contributes to future cross-networking and co-constructing among the experts in the aforementioned fields as they continue to investigate aspects of digitally mediated team development to benefit the associated researchers, educators, and practitioners.

The book is structured around the following parts:

1. Pedagogical Perspectives in Digitally Mediated Team Learning

The ability to facilitate DMTL-focused approaches across levels and disciplines is becoming increasingly important. While technological tools that support varied pedagogical practices that enable effective DMTL-focused teaching and learning environments are becoming increasingly common and useful, it is critical that such tools be accompanied by appropriate pedagogical approaches that address the myriad of issues associated with effectively facilitating DMTL-based environments and support such approaches as team design, group problem solving, and project collaboration. The four chapters in this part explore various aspects of DMTL-rich teaching and learning environments by highlighting instructional approaches to address a variety of pedagogical issues typically associated with team learning, such as (a) instructor roles in real-time team-based instructional settings, (b) managing accountability in team-based settings, (c) aligning tools with appropriate pedagogical approaches, and (d) team-based learning at various educational levels, among others.

2. Tools for Facilitating Digitally Mediated Team Learning

The increasing ubiquity of technology in almost every aspect of our everyday lives as well as the continually increasing usability and advanced functionality of

both traditional and emerging technologies opens the doors for a myriad of approaches to the numerous pedagogical, logistical, and social issues associated with team-based and collaborative learning. However, the integration of these tools into the teaching and learning environment is not one of merely “plug-and-play.” Thus, in this part, the three chapters provide guidance for the integration of traditional and emerging technological applications and address a number of ways in which such tools can allow for more active, engaging, and communicative teaching and team-based learning environments, as well as ways in which tools can support instructor professional development for the integration of both traditional and emerging technological tools to support DMTL-based pedagogical approaches in STEM curricula.

3. Analytics and Social Perspectives of Digitally Mediated Team Learning

Research regarding the formation and function of teams continues to grow in the teaching and learning literature. Learning analytics provide rich information for making informed decisions regarding learning. In technology-mediated environments, analytics can support understanding for instructors and team members of how teams are functioning. The data points generated in learning may optimize the individual and team learning experience. Likewise, social presence, a construct that has evolved to mean the way individuals view social interactions and others, has been identified as a contributor to learner satisfaction, performance, and achievement. In this part, social presence has been explored to include definitions, tools, and actions that will build rapport and trust among learners in online environments.

In conclusion, we are pleased to be able to bring you this book on a variety of issues associated with DMTL. In these pages, you will find thoughtful and well-written chapters that can be used to improve practice while informing both current and future research.

Respectfully,

Laurie O. Campbell, *Associate Professor, Instructional Design & Technology, Department of Learning Sciences and Educational Research, University of Central Florida*

Richard Hartshorne, *Professor and Chair, Department of Learning Sciences and Educational Research, University of Central Florida*

Ronald F. DeMara, *Pegasus Professor & Digital Learning Faculty Fellow, Department of Electrical and Computer Engineering, University of Central Florida*

Orlando, FL, USA

Laurie O. Campbell
Richard Hartshorne
Ronald F. DeMara

Acknowledgments

We acknowledge the hard work and dedication of the authors who have contributed to this edited book. During challenging times, a worldwide pandemic, these authors have persisted to share perspectives on digitally mediated team learning.

We appreciate and acknowledge those who reviewed chapters in this book including:

Leanne Coyne
Samantha Heller
Zhewei Hu
Eric D. Laguardia
Jody Takemoto
Jessica L. Tinstman Jones
Richard Hartshorne
Ronald F. DeMara
Laurie O. Campbell

Likewise, we acknowledge the commitment and guidance of Sam Spiegel, Professor and Director of the Trefny Innovative Instruction Center at Colorado School of Mines who was a Co-PI of the NSF grant and also instrumental in the formative vision for this book. Finally, a special thanks to Jessica L. Tinstman Jones and Darleen Block who helped in the organizational development of the manuscript.

Contents

Part I	Pedagogical Perspectives in Digitally-Mediated Team Learning	
Aligning Teacher Facilitation Tools with Pedagogies in a Real-Time Environment for Mathematics Team Learning	3	
Leslie Bondaryk and Chad Dorsey		
Cultivating and Leveraging Continuous Accountability Through Mundane Infrastructures for Critical Thinking	19	
John M. Carroll, Guillermo Romera Rodriguez, Na Li, and Chun-Hua Tsai		
Team Learning in a Technology-Driven Era	33	
Jody K. Takemoto, Drew Lewis, Christopher W. Parrish, Leanne Coyne, and Christopher M. Burns		
The Foundations of Collaborative Programming by Elementary-Aged Children	53	
Jessica Vandenberg, Jennifer Tsan, Zarifa Zakaria, Collin Lynch, Kristy Elizabeth Boyer, and Eric Wiebe		
Part II	Tools for Facilitating Digitally-Mediated Team Learning	
Using Extended Reality to Promote Team Learning	75	
Leanne Coyne, Thayer A. Merritt, and Jody K. Takemoto		
All-in-One Team-Based Learning (TBL) Technology: Profiling the InteDashboard Technology Platform	95	
Brian O'Dwyer		
Digitally Mediated Tools for Facilitating High-Quality Team-Based Programming Projects	119	
Zhewei Hu and Edward F. Gehringer		

Part III Analytics and Social Perspectives of Digitally-Mediated Team Learning

Designing Analytics to Support Team Learning	147
Qiujie Li, Yeonji Jung, Alyssa Friend Wise, Sophie Sommer, and Victoria G. Axelrod	
Building Rapport and Trust in Collaborative, Team-Based Online Learning Communities	167
Linda M. Wiley, Matthew P. Connell, and Jonathan C. Ohlde	
Mediated Interactions via WhatsApp: a Social Space for Teacher Development in Brazil	179
Junia Braga, Glenda A. Gunter, and Marcos Racilan	
Social Presence in Technology-Enabled Team Learning Environments	193
Caroline Kairu	
Glossary	205
Author Index	209
Subject Index	215

About the Editors

Laurie O. Campbell is an Associate Professor in the Department of Learning Sciences and Educational Research at the University of Central Florida. As an interdisciplinary educational researcher her interests include personalized and active learning to support underserved and underrepresented populations. Within STEM, she is most concerned with designing sustainable educational opportunities that build individuals' capacity for positive STEM identity and equity. She is a co-principal investigator of three National Science Foundation (NSF) grants and another private foundation grant. She can be reached at locampbell@ucf.edu—ORCID: 0000-0001-7313-5457.

Richard Hartshorne is a Professor and Coordinator for the Instructional Design and Technology program and serves as the Chair of the Department of Learning Sciences and Educational Research at the University of Central Florida (UCF). He earned his Ph.D. in Curriculum and Instruction with a focus on educational technology production and technology and teacher education from the University of Florida. At the University of Central Florida, his teaching focuses on the integration of technology into the educational landscape, as well as instructional design and development. His research interests primarily involve the production and effective integration of instructional technology into the teaching and learning environment. The major areas of his research interest are rooted in technology and teacher education, the integration of emerging technology into the k-post-secondary curriculum, and online teaching and learning. He currently serves as the editor of the *Journal of Technology and Teacher Education*, and his articles have appeared in such publications as the *International Journal of Gaming and Computer-Mediated Simulations*, the *Journal of Digital Learning in Teacher Education, Internet and Higher Education*, the *Journal of Educational Computing Research*, and others. He has also authored numerous book chapters and serves in various editorial capacities for a number of journals in the field of educational technology.

Ronald F. DeMara is a Pegasus Professor in the Department of Electrical and Computer Engineering at UCF where he has been a faculty member since 1993. His

educational research interests focus on classroom instructional technologies and the digitization of STEM assessments. He was Principal Investigator of the NSF Workshop on Digitally-Mediated Team Learning held in 2019. He has created a series of faculty development courses on Assessment Digitization for engineering curricula and on workshops on Virtualized Active Learning. He has completed over 300 technical and educational publications, 50 funded projects as PI/Co-I, and has graduated 25 doctoral advisees. He serves as the founding Director of the Evaluation and Proficiency Center (EPC), is an iSTEM Fellow, and the Digital Learning Faculty Fellow at UCF. At UCF he received the university-level Scholarship of Teaching and Learning Award twice, Teaching Initiative Program Award four times, Research Initiative Award twice, Excellence in Undergraduate Teaching Award, Excellence in Doctoral Mentoring Award, Advisor of the Year, Distinguished Research Lecturer, and the Marchioli Collective Impact Award. He received the Effective Practice Award from the Online Learning Consortium and the Joseph M. Biedenbach Outstanding Engineering Educator Award from IEEE.

Part I

**Pedagogical Perspectives in Digitally-
Mediated Team Learning**

Aligning Teacher Facilitation Tools with Pedagogies in a Real-Time Environment for Mathematics Team Learning

Leslie Bondaryk and Chad Dorsey

Abstract Digitally facilitated team-based classrooms require a rich set of tools to support teacher noticing and classroom orchestration. While only limited research has been conducted on effective tools for teachers, we have been able to construct a teacher dashboard along with feedback and content customization features that allow middle-school mathematics teachers to effectively teach team-organized, digitally facilitated classes in an in-person, hybrid, or online classroom environment. Two key features of the digital environment include a dashboard allowing the instructor to monitor and inspect all student artifacts in real time and a workspace allowing teachers to generate and publish content of their own. We describe the functionality of the purpose-built STEM collaborative classroom system and the particular ways it facilitates effective classroom orchestration and noticing.

Teaching with Technology-Enabled, Problem-Based Curricula

Teaching a technology-enabled, problem-based curriculum is a balancing act between keen student observation, prompt just-in-time contextual problem feedback, and technical support of the software platform. Teachers need to aid students in acquiring facility not only with the content and practices of the domain but also with the mediating technology-based tools. In such a scenario, teachers and students share more responsibility for the learning process than in a teacher-centered or direct instruction environment (Bransford et al., 1999; Lampert, 2001). Teachers in software-enabled scenarios assume an increased burden to notice and evolve the disciplinary content of students' work (Franke et al., 2001; Schifter, 2005). Student work in teams within a platform magnifies this challenge, as the flow of ideas between students and the path along which the group work evolves is part of the work of constructing the team's joint problem space (Roschelle & Teasley, 1995;

L. Bondaryk (✉) · C. Dorsey
The Concord Consortium, Concord, MA, USA
e-mail: lbondaryk@concord.org; cdorsey@concord.org

Stahl, 2006) and demand teacher coaching and evaluation. In live classrooms unmediated by digital technology, much of this interaction is ephemeral, lost to untracked conversations, or locked in individual students' notebooks. In other cases, the interactions veer off-topic entirely (Barron, 2003). Effective teacher noticing depends strongly on teacher access to student inscriptions (Sherin et al., 2011). Thus, supporting such noticing in technology-based scenarios, where the majority of students' work occurs on screens, demands new types of digital support features (Walkoe et al., 2017).

Classroom Orchestration

Teachers in a hybrid or purely digital setting depend broadly on digital systems for access to facets of learners' activity that stretch beyond basic measures of progress. A digital platform tool must be capable of communicating the class "script" to the students and must allow the teacher to track progress against that script (Martinez-Maldonado et al., 2015). Teachers must be able to see and comment on their students' learning artifacts in ways that are easily consumable by students. They must also have access to both synchronous and asynchronous methods of communication with multiple class members such that they can provide clear written expectations and responses across reliable sequences of activity, discussion, and reflection (Amarasinghe et al., 2020; Tinker, 2001).

Teachers should be able to communicate effectively in the subject matter domain in written form, including through digital means. Preferably, this communication should employ an identical inscriptional toolset to that used by students, to allow for equivalent abilities to facilitate and communicate about the content. In a collaborative classroom, teachers need to monitor the progress of both individual students and groups. Additionally, teachers need classroom orchestration tools that can help them understand the progress of the class as a whole so they can efficiently identify commonalities in student understanding, customize curriculum, and moderate group dynamics (Dillenbourg et al., 2012; Matuk et al., 2015). A classroom system for mediating collaborative learning should help teachers to orchestrate learning, including summaries of class understanding, and to conduct group facilitation activities. Protocols for these activities in the physical classroom often have well-established, paper-based patterns. However, they may or may not occur identically in the digitally mediated classroom. Finally, these digital tools must support instructors in evaluating students' overall progress and in assessing how the curriculum materials, digital platform, and student interactions support or hinder the progress of individuals, teams, and the full class.

In order to facilitate a documented trail of student inscriptions that benefit both student learning and teacher noticing, the Concord Consortium has developed a collaborative mathematics platform that allows students to work with digital mathematics tools in groups. The Collaborative Learner User Environment (CLUE) is designed to provide the curriculum (Dillenbourg et al., 2012 "script"), the student

artifacts, and the teacher commentary all in the same format via the same digital tools. This set of common affordances allows students to observe, publish, and borrow artifacts directly from shared peer work, instructor-provided materials and exemplars, and the curriculum materials themselves (Dorsey & Bondaryk, 2019; Sharma & Edson, 2020). While the system is an equalizer in the classroom, encouraging all students to participate and validate their contributions among their peers (Sharma & Edson, 2020), teaching with this real-time collaborative document system presents a number of unique challenges. We designed a set of platform affordances that support teacher noticing and interaction with individuals, groups, and the whole class, teacher evaluation of work, and teacher participation in the collective process. The platform offers an unprecedented window into how groups of learners generate, borrow, amend, and share artifacts in a learning environment in which the goal is to collectively discover, define, and refine mathematical principles. This information is invaluable to teachers seeking to scaffold their students. The dense, rich nature of possible feedback requires specific affordances to allow teachers to make sense of student inscriptions and interactions and capitalize on them for the benefit of problem-based instructional techniques.

Classroom Script and Monitoring

To date, classes using this platform have been taught in the context of the *Connected Mathematics Project* (CMP) curriculum (Lappan et al., 1998, 2006, 2014). This curriculum was originally designed for paper and pencil in a live classroom. Instructors both participate in and assess success in the paper curriculum through observation of physical group documents and individual student notebooks of mathematical inscriptions. Within the digital system, we needed to provide equivalent or enhanced opportunities for the same type and quality of interactions. Further, in the digital system, inscriptions are copied from one student's document to another to evolve ideas, allow students to see tangible artifacts and evidence that their ideas are valued by their peers, and enhance the collective understanding. Teachers can capitalize on this to follow and encourage the temporal joint problem space evolution (Sarmiento-Klapper, 2009), providing benefits to both the students and the teacher (Edson & The Concord Consortium, 2019).

The CMP problem-based curriculum is a good test of the CLUE Platform's collaborative teacher supports because of both the consistency of the program's curricular sequence within each unit and the rigorous teacher training that is part of the program. These commonalities allow us to return information to teachers via a dashboard in a consistent—and, therefore, learnable—format. Teachers of this curriculum are active participants in the evolution of ideas in groups, actively responding to individual- and group-developed concepts and evolving classroom learning needs. They must introduce problem-based activities while connecting them to previous learning and must continually track and advance work across the classroom. During class and teacher preparation sessions, teachers must be able to review

student work while preparing for unit summaries or setting up instruction for the following day or beyond. During this review teachers identify student exemplars that may be useful for group conversation and search for concepts taken up and/or missed by individuals, groups, or the entire class. At regular intervals, teachers must orchestrate whole-class summary discussions in which they draw examples from student strategies and group work, sequencing them to evoke the embedded mathematical understandings and elicit group realizations about how these understandings connect the work together and tie it to both prior and future knowledge (Bieda et al., 2020).

Student Experience and Workflow

To understand the teacher affordances in the mathematical platform, it is first important to understand the student experience inside the team-based learning environment. The system groups students in teams of up to four students. Students have access to a variety of domain-appropriate tools (e.g., graphs, tables, text, images, and drawings), which they can use in ad hoc and self-selected ways. A series of “tiles” that the student can freely rearrange, update, and delete in their documents contain tools for writing text, manipulating geometric figures, creating graphs, and more. Students construct documents in CLUE using these tools to create responses to questions posed by the teacher and the curriculum materials. The CMP curriculum is built into the platform, and the published content uses the same set of platform tools. This pattern enables students to copy items directly from the curriculum to incorporate into responses. The ability to begin with content that can be freely transformed by students, in tandem with the team-oriented and open-ended nature of the problems themselves, deliberately creates opportunities for individual students or groups to arrive at alternative approaches to problem solutions.

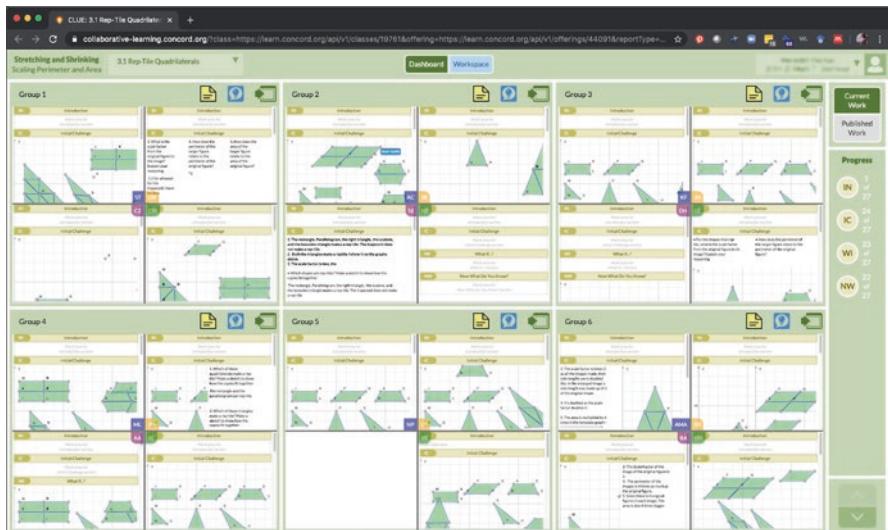
Class work typically follows a pattern that involves members working individually, followed by a reveal of individual work to group members, and then to the whole class, although some teachers prefer to have groups begin with student work-spaces immediately shared within groups; the platform supports either approach. Documents allow students to copy granular pieces from each other’s work or from the curriculum by dragging and dropping tiles or subsets of content, a feature designed to encourage cross-pollination of solutions and ideas. The overall effect of this interaction pattern is to elevate student contributions to an equivalent level of importance to those from the original problem. Studies of the Scratch community show that users can learn by looking at and borrowing from other users’ creations (Resnick et al., 2009). In those cases, however, the interactions are typically unidirectional, with feedback tending to consist of the “giving of credit” to originators of the source project (Monroy-Hernández & Hill, 2010). In contrast, we designed the CLUE interface explicitly to encourage learners to model for one another and learn from one another, using an always-available WYSIWIS (Stefik et al., 1987) shared

desktop and structured intermediate work products designed to promote iterative refinement (Dorsey & Bondaryk, 2019).

This work pattern also helps students overcome confusion over how to begin a problem, especially in classrooms where the culture and social contract acclimate students to holding each other accountable for the overall classroom learning and for contribution to equal shares of the assignment work. Once students have achieved some success in their groups, teachers sometimes encourage students to publish their work so it can be viewed by the whole class. Each of these real-time document instances, whether shared within small groups or across the full class, have the same “borrow-and-reuse” functionality. Students are also encouraged to journal in a “learning log,” another set of cross-referenced documents that sport the same toolset but are available persistently across curriculum units, encouraging students to build upon previous solutions and reflect on their learning over time. Such documents eventually even become founts of information for students, which they can use to “borrow from themselves” to construct summaries of understanding or bridge to new work from past understandings.

One of the interesting opportunities this pattern of progressive refinement affords is the opportunity for students to do the same kind of peer instruction previously instrumented with clicker systems. In such clicker systems, students typically answer a question individually, discuss the question with their peers, and answer the question a second time as a group (Barth-Cohen et al., 2016; Mazur, 1997). A prime value such systems offer instructors is the manner in which they provide real-time recorded feedback about student understanding and reveal its progressive evolution. In similar ways, the CLUE collaborative platform can provide invaluable, ongoing monitoring of peer inscriptional evolution and student understanding.

Affordances for Class Orchestration


Teacher Dashboard

To facilitate monitoring of this dynamic, multi-team system, we needed to create a robust set of teacher tools that would enable teachers to keep pace with the fast-moving groups of students as they swapped and shared ideas and inscriptions that offered benefits above and beyond what could be done by walking around a classroom with students working on paper. While a number of projects have created classroom dashboards to monitor students’ individual learning progress (Verbert et al., 2013), very few allow teachers to monitor the state of collaboration within small groups (Martinez-Maldonado et al., 2012) or with a sophisticated set of STEM-based live artifacts. The platform described here includes a teacher dashboard that specifically supports monitoring of progress on the CMP curricular sequence and provides actionable insight and an interface to digitally conduct the orchestration required by the curriculum.

For teachers beginning a particular problem in the curriculum, the starting point is their teacher dashboard, a display that shows all student documents depicted in their group formations (Fig. 1). For reasons of screen real estate, we have limited the view to six groups of four students each; in classes with more than six groups, teachers can access additional groups by scrolling the screen downwards or upwards.

This view supports a rich set of observations. The nature of the mathematical content, particularly in a seventh-grade mathematics curriculum unit focused heavily on geometric transformations and linear data manipulation, makes it very easy for a teacher to tell which students are progressing predictably on a given problem and which are pursuing alternate or off-topic solution paths, even using these thumbnail-sized views of the student artifacts. For example, the problem shown in Fig. 1 involves shapes that tile into similar larger versions of themselves. (Student work from Group 3 in the upper right corner and Groups 4 and 5 on the lower row shows a set of shapes supplied with the curriculum.) Some students have only progressed as far as copying the supplied set from the curriculum, while others have used these shapes, or some of their own, to create tiled fields of shapes within their graphs. Some have not started (evidenced by documents displaying only horizontal document separator bars as in Groups 2 and 3). Several students are documenting their work (text areas) and one student is absent (the white square in Group 5).

This dashboard view also allows teachers to determine the progress of students within each problem itself. The circle icons on the far right indicate the typical sections in this curriculum. Next to each section icon is a count of the number of students who have entered at least one content tile of any sort in that section.

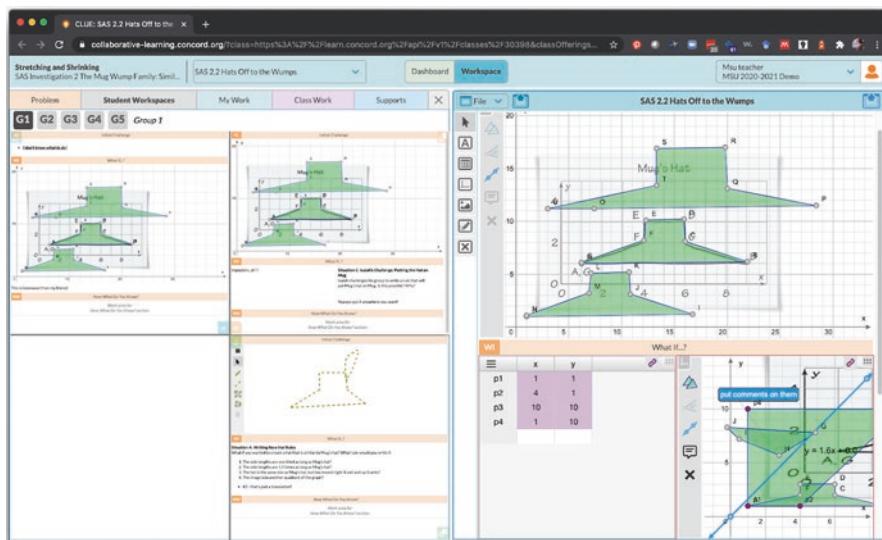
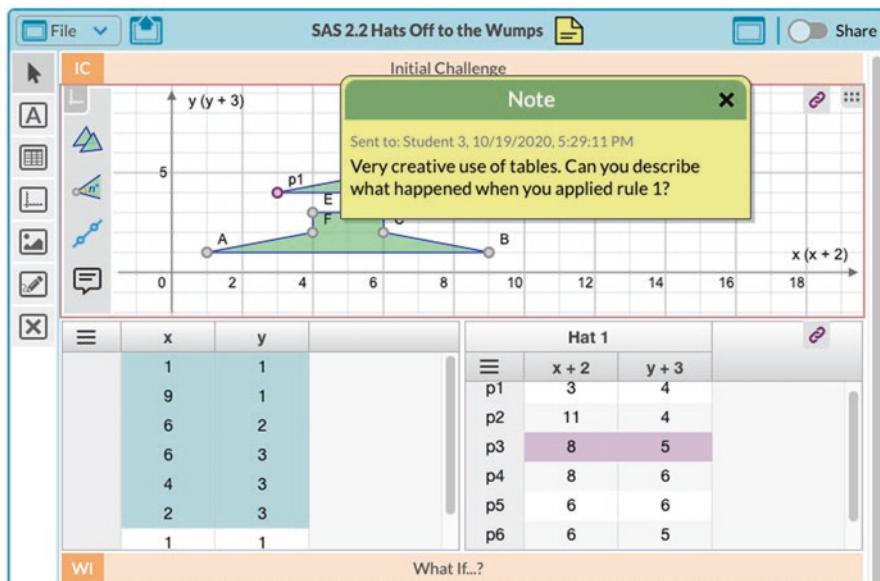


Fig. 1 The Collaborative Learner User Environment Dashboard, showing 24 real-time student documents in progress and teacher intervention tools

Clicking on these icons scrolls all student documents to that section, allowing the teacher to compare like parts of the assignment and determine when it is time to intervene, gather students for discussion, or encourage the class to continue to the next section. This functionality offers particular value both for teachers preparing for in-person class sections and for teachers teaching remotely, since remote or asynchronous scenarios often make it difficult to determine when a class is ready for discussion or prepared to transition to a new topic.

It is also possible for teachers to see how many of their students have published work to the class. This alternative view represents the final transition of sharing work and allows teachers both to check the completion and sharing of students and to “star” work pieces for easy reference in the future.

If teachers wish to access a more detailed view of an individual student’s work, they can click on that student’s pane, which expands the selected student’s work to fill the group’s frame. Additionally, teachers can also switch to a workspace view that mirrors the group view of students, with the addition of a content tab for student workspaces (Fig. 2). This allows teachers the ability to see a very detailed view of each group and to create reference documents by borrowing student content (using the same, copy and paste mechanisms that work for all users in all documents).


Fig. 2 The teacher workspace has the same functionality as the student workspace (right pane), but also includes a tab in the content section (left pane) displaying the group views of all student workspaces, just as the dashboard does

Teacher Interventions: Notes

Teachers using the CLUE platform have a variety of options for interacting with their students, all of which speak to the noticing and orchestration themes of collaborative teaching. In the dashboard view, yellow “sticky note” icons are associated with each group. These allow the teacher to instantly send a note either to the whole group or to an individual student. Annotations persist in the student workspaces (Fig. 3) and can be used for anything from motivational feedback to classroom prompts. One teacher in a spring 2020 class test used these to provide slightly different question prompts to each student in each group. As students worked on the individualized prompts, then shared their work with their group mates, they discovered that each was working on a slightly different form of a related problem, evoking a more nuanced group conversation and interaction about the nature of the problem and comparison of alternate solutions.

Among the 5 teachers in 23 classrooms who participated in trials during the spring and fall of 2020, in various in-person, hybrid, and remote learning environments, we saw a broad variety of uses of notes. Some teachers used them to engage students in class participation, or to facilitate turn taking during class-wide discussions. For example:

- “Raise your left hand when you see this!”
- “Group 21!!!! It’s finally your turn!!! Hiiiiii!!!! :-”
- Other teachers included motivational feedback to students:

Fig. 3 Sticky note display for teacher-to-student commenting and feedback