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Chapter 1
Einstein Field Equations

The General Theory of Relativity, as it relates to navigation of spacecraft, can be
separated into two parts. The first part involves derivation of a set of differential field
equations that can be solved for the metric tensor. The second part involves inserting
the metric tensor into the equation of geodesics to obtain equations of motion, which
can be solved for formulae describing the precession of Mercury’s orbit, the bending
of light, radar time delay, gravitational red shift, and the time measured by clocks.
In this chapter, the solution for the metric tensor is obtained from equations that
provide a statement of the theory’s fundamental assumptions. The assumptions are
simply that the speed of light is constant, matter or energy curves space and the
universe have some symmetrical properties. These assumptions are observed and
cannot be proven. Two methods are used to solve for the metric tensor. The first is
a computer solution that involves parameterizing the metric tensor and solving for
the parameters using an orbit determination filter. The second is an analytic solution
developed by Einstein by defining a covariant derivative and differentiating to obtain
the Riemann tensor, Ricci tensor, and Einstein’s field equations, which can be solved
for the metric tensor.

1.1 Introduction

The Einstein field equations have been solved exactly for the case of spherical
symmetry by Schwarzschild. This solution and Einstein’s solution have spawned
a number of formulae describing the precession of Mercury’s orbit, the bending of
light, radar time delay, gravitational red shift, and several more that relate to special
relativity. The Schwarzschild solution has been transformed to a form such that the
equations of motion look like Newton’s equations of motion with a small relativistic
perturbation. For orbit determination, these equations have been programmed into
software used for navigation. One might question whether this is really necessary,
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2 1 Einstein Field Equations

since the perturbations due to general relativity are so small. The justification is
that the orbit solution used for prediction of a spacecraft orbit is obtained after
analysis of data residuals, the difference between the real world and the world
computed by a mathematical model. Since the data is very high precision, a very
small modeling error will show up as a signature in the data residuals. Without
relativity modeling, a serious modeling error in another variable could be masked. A
navigation analyst might initially conclude that the signature is caused by relativity
or some other error source such as a clock failing to keep the right time. Eventually
the signature will grow in magnitude and the alarm bells will ring indicating a
problem. The earlier the problem is detected, the more likely a solution can be found
before the spacecraft crashes into something. The problem of an inaccurate gravity
harmonic caused an exponential rise in the Doppler signature on the Near Earth
Asteroid Rendezvous (NEAR) mission which was detected early and corrected
before anything catastrophic happened. For this reason, general and special relativity
are programmed into the navigation operational software.

In the 1960s, general relativity was programmed into the Orbit Determination
Program (ODP) at the Jet Propulsion Laboratory (JPL). At the time, those outside
of navigation thought this was not needed. Since that time, many orbits have
been determined using the ODP and little attention has been given to general
relativity. The ODP is treated as a black box. With the advent of comet and asteroid
missions a new orbit determination program was needed. This effort required
implementing general relativity. Finding and understanding the equations presented
a major difficulty. After consulting many sources including relativity experts at JPL,
equations were programmed into the software used for the NEAR mission. We
can assume the equations are correct because the spacecraft completed its mission
successfully.

The derivation of the relativity equations of motion was initiated from the metric
tensor which was assumed to be correct. The goal of deriving the equations from
Einstein’s original assumptions that the speed of light is constant and matter curves
space has been difficult to achieve. The equations of motion were worked out long
before Einstein’s death. His theory written in books published up to that time were
close to his original 1916 paper [1]. After his death, cosmologists got hold of
the theory, and engineers had difficulty understanding the mathematics. The main
source of confusion was the normalization of coordinates removing c, the speed
of light, and G the gravitational constant from the equations. Einstein did this to
make his theory look more profound and mathematical. In this chapter, the part
of Einstein’s theory pertaining to navigation of spacecraft in the solar system has
been extracted from Einstein’s original paper [1], Eddington’s book [2] written in
1923, Harry Lass’s book [3] on tensors written in 1950, and Sokolnikoff’s book [4]
written in 1951. What goes on inside the sun, earth or black holes is not relevant
to navigation of spacecraft in the solar system. While Einstein’s paper is difficult
to understand, all the essential equations are there. Einstein’s audience was other
mathematicians and physicists. Eddington, who was a mathematician, explained
some of the theory in a clear way that is comparatively easy to understand. His
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audience was much wider than Einstein’s. Sokolnikoff shows how the Riemann
tensor is put together and Schwarzschild’s solution is obtained. Harry Lass described
the properties of tensors.

1.2 Summary of General Relativity Fundamental
Assumptions

The universe assumed for navigation consists of the solar system and massless
stars that are infinitely far away and emit light. The center is the solar system
barycenter or center of gravity. The goal is to define the equations of motion in
curved space. A Euclidean coordinate system is defined far away from the sun but
not as far as the stars. If we move this coordinate system so it is centered at the solar
system barycenter, we can define a curved space coordinate system as a covariant
mapping from Euclidean coordinates. Sometimes we are interested in curved space
coordinates and other times we are interested in Euclidean coordinates. For the
equations of motion, we are interested in curved space coordinates. To define the
Einstein tensor, we consider volume elements that have the same size and we use
Euclidean coordinates. In Euclidean coordinates the volume elements are equal and
cubical. For constant density the mass of every volume element is the same. When
we map to curved space, the volume elements vary in size and shape. Since a one to
one mapping exists, the curved space volume elements would have to be assigned
different densities to have the same mass. Einstein defines the density in Euclidean
space as scalar invariant density and this is mapped to curved space to keep the total
mass the same as defined in Euclidean space.

The fundamental assumptions of General Relativity are stated in equations
without proof. The first assumption is that the speed of light is constant defined by
c and the observed speed of light defined by the path length ds is also constant and
equal to c. It is also necessary to define a measurement (Z) which is the projection
of the observed acceleration of a point mass or any vector that can be observed in
curved space on the trajectory of a curved line in the gravity field defined by the
equation of geodesics.

Z = Au

dxu

ds

This scalar measurement gives us one equation, but there are 10 independent
elements in the metric tensor. To determine them we need nine more equations.
For an analytic solution, we can differentiate this measurement with respect to the
assumed coordinate system to obtain four more equations that can be measured.
Differentiating again gives four more equations that define the curvature and can
also be observed. We need one more equation to solve for the metric tensor. It is
obtained by assuming the scale or curvature is proportional to mass. The assumption
that the curvature of space is proportional to mass is satisfied by placing a boundary
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condition on the solution to the Einstein field equations or solving the Einstein
tensor by equating it to the stress–energy tensor.

There are other assumptions associated with mathematics that are difficult to state
in simple equations. These include symmetry, linearity, and continuity. Not only the
trajectory of a particle but all the higher order derivatives must be continuous. They
trace a smooth curve when drawn on graph paper and they have slopes and areas
under the curve. Once the above fundamental equations are defined, the work of the
scientist is complete. For a solution, we turn the problem over to mathematicians.
Einstein was the essential bridge between the two camps. His main contribution
besides special relativity was the Einstein tensor which is a purely mathematical
result but required considerable physical insight to derive.

1.3 Geodesic Equation

The shortest distance between two points on a curved surface is called a geodesic.
When an airplane flies over the North pole on its way to Europe, it is following
a geodesic or great circle arc. The metric tensor (guv) defines the arc length due
to curvature of space where u and v are indices in four-space corresponding to
coordinates. For example, coordinates may be x, y, z, ct as u and v vary from
integer values 1 to 4. The metric tensor defines a differential line element (ds).
The elements of guv are functions of space and time that define guv at some point
in space. The integral of the line element (ds) gives the distance between two
points or the length of the curve connecting them. Consider two points A and B.
A coordinate system can be used to locate the two points relative to one another.
Since the reference coordinate system is arbitrary, the coordinates of the points are
of little use. The only useful physical reality is the distance between the two points.
The metric tensor can be integrated to determine the length of this line. Next, we
consider a line between the two points that is the shortest distance. The variation of
the path length with respect to the coordinates must be zero since only one path is
the shortest. Thus we have

ds2 = guvdxudxv

2dsδ(ds) = dxudxvδguv + guvdxuδ(dxv) + guvdxvδ(dxu)

and

2ds δ(ds) = dxudxv

∂guv

∂xσ

δxσ + guvdxu d(δxv) + guvdxv d(δxu)

and the stationary condition is

∫
δ(ds) = 0


