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Preface

This is the first volume of the two-volume series entitled

Operator Theory and Harmonic Analysis.

Vol. 1: New General Trends and Advances of the Theory

and

Vol. 2: Probability-Analytical Models, Methods, and Applications

Volume 1 is devoted to harmonic analysis and its applications in general, while
Volume 2 is focused on probabilistic and mathematical (statistical) methods in
applied sciences, but still in the context of general harmonic analysis and its
numerous applications.

The volumes’ readership is the pool of researchers interested in various aspects
of harmonic analysis and operator theory: real and complex variable methods,
applications to PDE’s, mathematical modeling based on applied harmonic analysis
and probability-analytical methods, and exploration of new themes and trends.

The contributions to both volumes are based on the matter supposed to be
presented at the Annual International Scientific Conference on Modern Methods
and Problems of Operator Theory and Harmonic Analysis and Their Applications
(OTHA-2020, http://otha.sfedu.ru/), canceled due to Covid19 restrictions.

The Editors are very grateful to all the authors for their valuable contributions and
for a strong willingness to support mathematical activities and communications in
the hope of the soonest resumption of regular conferences and safe mutual visits.
The Editors express an immense sorrow on the occasion of the recent loss of
remarkable scientists and brilliant persons, Hrachik Hayrapetyan (Armenia), who
is one of the authors of the first volume, Vladimir Pilidi (Russia), who was an
active member of Program Committees of OTHA conferences, and Vladimir Nogin
(Russia), who was a colleague and a teacher of quite a few participants of OTHA.
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vi Preface

The first volume contains words in memoriam of our dear friends Hrachik
Hayrapetyan, Vladimir Pilidi, and Vladimir Nogin.

Rostov-on-Don, Russia A. Karapetyants
Santiago de Queretaro, Mexico V. Kravchenko
Ramat-Gan, Israel E. Liflyand
Aveiro, Portugal H. Malonek



In Memory of Prof. Hrachik M.
Hayrapetyan (25.10.1946–06.11.2020)

On November 6, 2020, the world mathematical community lost a brilliant mathe-
matician and a wonderful personality Hrachik Hayrapetyan.

Professor Hayrapetyan was born in 1946 in Dilijan (Armenia). His mathematical
talents were noticed since his adolescence. His mathematical inclinations were
influenced by contacts with his first teacher A. Sahakyan. In 1964, he started
his studies at the Faculty of Mathematics and Mechanics of the Yerevan State
University from which he graduated in 1969. After two years of service in the
Soviet Army, he entered the Institute of Mathematics of the National Academy of
Sciences of Armenia as a junior scientific researcher. Since then, his collaboration
with the academician Mkhitar Jrbashyan started, who proposed to him the study of
free interpolation and basis properties of rational fractions. Hrachik Hayrapetyan
succeeded in discovering a series of essential results in this research field. In
particular, he proved that if the multiplicities in the interpolation problem are not
bounded, then this problem may have no solution and the rational fractions may
fail to be a basis in the closure of their linear span. In 1975, he completed his PhD
thesis. In 1979, he entered the National Polytechnic University of Armenia as an
associate professor of the Chair of Applied Mathematics. At that time, the scientific
group of Prof. N.E. Tovmasyan was developing the theory of boundary value
problems for partial differential equations. H.M. Hayrapetyan was actively involved
in this research. As a specialist in the theory of complex variable functions, he
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viii In Memory of Prof. Hrachik M. Hayrapetyan (25.10.1946–06.11.2020)

was interested in theoretical-functional approach to these problems. He succeeded
in obtaining a series of important results. Particularly, it is worth mentioning the
new formulation of the classical Riemann boundary value problem, which allowed
to solve this problem first in the classes of integrable functions and afterwards in
the class of essentially bounded functions. Later, applying proposed method, Prof.
Hayrapetyan with his students investigated boundary value problems in various
functional spaces. The obtained results not only extended the theory of boundary
value problems but also permitted to develop the theory of elliptic partial differential
equations. Hrachik Hayrapetyan defended his Doctor of Science thesis “Riemann–
Hilbert boundary value problem in the sense of mean convergence and applications
in the theory of elliptic partial differential equations” in the M.V. Lomonosov
Moscow State University. Specialists evaluated his results as a great success in
the theory of boundary value problems. Developing his theory during the last
decade, he studied boundary value problems in weighted classes of functions. He
succeeded to describe the classes of functions, where the Dirichlet and Riemann–
Hilbert boundary value problems in the classes of polyanalytic and polyharmonic
functions are normally solvable in both bounded and unbounded domains. These
results are highly evaluated by specialists in Armenia as well as abroad.

Hrachik Hayrapetyan was one of the members of the first elected Council of the
Armenian Mathematical Union created in 1991 following Armenia’s independence
from the Soviet Union.

Prof. Hayrapetyan was an active organizer. He served two terms as the President
of Mathematical Association of Armenia and he was the Head of specialized
mathematical education chair in National Polytechnic University of Armenia and
the Head of Mathematical Analysis and Function Theory chair in the Yerevan State
University. His devotion to the science and excellent empathy skills helped him to
interest young students in mathematical research. He was a scientific advisor of 15
PhD theses; his students continue the work on ideas of their teacher and mentor,
Hrachik Hayrapetyan, in various universities and research institutions of Armenia.

The fond memory of our friend will forever rest in our hearts.

Doctor of Science, Professor Armenak H. Babayan
Doctor of Science, Professor Vanya A. Mirzoyan
Doctor of Science, Professor Levon Z. Gevorgyan
Chair of Specialized Mathematical Education of National Polytechnic University of

Armenia



In Memory of Prof. Vladimir Pilidi
(07.11.1946–19.01.2021)

Vladimir Pilidi became a student at the Rostov State University (now Southern
Federal University) in 1964. All his scientific career from a talented student
(diploma with honors) to distinguished Chair was related to this university during
57 years.

In 1972, under the guidance of Professor I.B. Simonenko, he defended his Ph.D.
thesis “Local method for the study of linear operator equations of the type of
bisingular integral equations,” and in 1990 at the Dissertation Council of the Tbilisi
Institute of Mathematics named after I. A. Razmadze of the Georgian Academy of
Sciences, he defended doctoral dissertation (second degree) “Bisingular operators
and classes of operators close to them”, which became a significant scientific
achievement that enriched the general theory of operators of local type. Seven
students of Vladimir Pilidi became candidates of science (PhD’s).
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x In Memory of Prof. Vladimir Pilidi (07.11.1946–19.01.2021)

Professor Pilidi was a highly qualified expert in the field of mathematics
and its applications, reviewer of scientific articles, member and chairman of the
Dissertation Council, scientific consultant of several research institutions, chairman
of the State Examination Commissions of universities. After he became the head
of the Chair of Informatics and Computational Experiment in 2000, Vladimir Pilidi
expanded his area of scientific interests towards the application of mathematical
methods in cryptography, the theory of pattern recognition, and graphic information
processing.

Professor Pilidi is known as the author of the bilocal method, an analogue of the
classical local method of Simonenko, and in his research he successfully applied it
to the study of bisingular and related operators, as well as algebras of such operators.
Thanks to these achievements, the name of Vladimir Pilidi will forever remain
among the names of outstanding researchers in analysis and operator theory.

Professor Pilidi actively participated in the scientific life of the Mathematics
Department, in the organization of scientific seminars, conferences, and schools. He
was one of the main organizers of the OTHA conference series, a regular participant,
and a member of the Program Committee of these conferences. Professor Pilidi and
his students made a valuable contribution to the development of this series of con-
ferences and to the development of publication activity following the conferences.

Vladimir Pilidi is known as a brilliant lecturer of various courses in mathematics
and computer science. He had remarkable achievements as a teacher in the lecture
course in algebra and geometry for students of applied and mechanical engineering,
which he taught for about 20 years. His textbook “Linear Algebra” (Vuzovskaya
Kniga, Moscow, 2005), co-authored with A.V. Kozak, is standard for other authors.
Other textbooks by Professor Pilidi are: “Mathematical Analysis” (Phoenix, 2009),
“Mathematical Foundations of Information Security” (Southern Federal University,
2019), and Analytic Geometry (Southern Federal University, 2020). Vladimir Pilidi
developed a deep modern course on mathematical methods of cryptography, which
he taught to students of the Department of Fundamental Informatics and Information
Technology and students of the Department of Applied Mathematics, specialized in
the field of mathematical methods of information security.

His distinguished features were not only erudition and professionalism but also
modesty, discreetness, and goodwill in relations with colleagues and students.
Vladimir Pilidi was a wonderful head of his mathematical family. His wife,
daughter, and son-in-law devoted themselves to mathematics, and his grandchildren
are preparing to become mathematicians as well.

The bright memory of Vladimir Pilidi—of a mathematician, a teacher, and a
brilliant person, will remain in our hearts.

I. M. Erusalimskiy
A. N. Karapetyants

V. S. Rabinovich
S. G. Samko



In Memory of Vladimir Nogin
(20.12.1955–31.05.2021)

Dr. Nogin Vladimir Alexandrovich was born on December 20, 1955. Vladimir
Nogin graduated from the Faculty of Mechanics and Mathematics of the Rostov
State University (now it is Southern Federal University) in 1979, defended his Ph.D.
thesis in 1982 and worked 35 years as an assistant professor, senior teacher and then
associate professor of the Department (Chair) of Differential and Integral Equations
at the same University. During his work at the university, V.A. Nogin taught
courses in mathematical analysis, higher mathematics, and mathematical physics.
He also developed and taught more than five special courses for undergraduate and
postgraduate math students, which included contemporary results in the field of
functional analysis and mathematical physics.

Dr. Nogin’s scientific interests were in the classical area of analysis related to the
study of operators of mathematical physics, the construction and study of fractional
powers of these operators, their inversion, and the description of the image of such
operators in the framework of Lebesgue spaces. At the same time, he dealt with
questions of functional analysis—the description of function spaces that arise in
analysis in the context of the above-mentioned theory of operators. He and his
students obtained profound results in this theory; he successfully developed the
so-called method of approximate inverse operators. He has published about 70
scientific papers and a significant number of textbooks.
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Vladimir Alexandrovich always found enough time for his students, and sci-
entific work was his main passion in life. 8 PhD theses defended under his
supervisorship. One of his students, Mikhail Gurov, became the teacher of the year
in the Russian Federation in 2020.

Vladimir Alexandrovich was distinguished by his modesty and delicacy in
relation to colleagues. The bright memory of Dr. V.A. Nogin will always be in the
hearts of his colleagues and students.

On behalf of the colleagues and students,
O. G. Avsyankin, A. P. Chegolin, M. N. Gurov, A. N. Karapetyants, D. N.

Karasev, B. G. Vakulov
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Weighted Hadamard–Bergman
Convolution Operators

Smbat A. Aghekyan and Alexey N. Karapetyants

Abstract Following the ideas of the recent paper by Karapetiants and Samko
(Hadamard–Bergman convolution operators. Complex analysis operator theory)
we extend the introduced in the mentioned paper notion of Hadamard–Bergman
convolution operators to a weighted settings. We treat operators of fractional
integration and differentiation as important examples of operators in the above
mentioned class, and study mapping properties of certain generalized potentials in
generalized Hölder spaces.

Keywords Hadamard–Bergman convolutions · Holomorphic fractional integrals
and derivatives · Hölder space

1 Introduction

In the recent paper by A. Karapetyants and S. Samko [16] there was introduced
the notion of Hadamard–Bergman convolution. Here we extend the results of the
mentioned paper to the weighted case, i.e., we study convolutions

g × f (z) =
∫
D

g(w)f (zw)dAλ(w), z ∈ D,

where dAλ(z) = (λ+ 1)(1 − |z|2)λdA(z), and dA(z) = 1
π
dxdy, z = x + iy ∈ D.

Here either f and g are both in H(D), or g ∈ L1
λ(D) and f ∈ H(D), see Sect. 3 for

definitions.

S. A. Aghekyan · A. N. Karapetyants (�)
Institute of Mathematics, Mechanic and Computer Sciences & Regional Mathematical Center,
Southern Federal University, Rostov-on-Don, Russia

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. N. Karapetyants et al. (eds.), Operator Theory and Harmonic Analysis,
Springer Proceedings in Mathematics & Statistics 357,
https://doi.org/10.1007/978-3-030-77493-6_1
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2 S. A. Aghekyan and A. N. Karapetyants

Introducing the weight parameter is not just a technical issue; it seems more natu-
ral to consider such weighted convolutions and corresponding weighted Hadamard–
Bergman operators in view of the important examples such as the weighted
operators of fractional integration and differentiation (see [26] and also Sect. 5),
which are particular cases of the Hadamard–Bergman convolution operators.

Certainly the proofs for the weighted case in most occasions are similar to the
unweighted situation, however the corresponding formulas and conclusions can
provide some tricky issues in view of the weight parameter. Therefore we prefer
to provide a reader with a proof or at least with a sketch of the proof.

The idea can be developed further in the direction of Bergman type operators
which appear in the study of generalized holomorphic functions related to Vekua
and some other equations. Such study attracts now attention of many authors, see
e.g. [5, 6, 14] and references therein. We plan such investigation in another work.

The paper is organized as follows. Section 2 collects necessary preliminaries.
In Sect. 3 we give definitions and discuss some properties of weighted Hadamard–
Bergman convolutions, and in Sect. 4 we proceed with the corresponding operators.
The important examples, the operators of weighted fractional integrodifferentiation,
are discussed in Sect. 5. Some mapping properties in weighted Lebesgue spaces are
discussed in Sects. 6, and 7 presents mappings by weighted fractional operators in
generalized Hölder spaces. This section serves as an example of application of our
results.

2 Preliminaries

Let dA(z) = 1
π
dxdy be the normalized Lebesgue measure on the unit disc D. Let

−1 < λ < +∞, dAλ(z) = (λ+ 1)(1 − |z|2)λdA(z).We equip weighted Lebesgue
spaces Lpλ(D) = Lp(D, dAλ) with the norm

‖f ‖p,λ =
(∫

D

|f (z)|pdAλ(z)

) 1
p

, 1 � p <∞, (1)

and we treat the case p = ∞ as usual: ‖f ‖∞ = esssupz∈D|f (z)|. By Apλ (D), as
usual, we denote the subspace in Lpλ(D) consisting of holomorphic in D functions
(see [3, 4, 9, 10]) and also [26, 27]. LetH(D) be the set of functions f, holomorphic
in D, equipped with the topology defined by the countable set of norms

‖f ‖n = sup
|z|<1− 1

n+1

|f (z)| = sup
|z|<1− 1

n+1

∣∣∣∣∣
∞∑
m=0

fmz
m

∣∣∣∣∣ , n = 1, 2, . . . , (2)
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where fm are the Taylor coefficients of f :

fm = f (m)(0)

m! = 1

2πi

∫
|τ |=r

f (τ )

τm+1 dτ (3)

= 1

(λ+ 1)B(r2;m+ 1, λ+ 1)

∫
|w|<r

f (w)wmdAλ(w),

where

B(τ ; a, b) =
∫ τ

0
ta−1(1 − t)b−1dt, a > 0, b > 0, τ > 0

is the incomplete Beta-function, see [7, page 910]. The space H(D) may be
identified with the set of series

∞∑
n=0

anz
n such that lim sup

n→∞
|an| 1

n � 1.

It can be viewed as a subspace of the space S of all formal power series f =∑∞
n=0 fnz

n or, which is the same, with the space of sequences {fn}∞n=0. By
L(H(D)) we denote the set of linear operators on H(D).We refer to the book [25],
Chapter 1.3.1, for more details.

The following lemma is intuitive.

Lemma 2.1 Let f ∈ Apλ (D), 1 � p <∞, and 0 � α < 2, then

∫
D

|f (w)|p
|w|α dAλ(w) � C‖f ‖pp,λ, 1 � p <∞,

where C > 0 does not depend on f.

The following lemma follows from part (a) of Lemma 3.10 in [27].

Lemma 2.2 Let α + β < 2 + λ, λ < β < λ+ 1. Then 1
(1−|z|)α(1−z)β ∈ L1

λ(D).

We will need the following asymptotic of the ratio of Gamma functions:

�(z + a)
�(z + b) = z

a−b
N∑
m=0

Cm

zm
+ za−bO

(
z−N−1

)
, |z| → ∞, (4)

where | arg(z + a)| < π, C0 = 1, and Cm = (−1)m�(b−a+m)
m!�(b−a) Ba−b+1

m (a), m =
1, 2, . . . , N, are expressed in terms of generalized Bernoulli polynomials, see [19]
and [22, page 17].
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3 Weighted Hadamard–Bergman Convolution of Functions

3.1 Convolutions of Holomorphic Functions

Keeping a study of weighted holomorphic spaces in mind, we define the Hadamard
product type composition of holomorphic functions in H(D) :

f (z) =
∞∑
m=0

fmz
m and g(z) =

∞∑
m=0

gmz
m,

as follows

f ∗ g(z) = (λ+ 1)
∞∑
k=0

B(k + 1, λ+ 1)fkgkzk, z ∈ D.

See, e.g. [8, 22, 25]) for Hadamard product composition (Hadamard fractional
integrodifferentiation) theory. Here the right hand side is well defined for all
f, g ∈ H(D), since H(D) is identified with the set of series

∑∞
n=0 anz

n with

lim supn→∞ |an| 1
n � 1.

From the above formula at least formally we have for f ∈ A2
λ(D) :

f ∗ f (z) =
∫
D

|f (z)|2dAλ(z) = (λ+ 1)
∞∑
m=0

B(m+ 1, λ+ 1)|fm|2.

See Theorem 3.1 below for the justification of this formula.
We extend the definition of Hadamard–Bergman convolution given in [16] for

the weighted case, though in most places in this paper we skip the word “weighted”.

Definition 1 Let f, g ∈ H(D). The construction

g × f (z) =
∫
D

g(w)f (zw)dAλ(w), z ∈ D, (5)

is called the (weighted) Hadamard–Bergman convolution of functions g, f ∈
H(D). Here and everywhere in the sequel, the Hadamard–Bergman convolution of
holomorphic functions is treated in the improper sense as justified in Theorem 3.1
below.
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Theorem 3.1 Let f, g ∈ H(D). Then the following statements are valid

1. For any 0 < r < 1, z ∈ D

∫
|w|<r

f (w)g(zw)dAλ(w) =
∫
|w|<r

f (zw)g(w)dAλ(w) (6)

= (λ+ 1)
∞∑
k=0

B(r2; k + 1, λ+ 1)fkgkzk.

2. The integral

∫
D

f (w)g(zw)dAλ(w), z ∈ D, (7)

exists as improper integral:

∫
D

f (w)g(zw)dAλ(w) = lim
r→1

∫
|w|<r

f (w)g(zw)dAλ(w)

= (λ+ 1)
∞∑
k=0

B(k + 1, λ+ 1)fkgkzk.

Proof We have

∫
|w|<r

f (zw)g(w)dAλ(w) =
∞∑
k=0

fkz
k

∫
|w|<r

g(w)wkdAλ(w).

It remains to refer to (3); the first equality of (6) immediately follows. For the proof
of the second statement we note that from (3) there follows that the integral

∫
D

f (w)wmdAλ(w) = lim
r→1

∫
|w|<r

f (w)wmdAλ(w)

exists as improper integral for all f ∈ H(D). Now it suffices to use (6). ��
It is clear from the above, but it worth to underline separately that the convolution

formula (5) is symmetric in the sense that:

g × f (z) =
∫
D

g(w)f (zw)dAλ(w), (8)

=
∫
D

g(zw)f (w)dAλ(w), z ∈ D.
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This formula holds in the more general “integration by parts” form:

∫
D

(Dmf )(zw)g(w)dAλ(w) =
∫
D

f (w)(Dmg)(zw)dAλ(w), (9)

where Dmf (z) = zm
(
d
dz

)m
f (z).

3.2 Convolutions of Holomorphic and non Holomorphic
Functions

Convolution formula (5) may be in general considered for non necessarily holomor-
phic functions. In the formula (5) the function g maybe taken non holomorphic,
while f ∈ H(D).

However, in this case we are not able to define the convolution as an improper
integral and have to assume g ∈ L1

λ(D). Also, the symmetry (8) does not hold, in
general.

We define the Fourier type transform of a function g ∈ L1
λ(D) :

g ∈ L1
λ(D) −→ μm,λ(g) =

∫
D

g(w)wmdAλ(w), m = 0, 1, . . . . (10)

In the case g ∈ L1
λ(D) and f ∈ H(D) the convolution (5) also reduces to

multiplier form, i.e.

g × f (z) =
∞∑
m=0

μm,λ(g)fmz
m, z ∈ D. (11)

Therefore, it is clear, that the Hadamard–Bergman convolution (5) of g ∈ L1
λ(D)

and f ∈ H(D) may be represented as a convolution with a certain holomorphic
kernel ghol :

g × f (z) =
∫
D

ghol(w)f (zw)dAλ(w) (12)

The relation between the holomorphic kernel ghol and the initially given non
holomorphic kernel g is as follows:

ghol(z) = BλDg(z) =
∫
D

g(w)

(1 − zw)2+λ dAλ(w), z ∈ D,

where Bλ
D

is the weighted Bergman projection. Indeed, consider the holomorphic
function ghol(z) = ∑∞

m=0 μm,λ(g)z
m in D, where μm,λ(g) are given in (10). We
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have

ghol(z) =
∞∑
m=0

zm
1

(λ+ 1)B(m+ 1, λ+ 1)

∫
D

g(w)wmdAλ(w)

=
∫
D

g(w)

( ∞∑
m=0

1

(λ+ 1)B(m+ 1, λ+ 1)
zmwm

)
dAλ(w)

=
∫
D

g(w)

(1 − zw)2+λ dAλ(w) = BλDg(z), z ∈ D.

Here we used the known expansion formula for the weighed Bergman kernel for the
unit disc:

Kλ(z,w) := 1

(1 − zw)2+λ =
∞∑
m=0

1

(λ+ 1)B(m+ 1, λ+ 1)
zmwm, z,w ∈ D.

The extension of the notion of Hadamard–Bergman convolution for non holo-
morphic function g is very important for further analysis. An immediate example
of the Hadamard–Bergman convolution is the construction given by the weighted
Bergman projection Bλ

D
defined on g ∈ L1

λ(D) as

Bλ
D
g(z) =

∫
D

Kλ(z,w)g(w)dAλ(w) =
∫
D

g(w)

(1 − zw)2+λ dAλ(w), z ∈ D.

Further development concerns the theory of Toeplitz operators; we plan to threat
this issue in another paper.

4 Weighted Hadamard–Bergman Convolution Operators

Fix a function g ∈ H(D) and define the the Hadamard–Bergman convolution
operator as an operator

Kgf (z) =
∫
D

g(w)f (zw)dAλ(w)

= lim
r→1

∫
|w|<r

g(w)f (zw)dAλ(w), f ∈ H(D).

We note that for the Hadamard–Bergman convolution operator Kg with holomor-
phic kernel g(z) =∑∞

m=0 gmz
m we have

Kgf (z) =
∞∑
m=0

μm,λ(Kg)fmz
m, for f (z) =

∞∑
m=0

fmz
m ∈ H(D),
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where

μm,λ(Kg) ≡ μm,λ(g) = (λ+ 1)B(m+ 1, λ+ 1)gm, m = 0, 1, . . . . (13)

The converse is also true: every operatorK ∈ L(H(D)) of the form

Kf (z) =
∞∑
m=0

μmfmz
m, z ∈ D, (14)

(such operator is called a coefficient multiplier and it is automatically continuous,
see e.g., [21]) is represented as Hadamard–Bergman convolution with the kernel

g(z) = 1

(λ+ 1)

∞∑
m=0

μmz
m

B(m+ 1, λ+ 1)
= K

(
1

(1 −w)2+λ
)
(z), z ∈ D. (15)

Indeed, we have

Kf (z) = K
( ∞∑
m=0

fmz
m

)
=

∞∑
m=0

fmμmz
m

= (λ+ 1)
∞∑
m=0

B(m+ 1, λ+ 1)gmfmzm, (16)

where gm = μm
(λ+1)B(m+1,λ+1), and we arrive at the Hadamard–Bergman convolution

operator with the kernel

g(z) = 1

(λ+ 1)

∞∑
m=0

μmz
m

B(m+ 1, λ+ 1)

= K
(

1

(λ+ 1)

∞∑
m=0

zm

B(m+ 1, λ+ 1)

)
= K 1

(1 − z)2+λ .

The above results can be also obtained from the results of [24] on the general form
of Hadamard or coefficient type multipliers (see also [20]).

Fix now a function g ∈ L1
λ(D). The Hadamard–Bergman convolution operator

Kg is well defined as

Kgf (z) =
∫
D

g(w)f (zw)dAλ(w), f ∈ H(D), z ∈ D. (17)
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It possesses the multiplier realization

Kgf (z) =
∞∑
m=0

μm,λ(Kg)fmz
m, for f (z) =

∞∑
m=0

fmz
m ∈ H(D),

where μm,λ(Kg) ≡ μm,λ(g), and μm,λ(g) is given in (10).
We conclude this section with the following important remark. By a change of

variables the convolution operator Kg with the kernel g ∈ L1
λ(D) can be written in

the form

Kgf (z) = λ+ 1

|z|2
∫
|w|<|z|

g

(
w

z

)(
1 −

∣∣∣∣wz
∣∣∣∣
2
)λ
f (w)dA(w), z ∈ D. (18)

In this form the operator Kg is well defined in the setting of measurable functions
for which the integral converges. It is represented as the integral operator with
homogeneous of degree (−2) kernel invariant with respect to rotations. Such
operators of the form (18) belong to the class of operators with homogeneous
kernels well studied in analysis (see books [11, 12], and review paper [13]).
The operators (18) may be also considered as generalized Hardy operators. The
algebra of operators with homogeneous kernels is well studied (see [1, 2] for recent
development in this direction); these results may be used for the study of the algebra
of Hadamard–Bergman convolution operators in the framework of holomorphic
functions. We plan to study such questions in another paper. The multidimensional
case is of a special interest as well. Hoverer in such a case we most likely need to
deal with a general Banach lattices and orthogonally theory (see e.g., [17, 18]) using
homogeneous complex polynomials which are substitution of spherical harmonics
techniques proved to work very well in the case of operators with homogeneous
kernel in real analysis.

5 Operators of Fractional Integrodifferentiation

The operator of fractional integration

I
α
λf (z) =

∫
D

f (w)

(1 − zw)2+λ−α dAλ(w), α > 0, λ > −1. (19)

is an example of Hadamard–Bergman convolution. Direct calculation provides

I
α
λf (z) =

�(2 + λ)
�(2 + λ− α)

∞∑
m=0

�(m+ 2 + λ− α)
�(2 +m+ λ) fmz

m, (20)

α > 0, λ 
= −2,−3, . . . .
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The formula (20) defines I
α
λ for a wider range of parameter λ, i.e. λ ∈ R, λ 
=

−2,−3, . . . .
We will also need the operator of fractional differentiation

D
α
λf (z) =

�(2 + λ− α)
�(2 + λ)

∞∑
m=0

�(2 +m+ λ)
�(m+ 2 + λ− α)fmz

m, (21)

α > 0, λ− α 
= −2,−3, . . . ,

so that

D
α
λI
α
λf (z) = I

α
λD

α
λf (z) = f (z), z ∈ D.

In order to distinguish between integration and differentiation we prefer to
consider Iαλ and D

α
λ for positive α > 0 . Clearly the corresponding constructions

(20) and (21) make sense for α ∈ R, and, in particular,

D
α
λ = I

−α
λ−α, λ− α 
= −2,−3, . . . . (22)

The operator Iαλ does not satisfy the semigroup property, however we can indicate
the following rule for the composition:

I
α
λI
β
λ−α = I

α+β
λ , (23)

where α > 0, β > 0 and neither λ nor λ− α equal to −2,−3, . . . .
In the following theorem we find a representation of the operator (21) in

convolution terms with the kernel expressed in the term of elementary function.
Denote

Df (z) = z d
dz
f (z).

Theorem 5.2 Let 0 < α < 1 and λ− α 
= −2,−3, . . ., then

D
α
λf (z) =

(
E + 1

1 + λD
)
I

1−α
λ−αf (z), z ∈ D,

where Ef = f is the identity operator. Hence, for λ− α > −1 we have

D
α
λf (z) =

(
E + 1

1 + λD
)∫

D

f (w)

(1 − zw)1+λ dAλ−α(w), z ∈ D.
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Proof We have
(
E + 1

1+λD
)
I

1
λ = E, hence

D
α
λ = I

−α
λ−α = EI−αλ−α =

(
E + 1

1 + λD
)
I

1
λI
−α
λ−α

=
(
E + 1

1 + λD
)
I
−α
λ−αI

1
λ =

(
E + 1

1 + λD
)
I

1−α
λ−α,

according to (23). ��
Lemma 5.3 Let α > 0, β ∈ R. Then

I
α
λ

1

(1 − z)β = A(z)

(1 − z)β−α , λ 
= −2,−3, . . . , z ∈ D, (24)

D
α
λ

1

(1 − z)β = B(z)

(1 − z)β+α , λ− α 
= −2,−3, . . . , z ∈ D, (25)

where A,B ∈ H(D), and A ∈ C(D), A(1) = 1 when β − α < 1, and B ∈ C(D),
B(1) = 1, when β + α < 1.

Besides this for m = 0, 1, 2, . . .

I
α
λ

zm

(1 − z)2+λ+m = zm

(1 − z)2+λ−α+m , λ 
= −2,−3, . . . , z ∈ D, (26)

D
α
λ

zm

(1 − z)2+λ+m = zm

(1 − z)2+λ+α+m , λ− α 
= −2,−3, . . . , z ∈ D. (27)

Proof To prove (24) we calculate Taylor expansion of

R(z) ≡ I
α
λ

1

(1 − z)β −
�(β − α)�(2 + λ)
�(β)�(2 + λ− α)

1

(1 − z)β−α

and then use the asymptotic behaviour of Gamma function (4):

R(z) = �(2 + λ)
�(β)�(2 + λ− α)

∞∑
m=0

cn,α,β,λz
n,

cn,α,β,λ = �(n+ β)
�(n+ 1)

�(n+ 2 + λ− α)
�(n + 2 + λ) − �(n+ β − α)

�(n+ 1)

= O
(

1

n2+α−β

)
, n→∞.

Now (24) is clear. The formula (25) follows by (22).
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To prove the second statement observe that for λ > −1 we have

I
α
λ

1

(1− z)2+λ =
∫
D

dAλ(w)

(1 − zw)2+λ−α(1 −w)2+λ

=
∫
D

dAλ(w)

(1 − zw)2+λ(1− w)2+λ−α

= Bλ
D

1

(1 − z)2+λ−α =
1

(1 − z)2+λ−α ,

for z ∈ D. Therefore,

DmIαλ
1

(1 − z)2+λ =
�(2 + λ− α +m)
�(2 + λ− α)

zm

(1 − z)2+λ−α+m , z ∈ D.

From the other side, differentiating under the integral sign we have

DmIαλ
1

(1 − z)2+λ = Dm
∫
D

dAλ(w)

(1 − w)2+λ(1 − zw)2+λ−α

= zm�(2 + λ− α +m)
�(2 + λ− α)

∫
D

wmdAλ(w)

(1 −w)2+λ(1 − zw)2+λ+m−α

= �(2 + λ− α +m)
�(2 + λ− α)

∫
D

wmdAλ(w)

(1 − zw)2+λ(1 −w)2+λ+m−α ,

for z ∈ D. Now for λ > −1 the formula (26) follows by comparing the above
formulas. The constructions in both sides of the formula (26), as functions of λ are
holomorphic in C except for the poles λ = −2,−3, . . . . Therefore, by arguments
of analytic continuation, the formula (26) remains valid for all λ ∈ R except for
λ = −2,−3, . . . . Finally, the formula (27) follows by (22). ��

6 Some Mapping Results in L
p

λ
(D)

6.1 Young Type Theorem

Theorem 6.3 Let f ∈ Apλ (D), g ∈ Lqλ(D), λ > −1. Let 1 � p, q, r � ∞,
1
p
+ 1
q
� 1, then

‖Kgf ‖r,λ � Cλ‖g‖q,λ‖f ‖p,λ, 1

r
= 1

p
+ 1

q
− 1, (28)

where the constant does not depend on f and g.
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Proof The case r = p = ∞ is obvious with Cλ = 1 :

‖Kgf ‖∞ � ‖g‖1,λ‖f ‖∞. (29)

Let now r = p = 1. By Fubini theorem we have

‖Kgf ‖1,λ �
∫
D

|g(w)|dAλ(w)
∫
D

|f (zw)|dAλ(z)

= (λ+ 1)
∫
D

|g(w)|
|w|2 dAλ(w)

∫
|z|<|w|

|f (z)|
(

1 −
∣∣∣ z
w

∣∣∣2
)λ

dA(z)

= (λ+ 1)
∫
|w|< 1

2

|g(w)|
|w|2 dAλ(w)

∫
|z|<|w|

|f (z)|
(

1 −
∣∣∣ z
w

∣∣∣2
)λ

dA(z)

+(λ+ 1)
∫

1
2<|w|<1

|g(w)|
|w|2 dAλ(w)

∫
|z|<|w|

|f (z)|
(

1 −
∣∣∣ z
w

∣∣∣2
)λ

dA(z).

Due to known estimate |f (z)| � ‖f ‖p,λ
(1−|z|2) 2+λ

p

, z ∈ D we have |f (z)| �
(

4
3

)2+λ ‖f ‖1,λ for |z| < 1
2 , hence

(λ+ 1)
∫
|w|< 1

2

|g(w)|
|w|2 dAλ(w)

∫
|z|<|w|

|f (z)|
(

1 −
∣∣∣ z
w

∣∣∣2
)λ

dA(z)

�
(

4

3

)2+λ
‖f ‖1,λ

∫
|w|< 1

2

|g(w)|dAλ(w) �
(

4

3

)2+λ
‖f ‖1,λ‖g‖1,λ.

For the second term similar estimate is also trivial:

(λ+ 1)
∫

1
2<|w|<1

|g(w)|
|w|2 dAλ(w)

∫
|z|<|w|

|f (z)|
(

1 −
∣∣∣ z
w

∣∣∣2
)λ

dA(z)

� 4(λ+ 1)
∫

1
2<|w|<1

|g(w)|dAλ(w)
∫
|z|<|w|

|f (z)|
(

1 − |z|2
)λ

dA(z)

� 4‖f ‖1,λ‖g‖1,λ.

Hence, we obtain

‖Kgf ‖1,λ �
(

4 +
(

4

3

)2+λ)
‖g‖1,λ‖f ‖1,λ. (30)
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In view of (29) and (30), applying Riesz-Thorin-Stein-Weiss interpolation theorem
[23] we obtain

‖Kgf ‖p,λ � Cλ‖g‖1,λ‖f ‖p,λ, 1 � p � ∞. (31)

Here Cλ does not depend on f and g.
By Hölder inequality

‖Kgf ‖∞ � ‖g‖p′,λ‖f ‖p,λ, 1 � p � ∞. (32)

Combining (31) with (32) and again interpolating between 1 andp′ we finally obtain
(28). ��

As an anonymous reviewer kindly noticed, in fact Theorem 6.3 states that the
bilinear operator B(f ; g) = f × g is bounded (with respect to the norm ‖ · ‖r,λ on
its rage) on the corresponding product of spaces.

6.2 Sobolev Type Theorem

Besides the operator Iαλ, consider also

I
α,+
λ f (z) =

∫
D

f (w)

|1 − zw|2+λ−α dA
λ
(w), α > 0, λ > −1, z ∈ D,

and the following two more general operators as well

T αa,bf (z) = (1 − |z|2)a
∫
D

f (w)

(1 − zw)2−α+a+b dAb(w),

Sαa,bf (z) = (1 − |z|2)a
∫
D

f (w)

|1 − zw|2−α+a+b dAb(w).

The following Sobolev type theorem is valid.

Theorem 6.4 Let 0 < α < 2, 1 < p < 2
α

, a + b � 0, and b > − 1
p
(1 − α

2 ). Then

‖T αa,bf ‖q,bq � C‖f ‖p,bp,
1

q
= 1

p
− α

2
,

‖Sαa,bf ‖q,bq � C‖f ‖p,bp,
1

q
= 1

p
− α

2
.


