
Springer Monographs in Mathematics

Lim-FM.qxd  17/08/06  12:41 PM  Page i



Chjan Lim Joseph Nebus

Vorticity, Statistical
Mechanics, and 
Monte Carlo Simulation

Lim-FM.qxd  17/08/06  12:41 PM  Page iii



Mathematics Subject Classification (2000): 76-01, 76B47, 82-01, 82B26, 82B80

Library of Congress Control Number: 2006930876

ISBN-10: 0-387-35075-6
ISBN-13: 978-0387-35075-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Chjan Lim
Department of Mathematical Sciences
Rensselaer Polytechnic Institute
Troy, NY 12180-3590
USA
limc@rpi.edu

Joseph Nebus
Department of Mathematics
National University of Singapore
Singapore
nebusj@rpi.edu

Lim-FM.qxd  17/08/06  12:41 PM  Page iv



To Siew Leng and Sean – CCL

To Joseph Francis and Dr Mary Casey – JN



Preface

This book is meant for an audience of advanced undergraduates and graduate
students taking courses on the statistical mechanics approach to turbulent
flows and on stochastic simulations. It is also suitable for the self-study of
professionals involved in the research and modelling of large scale stochastic
fluid flows with a substantial vortical component.

Several related ideas motivate the approach in this book, namely, the
application of equilibrium statistical mechanics to two-dimensional and 2.5-
dimensional fluid flows in the spirit of Onsager [337], and Kraichnan [227], is
taken to be a valid starting point, and the primary importance of non-linear
convection effects combined with the gravitational and rotational properties
of large scale stratified flows over the secondary effects of viscosity is assumed.
The latter point is corroborated by the many successful studies of fluid vis-
cosity which limit its effects to specific and narrow regions such as boundary
layers, and to the initial and transient phases of the experiment such as in the
Ekman layer and spin-up [154] [344].

The main point of applying equilibrium statistical methods to the problems
in this book is underscored by the values of the Knudsen number K = λ/l
(where λ is the mean free path of the molecules of the fluid and l is the
smallest relevant macroscopic length scale in the flow) in the body of two-
dimensional and 2.5-dimensional large scale fluid flows treated here, namely
K < 10−6. We further elucidate this point by stressing the fact that in this
book, the methods of statistical mechanics are applied not to the fluid as
an ensemble of molecules but rather to the flow as an ensemble of vorticity
parcels. Nonetheless, many of the techniques used in the statistical treatment
of molecular thermodynamics, including the spin-lattice models pioneered in
the study of magnetism in condensed matter physics, can be adapted for our
primary purpose here.

Our approach of applying equilibrium statistical mechanics to vortical
flows centers on the extremization of the free energy F = U − TS where
U is the internal energy and S is the entropy. Besides the standard applica-
tion of Planck’s theorem to thermal systems at positive temperatures, where
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one minimizes the free energy, we are also interested in vortex problems at
negative temperatures, where one maximizes the free energy to obtain the
thermodynamically stable statistical equilibria. This point is explored in a
simple mean field theory for barotropic flows on a rotating sphere that relates
for the first time positive and negative critical temperatures of phase tran-
sitions to the key variables of planetary spin, relative enstrophy and kinetic
energy.

We note that at low enough positive temperatures T, the minimization of
F can be profitably approximated by the easier ground state problem. We
further note that the ground state problem by virtue of the minimization
of augmented energy functionals, is directly related to steady-state flows of
the associated Euler equations. Finally, these special steady-states are related
back to decaying Navier-Stokes flows by the Principle of Selective Decay or
Minimum Enstrophy, which states that the Dirichlet Quotient (defined as
enstrophy over energy) in many damped two-dimensional viscous flows tends
asymptotically to a minimum, achieved by the special steady-states.

Vortex statistics is special not only because negative temperatures occur
at high energies (a curious phenomenon we will explain in detail), but be-
cause it is also characterized by the wide range of temperatures over which
extremals of the free energy are close to the corresponding extremals of the
internal energy. We will explore the physical reasons for these interesting
phenomena in several archetypical examples of vortex dynamics. The most
important of these problems are the crystalline or polyhedral equilibria of N
point vortices on the sphere, the thermal equilibria of the Onsager vortex gas
on the unbounded plane with respect to dynamical equilibria of the rotat-
ing two-dimensional Euler equations, and the thermal equilibria at negative
temperatures of barotropic vortex dynamics on a rotating sphere.

The works, teachings and direct interactions of many scientists have con-
tributed to this book; it is not possible to mention all their names. We ac-
knowledge in gratitude, Denis Blackmore, Alexandre Chorin, Shui Nee Chow,
Peter Constantin, Weinan E, Marty Golubitsky, Leslie Greengard, Tom Hou,
Choy Heng Lai, Peter Lax, Andy Majda, Paul Newton, Don Saari, David
Sattinger, Junping Shi, Lu Ting, and Lawrence Sirovich who taught one of us
kinetic theory.

We would like to thank graduate students Tim Andersen and Xueru Ding
for their contributions to graduate seminars at Rensselaer Polytechnic Insti-
tute where some of the ideas for this book were tested, and Syed M. Assad for
past and continuing collaborations of which some have found their way into
this book.

We would like to thank the Department of Mathematical Sciences at Rens-
selaer Polytechnic Institute and the Departments of Computational Science
and of Mathematics at the National University of Singapore for their support
of our work.

We thank Achi Dosanjh of Springer Science for initiating and completing
the editorial process for this book.
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1

Introduction

1.1 Connecting Statistical Mechanics to Vortex
Problems

The “unreasonable effectiveness of mathematics in the physical sciences,” a
phrase coined by Eugene Wigner1, is often mentioned as an exotic property
of mathematics. It is an expression of the wonder that models constructed
from purely theoretical considerations and reasoned out can predict real sys-
tems with great precision. A modern instance of this wonder is found in the
writings of Subrahmanyan Chandrasekhar2: “In my entire scientific life, the
most shattering experience has been the realization that an exact solution of
Einstein’s equations of general relativity, discovered by Roy Kerr, provides
the absolutely exact representation of untold numbers of massive black holes
that populate the Universe.”

The relationship between mathematics and reality was remarked on even
by the Pythagoreans, but was probably not seen as noteworthy to the point
of becoming cliché in the earliest era of mechanics. A prediction of the orbits
of planets and comets based on Newtonian mechanics and gravitation, for
example, could be excellent; but since the laws describing gravitation came
from observations of planetary orbits that should be expected. If observation
and theory did not agree the theory would not have been used.

It is probably in the laws of gasses that this effectiveness became dis-
tracting. The dynamics of a gas can in theory be developed by a Newtonian
system, provided one knows to represent it as particle interactions – atomic
theory, not generally accepted until the 19th century and still worth debate
until Brownian motion was explained – and one knows the laws by which
1 Eugene Paul Wigner, 1902 - 1995, introduced “parity” to quantum mechanics

and discovered the curious properties of the strong nuclear force. [288]
2 Subrahmanyan Chandrasekhar, 1910 - 1995, was a master of the mechanisms of

stars, and predicted the existence of black holes from 1930. [288]
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they interact – quantum theory – and one can handle the staggering number
of variables needed. These were formidable challenges.

Attempted instead were models based on simple theoretical constraints
and few details. Assuming simply that gas was made of particles and these
particles moved independently provides the ideal gas law which had been
noted and publicized by Robert Boyle, 1627-1691, and Jacques-Alexandre-
César Charles, 1746-1823, and others centuries earlier. For such a simple
model matching the general behavior of real gases was a surprise. Adding
the assumptions atoms had a minimum size and some interaction allowed Jo-
hannes Diderik van der Waals, 1837-1923, to offer in 1873 a correction to the
ideal gas law and an even better match to observation [25] [64].

Erwin Schrödinger3 [389], in his compelling 1944 essay “What is life?”, pre-
sented a famous argument for the apparent exactness and determinateness of
macroscopic laws which are nonetheless based on physical laws of a statistical
nature for the detailed components of a system. He argued the macroscopic
law of bulk diffusion (which is clearly deterministic) is based on the completely
and purely statistical phenomenon of random walks at the microstate level.
The random walk of molecules is not only statistical in nature but it is also
completely symmetrical: a molecule takes a jump to the right or left in say
a one-dimensional model with equal probability. Yet its consequence at the
macroscopic level is clearly asymmetric because the law of bulk diffusion has
a clear direction: from high concentration to low concentration.

This is our textbook’s inspiration. A simple model of fluid flow will be made
from theoretical considerations. The model will be studied through several
alternative strategies and adjusted to make it more natural.

We are more concerned with statistical equilibria than with dynamical
equilibria. A dynamical equilibrium requires the components of a state to be
in a spatially rigid and temporally stationary relationship with each other.
This is too restrictive for the problems in this book. Statistical equilibria have
stationary macroscopic variables which offer vastly more degrees of freedom in
the fine details of the state. A rule of thumb for the appearance of seemingly
exact macroscopic laws is that the macroscopic system must have large enough
number N of microscopic components in order for the fluctuations of size
1/

√
N in the macroscopic variable to be small.

This book is our attempt to connect two main topics of asymptotic states
in vortex flows and equilibrium statistical mechanics. While fully developed
turbulence in a damped driven flow is a non-equilibrium phenomena, many
powerful arguments (by Kolmogorov [223], [224], Oboukhov [330]) have been
presented, asserting that for certain inertial ranges in the power spectrum of
driven viscous flows, the methods of equilibrium statistical mechanics can be
adopted. We will avoid such arguments and treat the phenomena of isolated
3 Erwin Rudolf Josef Alexander Schrödinger, 1887 - 1961, got the inspiration for

the wave form of quantum mechanics from a student’s suggestion at a seminar
Schrödinger gave on the electron theory of Louis de Broglie, 1892 - 1987. [288]
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inviscid fluid turbulence within the context of equilibrium statistical mechan-
ics.

The concept of negative temperature was introduced into vortex dynamics
by Lars Onsager. Vortical systems in two dimensions and in 2.5 dimensions
(which we will describe) support negative temperatures at high kinetic ener-
gies where the thermal equilibria are characterized by highly organized large-
scale coherent structures. Thus, besides the standard application of Planck’s
theorem to thermal systems at positive temperatures, where one minimizes
the free energy, we are also interested in vortex problems at negative tem-
peratures, where one maximizes the free energy to obtain stable statistical
equilibria.

In addition to the first common theme of Monte Carlo simulations of orga-
nized and of turbulent fluid flows in this book, a second theme is the relation-
ship between dynamics and equilibrium statistical mechanics: the extremals
(maxima and minima) of the energy determine the equilibria, but the ex-
tremals of the free energy give us the most probable states of the equilibrium
statistics.

Vortex statistics has many noteworthy examples where the range of tem-
peratures is quite large, over which extremals of the free energy are close to the
corresponding extremals of the internal energy. We will explore the physical
reasons for these interesting phenomena in several archetypical examples of
vortex dynamics. The most important of these problems are the crystalline or
polyhedral equilibria of N point vortices on the sphere, the thermal equilibria
of the Onsager vortex gas on the unbounded plane with respect to dynamical
equilibria of the rotating two-dimensional Euler equations, and the thermal
equilibria at negative temperatures of barotropic vortex dynamics on a rotat-
ing sphere.

In the first case, N similar point vortices on a sphere, the Monte Carlo
simulator running at positive temperatures achieves thermal equilibria which
are very close to the polyhedral relative equilibria of the dynamical equa-
tions. These polyhedral crystalline states have extremely regular and uniform
spatial separations, and thus minimize the interaction energy though with-
out simultaneously maximizing the entropy. This situation provides one of
the canonical ways in which minimizers of the free energy are close to the
dynamical equilibria for a range of positive temperatures.

The second case concerns the unbounded Onsager point vortex gas, whose
thermal equilibria of uniform vorticity distributions in a disk are close to the
dynamic equilibria of the rotating two-dimensional Euler equations over a
wide range of positive temperatures. The physical reason in this case is the
same as the first, that is, the free energy minimizers are given by vortex states
which minimize the internal energy.

The physical reason for the third case is that free energy maximizers cor-
responding to stable thermal equilibria at negative temperatures are achieved
by vortex states with very low entropy. Unlike standard thermodynamic appli-
cations where entropy is maximized, the solid-body rotation flow states have
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the minimum entropy and maximum kinetic energy over allowed flow states
with the same relative enstrophy.

A non-extensive continuum limit is allowed for two-dimensional flows in
a fixed finite domain. The canonical examples for such flow domains are the
fixed bounded regions on the plane, and finite but boundary-less domains such
as the surface of the sphere or of the torus. Finite boundary-less domains are
computationally convenient because boundary conditions are often complex.
And among finite, boundary-less domains the problem of flows on the sphere
is more important than flows on more topologically complex surfaces because
of their applicability to atmospheric sciences, to which we will return.

Our principal focus is the of inviscid fluids. We justify this choice – which
seems to exclude most of the fluids of the real world – on several grounds.
The first is that often the viscosity of a fluid is a minor effect, and these
slightly viscous fluids can be modelled by inviscid fluids, where we represent
the interior of the flow by a fluid without viscosity, and add boundary layers
in the regions where viscosity becomes relatively significant. More, even if we
want to consider viscous fluids, we can still represent an interesting aspect
of them – the non-linear convective aspects of the flows – by treating this
portion of the flow as an inviscid fluid.

And furthermore much of what we can study in the thermal equilibrium
of inviscid two-dimensional vortex dynamics (such as the minimizers of free
energy functions) can be extended naturally to the ground states of augmented
energy functionals, or to the steady states of two-dimensional Euler equations.
These in turn are related, by the Principle of Selective Decay, also termed the
Principle of Minimum Enstrophy, to the asymptotic flows of the decaying
two-dimensional Navier4-Stokes5 equations. The minimizers of the Dirichlet
quotient, the ratio of enstrophy to energy, corresponds to the inviscid steady
states we explicitly study [26].

1.2 Euler’s Equation for Inviscid Fluid Flow

To write Leonhard Euler’s6 equation for fluid flow, we begin with the fluid
velocity. Letting u stand for the velocity and ρ the density of the fluid, we
4 Claude Louis Marie Henri Navier, 1785 - 1836, was in his day famous as a builder

of bridges. He developed the first theory of suspension bridges, which had previ-
ously been empirical affairs. [288]

5 George Gabriel Stokes, 1819 - 1903, besides the theory of fluid flow and the
theorem about the integrals over surfaces, provided the first theory and the name
for fluorescence. [288]

6 It is almost impossible to overstate the contributions of Leonhard Euler, 1707 -
1783. The scope is suggested by the fact after his death it required fifty years
to complete the publication of the backlog of his papers. He is credited with the
modern uses of the symbols e, i, π, Σ, the finite differences Δt and Δ2t, and f(x)
as a general symbol for a function. [288]
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choose some fluid properties. We want the fluid to be incompressible, inviscid,
and to experience no outside forces.

The obviously important properties of the fluid are the density at a time
t and a point r – call that ρ(t, r) – and the velocity, again a function of time
and position. Call that u(t, r). We will build on three properties [88].

First is the conservation of mass. Suppose the fluid is incompressible, which
is nearly correct for interesting fluids such as water at ordinary temperatures
and pressures. Incompressibility demands a divergence of zero:

∇ · u = 0 (1.1)

A nonzero divergence over some region A corresponds to either a net loss
or net gain of mass, so the fluid density is changing and the fluid is either
expanding or compressing.

The next property is the conservation of momentum. The momentum in-
side region A, the total of mass times velocity, will be

p =
∫

A

ρudV (1.2)

(with dV the differential volume within the region A). So the rate of change
of the momentum in time will be

∂

∂t
p =

∫
A

∂

∂t
(ρu)dV (1.3)

Without external pressure, or gravity, or viscosity or intermolecular forces
the momentum over the region A cannot change on the interior. Only on the
surface can momentum enter or exit A:

∂

∂t
p =

∫
∂A

(ρu)u · dS (1.4)

with ∂A the surface of A and dS the differential element of area for that
surface. Using Green’s theorem7, the integral is

∂

∂t
p = −

∫
A

ρ(u · ∇)vdV (1.5)

If there is a force, which we will generalize by calling the pressure and
denoting it as P (r, r), then momentum may enter or exit the region A, but
again only through its surface. Even more particularly only the component of
the force which is parallel to the outward unit normal vector n̂ can affect the
fluid, in or out. So the change in the momentum of the fluid caused by the
pressure term P , is
7 George Green, 1793 - 1841, besides his theorem connecting surface integrals to

volume integrals, is credited with introducing the term “potential function” in
the way we use it today. [288]



6 1 Introduction

∂

∂t
p =

∫
∂A

Pn̂dS (1.6)

= −
∫

A

∇PdV (1.7)

using again Green’s theorem.
As we may have momentum gained or lost through either the fluid flow or

through the pressure we add the two terms:

∂

∂t
p = −

∫
A

ρ(u · ∇)vdV −
∫

A

∇PdV (1.8)

Between equations 1.3 and 1.8 we have two representations of the deriva-
tive of momentum with respect to time. Setting them equal

∂

∂t
p =

∫
A

∂

∂t
(ρu)dV =

∫
A

ρ(u · ∇)udV −
∫

A

∇PdV (1.9)

for all regions A. For the middle and right half of equation 1.9 to be equal
independently of A requires the integrands be equal8:

∂

∂t
(ρu) = −ρ(u · ∇)u − ∇P (1.10)

which is Euler’s equation for inviscid, incompressible, unforced fluid flow. As-
suming incompressibility makes ρ constant in time, so we may divide it out.

Having introduced the pressure, we will proceed now to drop it for nearly
the entirety of the book, as we will find abundant interesting material even
before adding pressure to the system. In this form and confined to one spatial
dimension is often known as Burgers’ equation9, though we will keep a bit
more freedom in space:

∂

∂t
u + u · ∇u = 0 (1.11)

Up to this point we have considered only two important physical proper-
ties. The third we will add in order to convert this equation into a form more
suitable for treatment as a particle problem, which we will do in chapter 6.
There we will also change our attention from the velocity of the fluid into the
vorticity, that is, the curl of the velocity. This combination lets us recast the
flow of an inviscid fluid as a statistical mechanics problem.
8 Strictly speaking, they must be equal “almost everywhere” – the set of points that

are exceptions must have measure zero. For example, finitely many exceptions are
allowed.

9 Johannes Martinus Burgers, 1895 - 1981. Burgers is known also for the Burgers
dislocation, a method of describing the irregularities in a crystal. He was also
expert on the study of polymers, and a sort of viscoelastic material is named for
him.
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Our roots in statistical mechanics and thermodynamics suggests a ques-
tion: is there a temperature to a vortex dynamical system? Statistical mechan-
ics defines the temperature of any system to be the derivative of energy with
respect to the entropy. In the kinetic theory of gases this equals the physical
heat. Although there is no physical heat in this problem, there is an energy
and there is an entropy; therefore, it has a temperature.

This extension of temperature is not unique. Most physical models have an
energy. The entropy of a model can be given through information-theoretical
methods – as long as a system can contain information, it has an entropy.
Therefore the idea of temperature can be applied to systems that have no
resemblance at all to the gas particles the idea began with.

One fascinating consequence is that vortex systems can have a negative
temperature. There are configurations for which adding more energy will de-
crease the entropy of the system. The derivative is then negative and the
temperature is therefore less than zero. More remarkably these negative tem-
perature states are extremely high-energy ones. These negative temperature
states will receive considerable attention. (Vortex dynamics is not the only
context in which negative temperatures arise. They can develop in systems
in which a maximum possible energy exists. One noteworthy example is in
describing the states of a laser.)

We will need to simplify our problem to be able to apply statistical me-
chanics methods to it. We want a large but finite number of particles or lattice
sites which obey some interaction law. Our interests will lead us to rewrite the
Euler equation from several perspectives. In one we will describe the vorticity
of the fluid as a set of discrete “charged” particles which are free to move. In
another we will construct a piecewise-continuous approximation to the vortic-
ity based around a fixed set of mesh sites and allow the value of the function
on these pieces to vary.

If we are interested in the “vortex gas” problem, placing a set of vortices of
fixed strength and allowing them to move, then we could write it as a dynam-
ical systems problem, with a Hamiltonian10, a representation using the form
of classical mechanics. With that we can use tools such as the Monte Carlo
Metropolis Rule to explore this space and study the equilibrium statistical
mechanics.

Unfortunately the Monte Carlo study of the vortex gas problem does not
well handle vortices of positive and negative strengths mixed together. The
Metropolis-Hastings rule will tend to make vortices of opposite sign cluster
together. Similarly negative temperatures cannot be meaningfully applied;
trying simply causes all like-signed vortices to cluster together. But as long as
10 These functions were introduced by Sir William Rowan Hamilton, 1805 - 1865,

and have become a fundamental approach to dynamical systems. Hamilton also
discovered quaternions, famously carving the inspired equation i2 = j2 = k2 =
ijk = −1 into the stones of the Brougham Bridge. [288]
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we are interested in a single sign and positive temperatures interesting work
may be done.

In the lattice problem (our mesh sites may not be the regularly organized
rows and columns of a proper lattice, but it is a fixed set of sites) we approx-
imate the continuous vorticity field by a piecewise-continuous approximation.
Changes in the fluid flow are represented by changes in the relative strengths
of lattice sites. This approach resembles strongly a finite-elements study. This
approach also well handles both positive and negative vorticities, and both
positive and negative temperatures are meaningfully studied.

There is also a useful approach not based on points and site vorticities
at all. Anyone who has studied enough differential equations has encountered
Fourier decompositions of problems – supposing that the solution to a differ-
ential equation is the sum of sine and cosines of several periods, and finding
the relative amplitudes of the different components. This sort of approach is
called the spectral method. The analogy to identifying the components of a
material by the intensities at different frequencies of the spectrum of light
that has passed through the material is plain.

Through these approaches, we plan to show how analytical and compu-
tational mathematics complement one another. Analytic study of fluid flow
provides a problem well-suited to numerical study. Numerical experiments will
improve the understanding of old and will inspire new analysis. In combination
we make both approaches stronger.

To end this introduction, we remember that the astronomical and cosmo-
logical examples alluded to above have a different scale of predictability than
fluid phenomena such as flow turbulence and the weather. Astronomers have
predicted solar and lunar eclipses to the second for centuries. But the weather
cannot even now be predicted with anywhere near the same scale of accuracy.
The accuracy in astronomical prediction is largely dependent on the exactness
of the initial data at an earlier epoch. The inaccuracies in weather prediction
persists in spite of greatly improved meteorological methods and instruments
for measuring the state of an atmosphere. These are two very different realms
of applied and computational mathematics, underscoring the theoretical and
technical difficulties of the latter.
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Probability

2.1 Introduction

In science fiction writer Stanley G Weinbaum’s 1935 short story “The Lotus
Eaters” the ultimate law of physics is declared to be the law of chance. Given
the overwhelming power of statistical mechanics and of quantum mechanics
this assessment is hard to dispute. The study of probability combines beautiful
reasoning beginning from abstract first principles and describes the observable
world with remarkable clarity. So before moving into Monte Carlo methods it
is worthwhile reviewing the fundamentals of probability.

2.2 Basic Notions

Let the letter S represent a sample space, which is the set of all the possible
outcomes of a particular experiment. An event U is a subset of the sample
space: U ⊆ S. We typically think of an event as just one of the possible
outcomes, but we will be interested in the probability of several outcomes
occurring together, or of one outcome occurring given that another has.

We want to define is the probability P{E} of the event E occurring.
The first thought is to do this by a limit. Let the number n(E) represent the
number of times outcome E occurs in the first n repetitions of an experiment.
Then

P{E} = lim
n→∞

n(E)
n

(2.1)

which is known as the limiting frequency of E.
As often happens, this intuitive definition requires the assumption of sev-

eral difficult-to-justify axioms. The first troublesome axiom is that the limit
described above exists. Another is the supposition that the limiting process
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will converge on the same limit every time a series of experiments is run. An-
other is that we can reliably estimate how many experiments are needed to
establish this probability.

Given these problems we put aside the intuitive definition and build one
around simpler axioms. Define a probability space as a pair (S, P ) consisting
of a sample space S made of events E, and a function P defined on the events
E. An event is, to be precise, a specific subset of the sample space; we can
build an intuitive feel for it by calling it a possible outcome of some process,
using the ordinary English senses of the words. The function P satisfies these
axioms [371] [426].

Axiom 1 For each E ⊆ S, 0 ≤ P{E} ≤ 1.

That is, probabilities are defined to be between zero and one (inclusively).
The greater the probability the greater the chance an event occurs.

Axiom 2 P{S} = 1.

This is a difficult axiom to dispute; the outcome of an experiment must be
some element of the sample space S.

Axiom 3 If E1, E2, E3, · · ·, En is any collection of mutually exclusive events,
then P{∪n

i=1Ei} =
∑n

i=1 P{Ei}.
That is, if it is not possible for several of a set of events to simultaneously
occur, then the probability that exactly one of them does occur is the sum of
the probabilities of any of them occurring.

Axiom 4 If E and F are events and α a number between 0 and 1, then there
exists an event S for which P{S} = α and for which P{S ∩E} = P{S}P{E}
and P{S ∩ F} = P{S}P{F}.
That is, whatever events we have we can assume the existence of other inde-
pendent events which are as probable or improbable as desired.

From these axioms1 we are able to build the studies of probability famil-
iar to every student, as well as the properties used for statistical mechanics.
Trusting that the ideas of independent events and of conditional probability
are familiar we move on to random variables.

2.3 Random Variables and Distribution Functions

The sample space S is if nothing else a set. We can define a function from S to
the real numbers. Such a real-valued function is known as a random variable.
1 There is one more assumption we must make, if the sample space has infinitely

many elements – we must assume that P is defined only for events which are
measurable in the sample space. This restriction will not impair our work, but it
is needed for the accurate analysis of infinitely large sets.
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For example, if the experiment is tossing ten fair coins, the sample space is all
210 possible ways the coins may fall, and a random variable of interest might
be the number of heads which turn up. If the experiment is rolling a pair of
dice, the sample space is the set of 36 combinations of outcomes of the dice;
our random variable is the sum of the numbers on those dice.

These variables are interesting because the typical view of statistical me-
chanics is that detailed information of a system is not important – what we
want to know are properties like energy or entropy, which are random vari-
ables by this definition. We will move towards first the distribution functions
of a random variable X – the probability of X falling within a specified range
– and the expectation value – the mean value of X.

Define the cumulative distribution function F of the random variable
X to be probability that X is less than or equal to d:

F (d) = P{X ≤ d} (2.2)

this function satisfies several properties; among them [58] [371] [426]:

1. F is non-decreasing: if a < b, then F (a) ≤ F (b).
2. limd→∞ F (d) = 1.
3. limd→−∞ F (d) = 0.
4. F is continuous from the right: for any decreasing sequence dn which

converges to d, limn→∞ F (dn) = F (d). (Why is F not necessarily contin-
uous?)

Define the probability mass function p(x) of X to be

p(x) = P{X = x} (2.3)

and satisfying the condition X must take on one of the values xi:

∞∑
i=1

p(xi) = 1 (2.4)

The cumulative distribution function F (c) we construct by letting

F (c) =
∑

all x≤c

p(x) (2.5)

which it is easy to verify satisfies the above properties.
We are not interested only in discrete random variables. Continuous ran-

dom variables such as the energy2 of a system are handled similarly to the
discrete case.
2 The energy of a real dynamical system may be drawn from an interval. In the

numerical simulations we do, we confine ourselves to the floating point number
system and so will use what is “really” a discrete system. Generally though we
will use the terminology of continuous random variables.



12 2 Probability

Let X be a random variable which may have any value from an uncount-
ably infinite set of values. This X is a continuous random variable if there
exists a function f , defined on all real numbers and non-negative, for which

P{X ∈ A} =
∫

A

f(x)dx (2.6)

for every subset A of the reals. We also require of f that∫ ∞

−∞
f(x)dx = 1 (2.7)

as
∫∞

−∞ f(x)dx is the probability that X is some real number. This function
f is the probability density function of X.

We may go from the probability density function to the cumulative distri-
bution function by setting

F (c) = P{X ∈ (−∞, c]} (2.8)

=
∫ c

−∞
f(x)dx (2.9)

Equivalently,

d

dc
F (c) = f(c) (2.10)

and the probability of observing X to be within the range (c, d) is equal to

P{X ∈ (−∞, d]} − P{X ∈ (−∞, c]} =
∫ d

−∞
f(x)dx −

∫ c

−∞
f(x)dx(2.11)

=
∫ d

c

f(x)dx (2.12)

The probability density function is an approximation of the probability
that, for any c, that X will be near c. Consider an interval of width ε centered
around c:

P{c − ε

2
≤ X ≤ c +

ε

2
} =
∫ c+ ε

2

c− ε
2

f(x)dx (2.13)

≈ εf(c) (2.14)

if f is continuous and ε sufficiently small.

2.4 Expectation Values and Averages

Given a random variable – the sum of a pair of dice, the distance a car may
travel without needing refuelling, the kinetic energy of a gas – it is hard to
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avoid wondering what its average value is. The word “average” has multiple
meanings; ours is a weighted arithmetic mean. Values of X more likely to
occur should weigh more in the average than improbable ones. The weighted
mean we finally study is called the expectation value of X.

Define the expectation value E of discrete variable X to be [371] [426]

E[X] =
∑

i

xiP{X = xi} (2.15)

and for a continuous variable X to be

E[X] =
∫ ∞

−∞
xf(x)dx (2.16)

(which are the same formulas used to find the center of mass for a set of
discrete masses and for a continuous mass, a similarity reflected in the terms
“probability mass” and “probability density” functions).

This expectation value is the “average” which matches our intuitive ex-
pectation: if we were to run a large number of experiments and measure X
for each of them, the mean of these measured values of X will tend towards
E[X].

Given the real-valued function g we can define a new random variable
Y = g(X). If we know the probability mass or density function for X, do we
know the expectation value for Y ?

Proposition 1. Suppose X is discrete; then

E[Y ] = E[g(X)] =
∑

i

g(xi)p(xi) (2.17)

Suppose X is continuous; then

E[Y ] = E[g(X)] =
∫ ∞

−∞
g(x)f(x)dx (2.18)

Proof. Notice that there is for each yj a set of points Gj , such that for
any xi in Gj we have g(xi) = yj . This lets us reorganize, in the discrete case,
the sum over all the different values xi into a sum over all the different values
yj of g(xi). So: ∑

i

g(xi)p(xi) =
∑

j

∑
xi∈Gj

g(xi)p(xi) (2.19)

=
∑

j

∑
xi∈Gj

yjp(xi) (2.20)

=
∑

j

yj

∑
xi∈Gj

p(xi) (2.21)

=
∑

j

yjP{g(X) = yj} (2.22)

= E[g(X)] (2.23)
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�
The proof of the continuous case is similar in inspiration, although to use

the same outline requires the Lebesgue3-Stieltjes4 definition of an integral. To
avoid introducing that much supporting material we will instead narrow the
focus so that g is a nonnegative function, and introduce a lemma.

Lemma 1. For a nonnegative continuous random variable Y ,

E[Y ] =
∫ ∞

0
P{Y ≥ y}dy (2.24)

Proof. Let fY be the probability density function for Y . Therefore P{Y >
y} =

∫∞
y

fY (x)dx. And (notice the swapping the order of integration on the
second line of this derivation)∫ ∞

0
P{Y > y}dy =

∫ ∞

0

∫ ∞

y

fY (x)dxdy (2.25)

=
∫ ∞

0

(∫ x

0
dy

)
fY (x)dx (2.26)

=
∫ ∞

0
xfY (x)dx (2.27)

= E[Y ] (2.28)

Now we can complete the proof of the restricted form of Proposition 1.
Let g be any continuous nonnegative function. For any y, let Gy be the set of
x for which g(x) > y. We have

E[g(X)] =
∫ ∞

0
P{g(X) > y}dy (2.29)

=
∫ ∞

0

∫
Gy

f(x)dxdy (2.30)

=
∫

G0

(∫ g(x)

0
dy

)
f(x)dx (2.31)

=
∫

G0

g(x)f(x)dx (2.32)

3 Henri Léon Lebesgue, 1875 - 1941, was one of the founders of measure theory,
although he did not concentrate on that field. He found it too general a theory
for his tastes and preferred to work on smaller, specific topics. [288]

4 Thomas Jan Stieltjes, 1856 - 1894, besides extending the definition of the integral,
is regarded as the founder of analysis of continued fractions, numbers defined by
1/(a + 1/(b + 1/(c + 1/(· · ·)))) for some integer sequence a, b, c, d, · · · . His time
as a student was spent reading Gauss and Jacobi, rather than attending lectures,
which gave him a good background but made him fail his exams. [288]
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�
The expectation value E[g(X)] is in general not equal to g(E[X]). In fact

the expectation value is – as one might guess from observing that it is either
a sum or an integral – linear; E[g(X)] will only equal g(E[X]) if the function
g is of the form a × X + b.

Proposition 2. E[aX + b] = aE[X] + b for constants a, b.

Proof. When X is a discrete random variable,

E[aX + b] =
∑

i

(axi + b)p(xi) (2.33)

= a
∑

i

xip(xi) + b
∑

i

p(xi) (2.34)

= aE[X] + b (2.35)

When X is a continuous random variable,

E[aX + b] =
∫ ∞

−∞
(ax + b)f(x)dx (2.36)

= a

∫ ∞

−∞
xf(x)dx + b

∫ ∞

−∞
f(x)dx (2.37)

= aE[X] + b (2.38)


�

2.5 Variance

Though the expectation value of a variable describes some of its behavior, it is
not the only relevant quantity. A variable X which is always equal to zero has
the same expectation value as a variable Y which is any integer between −5
and 5 with uniform probability. As a measure of how distributed the numbers
are we can introduce (analogously to the moment of inertia of a set of mass)
the moment of the variable X. For any n, the nth moment of X is

E[Xn] =
∑

i

xn
i p(xi) (2.39)

if X is discrete and

E[Xn] =
∫ ∞

−∞
xn

i f(x)dx (2.40)

if X is continuous (and assuming the expectation value exists).
These moments are dependent on the values of X; if we define a new

variable Y = X + c for a constant c the moments of Y will be different from
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those of X though most would say the distribution of X is the same as that of
Y . We can restore this “translation invariance” by using μX , the expectation
value of X, as a reference point. Define the nth central moment of X to be

E[(X − μX)n] =
∑

I

(xi − μX)np(xi) (2.41)

for the discrete case and

E[(X − μX)n] =
∫ ∞

−∞
(x − μX)nf(x)dx (2.42)

for the continuous (and again providing the integrals exist) [371].
The second central moment of X is known as the variance, V ar[X], and

is quite often used. Its square root is known as the standard deviation,
σ[X]. Typically the easiest way to calculate the variance is to use the second
moment of X and the square of the first moment of X [371] [426].

Proposition 3. V ar[X] = E[X2] − μ2
X .

Proof. Since the variance of X is its second central moment we have

V ar[X] = E[(X − μX)2] (2.43)
= E[X2 − 2μXX + μ2

X ] (2.44)
= E[X2] − 2μXE[X] + μ2

X (2.45)
= E[X2] − 2μ2

X + μ2
X (2.46)

= E[X2] − μ2
X (2.47)

As μX = E[X] then V ar[X] = E[X2] − (E[X])2. The variance or the
standard deviation most often describe whether the values of X are distributed
close together (a small variance) or widely apart (a large variance).


�
Proposition 4. V ar[aX + b] = a2V ar[X]

Proof. Remembering proposition 2 and the definition of variance,

V ar[aX + b] = E[(aX + b − aμX − b)2] (2.48)
= E[(aX − aμX)2] (2.49)
= E[a2(X − μX)2] (2.50)
= a2E[(X − μX)2] (2.51)
= a2V ar[X] (2.52)


�
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2.6 Multiple Variables and Independence

To this point we have considered only a single random variable X. It is almost
inevitable we will want to measure several quantities in experiments, so we
want to establish our probability tools for multiple variables.

Suppose that we have random variables X and Y . The cumulative joint
probability distribution function is defined to be

F (c, d) = P{X ≤ c, Y ≤ d} (2.53)
= P{X ∈ (−∞, c] ∩ Y ∈ (−∞, d]} (2.54)

We also define the marginal distributions of X and Y , which examine the
probability for a single variable assuming the other is completely free. The
marginal distribution of X is FX(c) and equals

FX(c) = P{X ≤ c} (2.55)
= P{X ≤ c, Y < ∞} (2.56)
= lim

d→∞
P{X ≤ c, Y ≤ d} (2.57)

= lim
d→∞

F (c, d) (2.58)

= F (c,∞) (2.59)

and similarly

FY (d) = P{Y ≤ d} (2.60)
= P{X < ∞, Y ≤ d} (2.61)
= lim

c→∞ P{X ≤ c, Y ≤ d} (2.62)

= lim
c→∞ F (c, d) (2.63)

= F (∞, d) (2.64)

There is, for the case of discrete random variables, a joint probability
mass function defined by

p(c, d) = P{X = c, Y = d} (2.65)

with separate probability mass functions pX and pY defined by

pX(c) = P{X = c} (2.66)

=
∑

d

p(c, d) (2.67)

pY (d) = P{Y = d} (2.68)

=
∑

c

p(c, d) (2.69)
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Similarly for continuous random variables the joint probability density
function f(x, y) is

P{X ∈ C, Y ∈ D} =
∫

D

∫
C

f(x, y)dxdy (2.70)

with separate probability density functions fX and fY defined by

fX(x) =
∫ ∞

−∞
f(x, y)dy (2.71)

fY (y) =
∫ ∞

−∞
f(x, y)dx (2.72)

We have mentioned independent random variables. We need now to give
this idea a precise definition, as the introduction of several variables makes it
less obvious independence could be taken for granted. The random variables
X and Y are said to be independent if for any two subsets C and D of the
probability space,

P{X ∈ C, Y ∈ D} = P{X ∈ C}P{Y ∈ D} (2.73)

This is equivalent to showing that for all c and d,

P{x ≤ c, y ≤ d} = P{x ≤ c}P{y ≤ d} (2.74)

Two variables are dependent if they are not independent. That is, they
are independent if the events EC = {X ∈ C} and ED = {Y ∈ D} are
independent.

Proposition 5. If X, Y have joint probability density function f(x, y) then
they are independent if and only if

f (c, d) = fX (c) fY (d) (2.75)

Another tool useful to examine independence is the covariance, a general-
ization of the variance of a single variable. For X and Y define the covariance
Cov[X,Y ] to equal E[(X −μX)(Y −μY )], where μX = E[X] and μY = E[Y ].

Proposition 6. If X and Y are independent then Cov[X,Y ] = 0.

Proof. We start with a lemma relating the covariance of X and Y to the
expectation values of X, Y , and their product XY .

Lemma 2.

Cov[X,Y ] = E[XY ] − E[X]E[Y ] (2.76)
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Proof.

Cov[X,Y ] = E[XY − μXY − XμY + μXμY ] (2.77)
= E[XY ] − μXE[Y ] − μY E[X] + μXμY (2.78)
= E[XY ] − μXμY . (2.79)


�
Returning to the proof of Proposition 5, we examine the expectation value

of the product XY .

E[XY ] =
∑

j

∑
i

xiyiP{X = xi, Y = yi} (2.80)

=
∑

j

∑
i

xiyiP{X = xi}P{Y = yi} (2.81)

=

⎛
⎝∑

j

yjP{Y = yj}
⎞
⎠(∑

i

xiP{X = xi}
)

(2.82)

= E[Y ]E[X] (2.83)

So by Lemma 2,

Cov[X,Y ] = 0. (2.84)


�

2.7 Limiting Theorems

Next we look for assurance a finite number of experiments can measure some-
thing meaningful: will sufficiently many experiments approximate the “in-
finite” continuous limit? The central limit theorem shows the result of
a sufficiently large number of independent, identically distributed random
variables (sometimes abbreviated as “iid random variables”) will approach
the familiar Gaussian5 bell curve or “normal” distribution of a random vari-
able [58] [371] [426].

We begin with Markov’s 6 Inequality. This is the first of two propositions
which let us use only the mean and variance of a probability distribution to
establish bounds on the probability of events.
5 Johann Carl Friedrich Gauss, 1777 - 1855, is another person hard to exag-

gerate. He developed important principles for every field from probability to
non-Euclidean geometry to mechanics; he lead a geodesic survey of the then-
independent state of Hannover, and developed the least-squares approximation
method in the hope of finding the asteroid Ceres, discovered 1 January 1801 by
Giuseppe Piazzi, 1746-1826, and lost shortly after. His predictions were right. [288]

6 Andrei Andreevich Markov, 1856 - 1922, besides Markov sequences and proba-
bility, studied continued fractions, which were pioneered by his teacher Pafnuty
Lvovich Chebyshev. [92]


