Michael Borenstein Larry V. Hedges Julian P. T. Higgins Hannah R. Rothstein

Introduction to Meta-Analysis SECOND EDITION

WILEY

Table of Contents

<u>Cover</u>

<u>Title Page</u>

<u>Copyright</u>

<u>List of Tables</u>

<u>List of Figures</u>

<u>Acknowledgements</u>

Preface

AN ETHICAL IMPERATIVE

FROM NARRATIVE REVIEWS TO SYSTEMATIC REVIEWS

THE SYSTEMATIC REVIEW AND META-ANALYSIS

META-ANALYSIS IS USED IN MANY FIELDS OF RESEARCH

META-ANALYSIS AS PART OF THE RESEARCH PROCESS

THE INTENDED AUDIENCE FOR THIS BOOK

AN OUTLINE OF THIS BOOK'S CONTENTS (UPDATED FOR THE SECOND EDITION)

WHAT THIS BOOK DOES NOT COVER

<u>Further Reading</u>

Preface to the Second Edition

PRACTICAL INFORMATION

LIMITATIONS OF A META-ANALYSIS

RECENT DEVELOPMENTS

HOW TO EXPLAIN THE RESULTS

NEW WEBSITE AND VIDEOS

<u>Website</u>

PART 1: Introduction

CHAPTER 1: How a Meta-Analysis Works INTRODUCTION INDIVIDUAL STUDIES THE SUMMARY EFFECT HETEROGENEITY OF EFFECT SIZES CHAPTER 2: Why Perform a Meta-Analysis INTRODUCTION THE STREPTOKINASE META-ANALYSIS

STATISTICAL SIGNIFICANCE

CLINICAL IMPORTANCE OF THE EFFECT

CONSISTENCY OF EFFECTS

PART 2: Effect Size and Precision

CHAPTER 3: Overview

TREATMENT EFFECTS AND EFFECT SIZES

PARAMETERS AND ESTIMATES

OUTLINE OF EFFECT SIZE COMPUTATIONS

CHAPTER 4: Effect Sizes Based on Means

INTRODUCTION

RAW (UNSTANDARDIZED) MEAN DIFFERENCE D

STANDARDIZED MEAN DIFFERENCE, *d* AND *g*

RESPONSE RATIOS

<u>CHAPTER 5: Effect Sizes Based on Binary Data (2</u> × 2 Tables)

INTRODUCTION

RISK RATIO

ODDS RATIO RISK DIFFERENCE CHOOSING AN EFFECT SIZE INDEX CHAPTER 6: Effect Sizes Based on Correlations INTRODUCTION COMPUTING r OTHER APPROACHES **CHAPTER 7: Converting Among Effect Sizes INTRODUCTION** CONVERTING FROM THE LOG ODDS RATIO TO dCONVERTING FROM *d* TO THE LOG ODDS RATIO CONVERTING FROM r TO d CONVERTING FROM d TO r **CHAPTER 8: Factors that Affect Precision INTRODUCTION** FACTORS THAT AFFECT PRECISION SAMPLE SIZE **STUDY DESIGN CHAPTER 9: Concluding Remarks Further Reading** Note PART 3: Fixed-Effect Versus Random-Effects Models **CHAPTER 10: Overview INTRODUCTION** NOMENCLATURE **CHAPTER 11: Fixed-Effect Model INTRODUCTION**

THE TRUE EFFECT SIZE IMPACT OF SAMPLING ERROR PERFORMING A FIXED-EFFECT META-**ANALYSIS CHAPTER 12: Random-Effects Model INTRODUCTION** THE TRUE EFFECT SIZES IMPACT OF SAMPLING ERROR PERFORMING A RANDOM-EFFECTS META-ANALYSIS CHAPTER 13: Fixed-Effect Versus Random-Effects Models **INTRODUCTION** DEFINITION OF A SUMMARY EFFECT ESTIMATING THE SUMMARY EFFECT EXTREME EFFECT SIZE IN A LARGE STUDY **OR A SMALL STUDY** CONFIDENCE INTERVAL THE NULL HYPOTHESIS WHICH MODEL SHOULD WE USE? MODEL SHOULD NOT BE BASED ON THE **TEST FOR HETEROGENEITY CONCLUDING REMARKS** CHAPTER 14: Worked Examples (Part 1) **INTRODUCTION** WORKED EXAMPLE FOR CONTINUOUS DATA (PART 1) WORKED EXAMPLE FOR BINARY DATA (PART 1)

WORKED EXAMPLE FOR CORRELATIONAL DATA (PART 1) PART 4: Heterogeneity **CHAPTER 15: Overview INTRODUCTION** NOMENCLATURE WORKED EXAMPLES CHAPTER 16: Identifying and Quantifying <u>Heterogeneity</u> **INTRODUCTION ISOLATING THE VARIATION IN TRUE** EFF<u>ECTS</u> COMPUTING O ESTIMATING τ^2 THE I² STATISTIC COMPARING THE MEASURES OF **HETEROGENEITY** CONFIDENCE INTERVALS FOR τ^2 **CONFIDENCE INTERVALS (OR UNCERTAINTY** INTERVALS) FOR I^2 **CHAPTER 17: Prediction Intervals INTRODUCTION** PREDICTION INTERVALS IN PRIMARY **STUDIES** PREDICTION INTERVALS IN META-ANALYSIS CONFIDENCE INTERVALS AND PREDICTION **INTERVALS** COMPARING THE CONFIDENCE INTERVAL WITH THE PREDICTION INTERVAL Further Reading

CHAPTER 18: Worked Examples (Part 2)

INTRODUCTION

WORKED EXAMPLE FOR CONTINUOUS DATA (PART 2)

WORKED EXAMPLE FOR BINARY DATA (PART 2)

WORKED EXAMPLE FOR CORRELATIONAL DATA (PART 2)

CHAPTER 19: An Intuitive Look at Heterogeneity

INTRODUCTION

MOTIVATING EXAMPLE

THE *Q*-VALUE AND THE *p*-VALUE DO NOT TELL US HOW MUCH THE EFFECT SIZE VARIES

THE CONFIDENCE INTERVAL DOES NOT TELL US HOW MUCH THE EFFECT SIZE VARIES

THE 2 STATISTIC DOES NOT TELL US HOW MUCH THE EFFECT SIZE VARIES

<u>WHAT *I*² TELLS US</u>

THE <u>I² INDEX VS. THE PREDICTION</u> INTERVAL

THE PREDICTION INTERVAL

PREDICTION INTERVAL IS CLEAR, CONCISE, AND RELEVANT

COMPUTING THE PREDICTION INTERVAL

HOW TO USE I2

HOW TO EXPLAIN HETEROGENEITY

HOW MUCH DOES THE EFFECT SIZE VARY ACROSS STUDIES?

CAVEATS CONCLUSION FURTHER READING THE MEANING OF I^2 IN FIGURE 19.2 CHAPTER 20: Classifying Heterogeneity as Low, Moderate, or High **INTRODUCTION** INTEREST SHOULD GENERALLY FOCUS ON AN INDEX OF ABSOLUTE HETEROGENEITY THE CLASSIFICATIONS LEAD THEMSELVES TO MISTAKES OF INTERPRETATION **CLASSIFICATIONS FOCUS ATTENTION IN** THE WRONG DIRECTION PART 5: Explaining Heterogeneity **CHAPTER 21: Subgroup Analyses INTRODUCTION** FIXED-EFFECT MODEL WITHIN SUBGROUPS **COMPUTATIONAL MODELS RANDOM EFFECTS WITH SEPARATE** ESTIMATES OF τ^2 RANDOM EFFECTS WITH POOLED ESTIMATE OF τ^2 THE PROPORTION OF VARIANCE EXPLAINED MIXED-EFFECTS MODEL **OBTAINING AN OVERALL EFFECT IN THE** PRESENCE OF SUBGROUPS **CHAPTER 22: Meta-Regression INTRODUCTION** FIXED-EFFECT MODEL

FIXED OR RANDOM EFFECTS FOR UNEXPLAINED HETEROGENEITY

RANDOM-EFFECTS MODEL

<u>CHAPTER 23: Notes on Subgroup Analyses and</u> <u>Meta-Regression</u>

INTRODUCTION

COMPUTATIONAL MODEL

MULTIPLE COMPARISONS

SOFTWARE

ANALYSES OF SUBGROUPS AND REGRESSION ANALYSES ARE OBSERVATIONAL

OBSERVATIONAL

STATISTICAL POWER FOR SUBGROUP ANALYSES AND META-REGRESSION

Further Reading

PART 6: Putting it all in Context

CHAPTER 24: Looking at the Whole Picture

INTRODUCTION

METHYLPHENIDATE FOR ADULTS WITH ADHD

IMPACT OF GLP-1 MIMETICS ON BLOOD PRESSURE

AUGMENTING CLOZAPINE WITH A SECOND ANTIPSYCHOTIC

CONCLUSIONS

<u>CAVEATS</u>

<u>CHAPTER 25: Limitations of the Random-Effects</u> <u>Model</u>

INTRODUCTION

ASSUMPTIONS OF THE RANDOM-EFFECTS MODEL A TEXTBOOK CASE WHEN STUDIES ARE PULLED FROM THE LITERATURE **A USEFUL FICTION** TRANSPARENCY A NARROWLY DEFINED UNIVERSE TWO IMPORTANT CAVEATS IN CONTEXT **EXTREME CASES** CHAPTER 26: Knapp-Hartung Adjustment **INTRODUCTION** ADJUSTMENT IS RARELY EMPLOYED IN SIMPLE ANALYSES ADJUSTING THE STANDARD ERROR THE KNAPP-HARTUNG ADJUSTMENT FOR **OTHER EFFECT SIZE INDICES** t DISTRIBUTION VS. Z DISTRIBUTION LIMITATIONS OF THE KNAPP-HARTUNG **ADJUSTMENT** PART 7: Complex Data Structures **CHAPTER 27: Overview** CHAPTER 28: Independent Subgroups within a Study **INTRODUCTION** COMBINING ACROSS SUBGROUPS COMPARING SUBGROUPS **CHAPTER 29: Multiple Outcomes or Time-Points**

within a Study

INTRODUCTION

COMBINING ACROSS OUTCOMES OR TIME-POINTS

<u>COMPARING OUTCOMES OR TIME-POINTS</u> <u>WITHIN A STUDY</u>

Further Reading

<u>CHAPTER 30: Multiple Comparisons within a Study</u> INTRODUCTION

COMBINING ACROSS MULTIPLE

<u>COMPARISONS WITHIN A STUDY</u>

DIFFERENCES BETWEEN TREATMENTS

<u>Further Reading</u>

CHAPTER 31: Notes on Complex Data Structures

INTRODUCTION

SUMMARY EFFECT

DIFFERENCES IN EFFECT

PART 8: Other Issues

CHAPTER 32: Overview

<u>CHAPTER 33: Vote Counting – A New Name for an</u> <u>Old Problem</u>

INTRODUCTION

WHY VOTE COUNTING IS WRONG

VOTE COUNTING IS A PERVASIVE PROBLEM

CHAPTER 34: Power Analysis for Meta-Analysis

INTRODUCTION

A CONCEPTUAL APPROACH

IN CONTEXT

WHEN TO USE POWER ANALYSIS

PLANNING FOR PRECISION RATHER THAN FOR POWER POWER ANALYSIS IN PRIMARY STUDIES POWER ANALYSIS FOR META-ANALYSIS POWER ANALYSIS FOR A TEST OF **HOMOGENEITY Further Reading CHAPTER 35: Publication Bias INTRODUCTION** THE PROBLEM OF MISSING STUDIES METHODS FOR ADDRESSING BIAS ILLUSTRATIVE EXAMPLE THE MODEL GETTING A SENSE OF THE DATA IS THERE EVIDENCE OF ANY BIAS? HOW MUCH OF AN IMPACT MIGHT THE BIAS HAVE? SUMMARY OF THE FINDINGS FOR THE **ILLUSTRATIVE EXAMPLE** CONFLATING BIAS WITH THE SMALL-STUDY EFFECT USING LOGIC TO DISENTANGLE BIAS FROM **SMALL-STUDY EFFECTS** THESE METHODS DO NOT GIVE US THE 'CORRECT' EFFECT SIZE SOME IMPORTANT CAVEATS PROCEDURES DO NOT APPLY TO STUDIES OF PREVALENCE THE MODEL FOR PUBLICATION BIAS IS SIMPLISTIC

CONCLUDING REMARKS PUTTING IT ALL TOGETHER Further Reading PART 9: Issues Related to Effect Size **CHAPTER 36: Overview** CHAPTER 37: Effect Sizes Rather than *p*-Values **INTRODUCTION RELATIONSHIP BETWEEN -VALUES AND EFFECT SIZES** THE DISTINCTION IS IMPORTANT THE -VALUE IS OFTEN MISINTERPRETED NARRATIVE REVIEWS VS. META-ANALYSES CHAPTER 38: Simpson's Paradox **INTRODUCTION** CIRCUMCISION AND RISK OF HIV **INFECTION** AN EXAMPLE OF THE PARADOX Further Reading CHAPTER 39: Generality of the Basic Inverse-Variance Method **INTRODUCTION OTHER EFFECT SIZES** OTHER METHODS FOR ESTIMATING EFFECT SIZES INDIVIDUAL PARTICIPANT DATA META-ANALYSES **BAYESIAN APPROACHES Further Reading** PART 10: Further Methods

CHAPTER 40: Overview

<u>CHAPTER 41: Meta-Analysis Methods Based on</u> <u>Direction and *p*-Values</u>

INTRODUCTION

VOTE COUNTING

THE SIGN TEST

COMBINING -VALUES

<u>CHAPTER 42: Further Methods for Dichotomous</u> <u>Data</u>

INTRODUCTION

MANTEL-HAENSZEL METHOD

ONE-STEP (PETO) FORMULA FOR ODDS RATIO

<u>CHAPTER 43: Psychometric Meta-Analysis</u> INTRODUCTION

THE ATTENUATING EFFECTS OF ARTIFACTS

META-ANALYSIS METHODS

EXAMPLE OF PSYCHOMETRIC META-ANALYSIS

COMPARISON OF ARTIFACT CORRECTION WITH META-REGRESSION

SOURCES OF INFORMATION ABOUT ARTIFACT VALUES

HOW HETEROGENEITY IS ASSESSED

REPORTING IN PSYCHOMETRIC META-

<u>ANALYSIS</u>

CONCLUDING REMARKS

<u>Further Reading</u>

PART 11: Meta-Analysis in Context

CHAPTER 44: Overview

<u>CHAPTER 45: When Does it Make Sense to Perform</u> <u>a Meta-Analysis?</u>

INTRODUCTION

ARE THE STUDIES SIMILAR ENOUGH TO COMBINE?

CAN I COMBINE STUDIES WITH DIFFERENT DESIGNS?

HOW MANY STUDIES ARE ENOUGH TO CARRY OUT A META-ANALYSIS?

Further Reading

<u>CHAPTER 46: Reporting the Results of a Meta-</u> <u>Analysis</u>

INTRODUCTION

THE COMPUTATIONAL MODEL

FOREST PLOTS

SENSITIVITY ANALYSIS

Further Reading

CHAPTER 47: Cumulative Meta-Analysis

INTRODUCTION

WHY PERFORM A CUMULATIVE META-ANALYSIS?

CHAPTER 48: Criticisms of Meta-Analysis

INTRODUCTION

ONE NUMBER CANNOT SUMMARIZE A RESEARCH FIELD

THE FILE DRAWER PROBLEM INVALIDATES META-ANALYSIS

MIXING APPLES AND ORANGES

GARBAGE IN, GARBAGE OUT

IMPORTANT STUDIES ARE IGNORED

META-ANALYSIS CAN DISAGREE WITH **RANDOMIZED TRIALS** META-ANALYSES ARE PERFORMED POORLY IS A NARRATIVE REVIEW BETTER? **CONCLUDING REMARKS Further Reading CHAPTER 49: Comprehensive Meta-Analysis Software INTRODUCTION** FEATURES IN CMA **TEACHING ELEMENTS** DOCUMENTATION **AVAILABILITY ACKNOWLEDGMENTS** MOTIVATING EXAMPLE DATA ENTRY **BASIC ANALYSIS** WHAT IS THE AVERAGE EFFECT SIZE? HOW MUCH DOES THE EFFECT SIZE VARY? PLOT SHOWING DISTRIBUTION OF EFFECTS **HIGH-RESOLUTION PLOT** SUBGROUP ANALYSIS **META-REGRESSION PUBLICATION BIAS** EXPLAINING RESULTS CHAPTER 50: How to Explain the Results of an **Analysis INTRODUCTION** THE OVERVIEW

THE MEAN EFFECT SIZE VARIATION IN EFFECT SIZE NOTATIONS IMPACT OF RESISTANCE EXERCISE ON PAIN CORRELATION BETWEEN LETTER KNOWLEDGE AND WORD RECOGNITION STATINS FOR PREVENTION OF CARDIOVASCULAR EVENTS **BUPROPION FOR SMOKING CESSATION** MORTALITY FOLLOWING MITRAL-VALVE PROCEDURES IN ELDERLY PATIENTS PART 12: Resources **CHAPTER 51: Software for Meta-Analysis COMPREHENSIVE META-ANALYSIS METAFOR STATA** REVMAN CHAPTER 52: Web Sites, Societies, Journals, and **Books** WEB SITES **PROFESSIONAL SOCIETIES JOURNALS** SPECIAL ISSUES DEDICATED TO META-**ANALYSIS BOOKS ON SYSTEMATIC REVIEW METHODS** AND META-ANALYSIS References Index

End User License Agreement

List of Tables

Chapter 3

Table 3.1 Roadmap of formulas in subsequent chapters.

Chapter 5

Table 5.1 Nomenclature for 2×2 table of outcome by treatment.

Table 5.2 Fictional data for a 2×2 table.

Chapter 8

Table 8.1 Impact of sample size on variance.

Table 8.2 Impact of study design on variance.

Chapter 14

<u>Table 14.1 Dataset 1 – Part A (basic data).</u>

Table 14.2 Dataset 1 – Part B (fixed-effect computations).

<u>Table 14.3 Dataset 1 – Part C (random-effects</u> <u>computations).</u>

Table 14.4 Dataset 2 – Part A (basic data).

Table 14.5 Dataset 2 – Part B (fixed-effect computations).

<u>Table 14.6 Dataset 2 – Part C (random-effects</u> <u>computations).</u>

Table 14.7 Dataset 3 – Part A (basic data).

<u>Table 14.8 Dataset 3 – Part B (fixed-effect</u> <u>computations).</u>

<u>Table 14.9 Dataset 3 – Part C (random-effects</u> <u>computations).</u>

Chapter 16

Table 16.1 Factors affecting measures of dispersion.

Chapter 18

<u>Table 18.1 Dataset 1 – Part D (intermediate computations).</u>

Table 18.2 Dataset 1 – Part E (variance computations).

<u>Table 18.3 Dataset 2 – Part D (intermediate</u> <u>computations).</u>

<u>Table 18.4 Dataset 2 – Part E (variance computations).</u>

<u>Table 18.5 Dataset 3 – Part D (intermediate</u> computations).

<u>Table 18.6 Dataset 3 – Part E (variance</u> <u>computations).</u>

Chapter 19

Table 19.1 Relationship between observed effects and true effects in Figure 1...

Chapter 21

Table 21.1 Fixed effect model - computations.

Table 21.2 Fixed-effect model - summary statistics.

Table 21.3 Fixed-effect model – ANOVA table.

Table 21.4 Fixed-effect model – subgroups as studies.

Table 21.5 Random-effects model (separateestimates of τ^2) - computations...

Table 21.6 Random-effects model (separateestimates of τ^2) – summary stat...

<u>Table 21.7 Random-effects model (separate</u> <u>estimates of t²) – ANOVA table.</u>

Table 21.8 Random-effects model (separate estimates of τ^2) – subgroups a...

Table 21.9 Statistics for computing a pooled estimate of τ^{2} .

<u>Table 21.10 Random-effects model (pooled estimate of τ^2) – computations....</u>

<u>Table 21.11 Random-effects model (pooled estimate of τ^2) – summary statis...</u>

Table 21.12 Random-effects model (pooled estimate $of \tau^2$) – ANOVA table.

Table 21.13 Random-effects model (pooled estimate $of \tau^2$) – subgroups as s...

Chapter 22

Table 22.1 The BCG dataset.

<u>Table 22.2 Fixed-effect model – regression results</u> <u>for BCG.</u>

Table 22.3 Fixed-effect model – ANOVA table for BCG regression.

<u>Table 22.4 Random-effects model – regression</u> <u>results for BCG.</u>

<u>Table 22.5 Random-effects model – test of the</u> <u>model.</u>

<u>Table 22.6 Random-effects model – comparison of</u> <u>model (latitude) versus the n...</u>

Chapter 26

Table 26.1 Knapp-Hartung computations for ADHD analysis.

Table 26.2 Original vs. Knapp-Hartung.

Table 26.3 Impact of using *t* distribution on the confidence interval width.

Chapter 28

<u>Table 28.1 Independent subgroups – five fictional</u> <u>studies.</u>

<u>Table 28.2 Independent subgroups – summary</u> <u>effect.</u>

<u>Table 28.3 Independent subgroups – synthetic</u> <u>effect for study 1.</u>

<u>Table 28.4 Independent subgroups – summary</u> <u>effect across studies.</u>

Chapter 29

<u>Table 29.1 Multiple outcomes – five fictional</u> <u>studies.</u>

Table 29.2 Creating a synthetic variable as the mean of two outcomes.

<u>Table 29.3 Multiple outcomes – summary effect.</u>

<u>Table 29.4 Multiple outcomes – impact of</u> <u>correlation on variance of summary e...</u>

<u>Table 29.5 Creating a synthetic variable as the</u> <u>difference between two outcom...</u>

<u>Table 29.6 Multiple outcomes – difference between</u> <u>outcomes.</u>

<u>Table 29.7 Multiple outcomes – Impact of</u> <u>correlation on the variance of diffe...</u>

Chapter 38

Table 38.1 HIV as function of circumcision (by subgroup).

Table 38.2 HIV as function of circumcision – by study.

Table 38.3 HIV as a function of circumcision – full population.

<u>Table 38.4 HIV as a function of circumcision – by</u> <u>risk group.</u>

<u>Table 38.5 HIV as a function of circumcision/risk</u> <u>group – full population.</u>

Chapter 39

Table 39.1 Simple example of a genetic association study.

Chapter 41

<u>Table 41.1 Streptokinase data – calculations for</u> <u>meta-analyses of *p*-values.</u>

Chapter 42

Table 42.1 Nomenclature for 2 × 2 table of events by treatment.

Table 42.2 Mantel-Haenszel - odds ratio.

<u>Table 42.3 Mantel-Haenszel – variance of summary</u> <u>effect.</u>

Table 42.4 One-step - odds ratio and variance.

Chapter 43

Table 43.1 Fictional data for psychometric metaanalysis.

Table 43.2 Observed (attenuated) correlations.

Table 43.3 Unattenuated correlations.

List of Illustrations

Chapter 1

<u>Figure 1.1 High dose versus standard dose of</u> <u>statins (adapted from Cannon *et...*</u>

Chapter 2

<u>Figure 2.1 Impact of streptokinase on mortality</u> (adapted from Lau *et al.,* 19...

Chapter 4

<u>Figure 4.1 Response ratios are analyzed in log</u> <u>units.</u>

Chapter 5

Figure 5.1 Risk ratios are analyzed in log units.

Figure 5.2 Odds ratios are analyzed in log units.

Chapter 6

<u>Figure 6.1 Correlations are analyzed in Fisher's z</u> <u>units.</u>

Chapter 7

Figure 7.1 Converting among effect sizes.

Chapter 8

Figure 8.1 Impact of sample size on variance.

Figure 8.2 Impact of study design on variance.

Chapter 10

<u>Figure 10.1 Symbols for true and observed effects.</u> Chapter 11

Figure 11.1 Fixed-effect model - true effects.

<u>Figure 11.2 Fixed-effect model – true effects and</u> <u>sampling error.</u>

<u>Figure 11.3 Fixed-effect model – distribution of</u> <u>sampling error.</u>

Chapter 12

<u>Figure 12.1 Random-effects model – distribution of the true effects.</u>

Figure 12.2 Random-effects model – true effects.

<u>Figure 12.3 Random-effects model – true and</u> <u>observed effect in one study.</u>

<u>Figure 12.4 Random-effects model – between-study</u> <u>and within-study variance....</u>

Chapter 13

<u>Figure 13.1 Fixed-effect model – forest plot</u> <u>showing relative weights.</u>

<u>Figure 13.2 Random-effects model – forest plot</u> <u>showing relative weights.</u>

<u>Figure 13.3 Very large studies under fixed-effect</u> <u>model.</u>

<u>Figure 13.4 Very large studies under random-</u> <u>effects model.</u>

Chapter 14

<u>Figure 14.1 Forest plot of Dataset 1 – fixed-effect</u> <u>weights.</u>

<u>Figure 14.2 Forest plot of Dataset 1 – random-</u> <u>effects weights.</u>

<u>Figure 14.3 Forest plot of Dataset 2 – fixed-effect</u> <u>weights.</u> <u>Figure 14.4 Forest plot of Dataset 2 – random-</u> <u>effects weights.</u>

<u>Figure 14.5 Forest plot of Dataset 3 – fixed-effect</u> <u>weights.</u>

<u>Figure 14.6 Forest plot of Dataset 3 – random-effects weights.</u>

Chapter 16

<u>Figure 16.1 Dispersion across studies relative to</u> <u>error within studies.</u>

Figure 16.2 *Q* in relation to *df* as measure of <u>dispersion</u>.

Figure 16.3 Flowchart showing how T^2 and I^2 are derived from Q and df.

Figure 16.4 Impact of *Q* and number of studies on the *p*-value.

<u>Figure 16.5 Impact of excess dispersion and</u> <u>absolute dispersion on T^2 .</u>

<u>Figure 16.6 Impact of excess and absolute</u> <u>dispersion on *T*.</u>

Figure 16.7 Impact of excess dispersion on I^2 .

<u>Figure 16.8 Factors affecting T^{2} but not I^{2} .</u>

<u>Figure 16.9 Factors affecting I^{2} but not T^{2} .</u>

Chapter 17

<u>Figure 17.1 Prediction interval based on population</u> parameters μ and τ^2

<u>Figure 17.2 Prediction interval based on sample</u> <u>estimates M^{\pm} and $T^{\underline{2}}$.</u> <u>Figure 17.3 Simultaneous display of confidence</u> <u>interval and prediction inter...</u>

<u>Figure 17.4 Impact of number of studies on</u> <u>confidence interval and predictio...</u>

Chapter 18

<u>Figure 18.1 Forest plot of Dataset 1 – random-</u> <u>effects weights with predictio...</u>

<u>Figure 18.2 Forest plot of Dataset 2 – random-</u> <u>effects weights with predictio...</u>

<u>Figure 18.3 Forest plot of Dataset 3 – random-</u> <u>effects weights with predictio...</u>

Chapter 19

<u>Figure 19.1 Alcohol use and mortality. Risk ratio <</u> <u>1 favors drinkers. Three...</u>

<u>Figure 19.2 Alcohol use and mortality. Risk ratio <</u> <u>1 favors drinkers. Three...</u>

<u>Figure 19.3 Alcohol use and mortality (Forest plot).</u> <u>Risk ratio < 1 favors d...</u>

<u>Figure 19.4 Alcohol use and mortality (true effects).</u> <u>Risk ratio < 1 favors ...</u>

Chapter 20

Figure 20.1 True effects for two meta-analyses.

<u>Figure 20.2 True effects (inner) and observed</u> <u>effects (outer) for two meta-a...</u>

Chapter 21

<u>Figure 21.1 Fixed-effect model – studies and</u> <u>subgroup effects.</u>

<u>Figure 21.2 Fixed-effect – subgroup effects.</u>

<u>Figure 21.3 Fixed-effect model – treating subgroups</u> <u>as studies.</u>

<u>Figure 21.4 Flowchart for selecting a</u> <u>computational model.</u>

<u>Figure 21.5 Random-effects model (separate</u> <u>estimates of τ^2) – studies a...</u>

<u>Figure 21.6 Random-effects model (separate</u> <u>estimates of τ^2) – subgroup ...</u>

<u>Figure 21.7 Random-effects model (separate</u> <u>estimates of τ^2) – treating ...</u>

<u>Figure 21.8 Random-effects model (pooled estimate</u> of τ^2) – studies and ...

<u>Figure 21.9 Random-effects model (pooled estimate</u> of τ^2) – subgroup eff...

<u>Figure 21.10 Random-effects model (pooled</u> <u>estimate of τ^2) – treating su...</u>

<u>Figure 21.11 A primary study showing subjects</u> <u>within groups.</u>

<u>Figure 21.12 Random-effects model – variance</u> <u>within and between subgroups.</u>

<u>Figure 21.13 Proportion of variance explained by</u> <u>subgroup membership.</u>

Chapter 22

<u>Figure 22.1 Fixed-effect model – forest plot for the</u> <u>BCG data.</u>

<u>Figure 22.2 Fixed-effect model – regression of log</u> <u>risk ratio on latitude.</u>

<u>Figure 22.3 Fixed-effect model – population effects</u> <u>as function of covariate...</u> <u>Figure 22.4 Random-effects model – population</u> <u>effects as a function of covar...</u>

<u>Figure 22.5 Random-effects model – forest plot for</u> <u>the BCG data.</u>

<u>Figure 22.6 Random-effects model – regression of</u> <u>log risk ratio on latitude....</u>

<u>Figure 22.7 Between-studies variance (T^2) with no covariate.</u>

<u>Figure 22.8 Between-studies variance (T^2) with covariate.</u>

<u>Figure 22.9 Proportion of variance explained by</u> <u>latitude.</u>

Chapter 24

<u>Figure 24.1 Three fictional examples where the mean effect is 0.00.</u>

<u>Figure 24.2 Three fictional examples where the mean effect is 0.40.</u>

<u>Figure 24.3 Three fictional examples where the mean effect is 0.80.</u>

<u>Figure 24.4 Methylphenidate for adults with ADHD</u> (Forest plot). Effect size ...

<u>Figure 24.5 Methylphenidate for adults with ADHD</u> (<u>True effects</u>). <u>Effect size...</u>

<u>Figure 24.6 GLP-1 mimetics and diastolic BP</u> (Forest plot). Mean difference <...

<u>Figure 24.7 GLP-1 mimetics and diastolic BP (True effects). Mean difference ...</u>

<u>Figure 24.8 Augmenting clozapine (Forest plot). Std</u> <u>mean difference < 0 favo...</u> <u>Figure 24.9 Augmenting clozapine (True effects).</u> <u>Std mean difference < 0 fav...</u>

Chapter 25

<u>Figure 25.1 Random effects. Confidence interval 60</u> <u>points wide.</u>

<u>Figure 25.2 Methylphenidate for adults with ADHD.</u> <u>Effect size > 0 favors tre...</u>

Chapter 28

<u>Figure 28.1 Creating a synthetic variable from</u> <u>independent subgroups.</u>

Chapter 33

<u>Figure 33.1 The *p*-value for each study is > 0.20</u> <u>but the *p*-value for the sum...</u>

Chapter 34

Figure 34.1 Power for a primary study as a function of n and δ .

Figure 34.2 Power for a meta-analysis as a function of number studies and δ ...

<u>Figure 34.3 Power for a meta-analysis as a function</u> <u>of number of studies and...</u>

Chapter 35

<u>Figure 35.1 Passive smoking and lung cancer –</u> <u>forest plot.</u>

<u>Figure 35.2 Passive smoking and lung cancer –</u> <u>funnel plot.</u>

Figure 35.3 Observed studies only.

<u>Figure 35.4 Observed studies and studies imputed</u> <u>by Trim and Fill.</u> <u>Figure 35.5 Passive smoking and lung cancer –</u> <u>cumulative forest plot.</u>

Chapter 37

<u>Figure 37.1 Estimating the effect size versus</u> <u>testing the null hypothesis.</u>

<u>Figure 37.2 The *p*-value is a poor surrogate for effect size.</u>

<u>Figure 37.3 Studies where *p*-values differ but effect</u> sizes is the same.

<u>Figure 37.4 Studies where *p*-values are the same</u> <u>but effect sizes differ.</u>

<u>Figure 37.5 Studies where the more significant *p*-value corresponds to weaker...</u>

Chapter 38

<u>Figure 38.1 Circumcision and HIV. Odds Ratio >1</u> <u>indicates circumcision is as...</u>

<u>Figure 38.2 HIV as function of circumcision – in</u> <u>three sets of studies.</u>

Chapter 41

Figure 41.1 Effect size in four fictional studies.

Chapter 46

<u>Figure 46.1 Forest plot using lines to represent the effect size.</u>

<u>Figure 46.2 Forest plot using boxes to represent</u> <u>the effect size and relativ...</u>

Chapter 47

<u>Figure 47.1 Impact of streptokinase on mortality –</u> <u>forest plot.</u>