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Preface

All around theworld, the spread of infectious diseases is amajor concern as it directly
impacts the health of people.While some infectious diseasesmayhave aminor impact
on society, some can havemajor impacts such as the recent SARS-CoV-2 coronavirus
pandemic, also known as COVID-19.

To cope with the spread of infectious diseases, some traditional approaches are
used such as to study the effect ofmedicines anddevelopnewones, design appropriate
vaccines, and enforce various measures such as washing hands, wearing face masks,
and doing temperature checks. However, despite the usage of such measures and
medical advancements, there remain several incurable diseases for which prevention
is the only cure. Besides, time is often critical when coping with new diseases that
are highly contagious such as COVID-19 as no vaccine or very effective medicine is
initially available.

To copewith these challenges, artificial intelligence (AI) has been rapidly adopted
to assist physicians in diagnosis, disease tracking, prevention, and control. Due to
increasing the availability of electronic healthcare data and rapid progress of analytics
techniques, a lot of research is being carried out in this area by applying machine
learning and data mining techniques to assist the medical professionals for making
a preliminary evaluation.

This book is a collection of 11 chapters that provides a timely overview of recent
advances in this area, that is, to use artificial intelligence techniques for tracking and
preventing diseases. The target audience of this book is researchers, practitioners,
and students. A brief description of each chapter is given below.

In Chap. 1, four approaches to identify stress by recognizing the emotional state
of a person have been proposed. Pradeep et al. have analyzed the performance of
the proposed approaches using Surrey Audio-Visual Expressed Emotion (SAVEE)
and ENTERFACE databases. The results illustrate the considerable reduction in
computational time and show that vector quantization-based features perform better
than mel-frequency cepstral coefficients feature.

In Chap. 2, Fayemiwo et al. compared various approaches for the detection of
COVID-19 from X-ray images. The problem is viewed as a classification problem
with two classes (normal vs COVID-19) or three classes (normal, pneumonia, and
COVID-19). A fine-tuned VGG-19 convolutional neural network with deep transfer
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vi Preface

learning shows that high accuracy can be obtained (from 89% to 99% depending on
the scenario.

In Chap. 3, Falguni et al. aim to develop an intelligent diagnostic system for
glaucoma—an eye-related disease, from the data obtained through clinicians by
various examination devices or equipment used in ophthalmology. The classification
is done by using a hybrid approach using artificial neural network, Naïve Bayes
algorithms, decision tree algorithms, and 18 medical examination parameters for
a patient. FGLAUC-99 is developed with J48, Naïve Bayes, and MLP classifiers
with accuracy of 99.18%. The accuracy is not compared with other classifiers as the
dataset is exclusively developed.

In Chap. 4, Pathak et al. have introduced two approaches, one based on a simple
neural network and another based on a deep convolutional neural network, for
diagnosis of tuberculosis disease. To evaluate the performance of the proposed
approaches, they conducted experiments using tuberculosis chest X-ray dataset
available on Kaggle and received classification accuracy of 99.24%.

In Chap. 5, Sarumi and Leung proposed an adaptive Naive Bayes-based machine
learning algorithm for efficient prediction of genes in the genome of eukaryotic
organisms. The adaptive Naive Bayes algorithm provided a sensitivity, specificity,
and accuracy of 81.52%, 94.01%, and 96.02%, respectively, on discovering the
protein-coding genes from the human genome chromosome GRCh37.

In Chap. 6, Deshpande et al. presented a survey work on different areas where
microscopic imaging of blood cells is used for disease detection. A small note on
blood composition is first discussed, which is followed by a generalizedmethodology
for microscopic blood image analysis for certain application of medical imaging.
Several models using microscopic blood cell image analysis are also summarized
for disease detection.

In Chap. 7, Mahajan and Rana presented a comprehensive review of the recent
clinical named entity classification using rule-based, deep learning-based, and hybrid
approaches. The efficacy of clinical named entity recognition (NER) techniques for
information extraction is also discussed and several experiments are then evaluated
to show the state-of-the-art models with high accuracy by combining deep learning
(DL) models with a sequential model.

In Chap. 8, the topic of disease diagnosis from CT scan images is discussed.
Sajja et al. present a generic and hybrid intelligent architecture for disease diag-
nosis. The architecture can classify images into various disease categories using a
convolutional neural network and is applied for detecting the COVID-19 disease.
The design of the model is presented in detail with an experimental evaluation and
a discussion of applications for other disease diagnoses using radiology images, as
well as possibilities for future work.

In Chap. 9, skin lesion classification problem is addressed. Rock et al. developed
an online system to assist doctors to quickly diagnose skin disease through skin
lesion observation. Results demonstrate 78% testing accuracy and 84% training and
validation accuracy.

In Chap. 10, Oza et al. have discussed various mammogram classification tech-
niques that are categorized based on function, probability, rule, and similarity. They
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have presented comparative analysis of these techniques including strengths, draw-
backs, and challenges. A few mechanisms to deal with these challenges have been
described. In addition, some publicly available mammogram datasets are discussed
in this chapter.

In Chap. 11, Sachdev et al. have presented the state-of-the-art similarity-based and
feature-based chemogenomic techniques for the prediction of interaction between
drug compounds and proteins. They have illustrated comparison of these techniques
including their merits and demerits.

Surat, India
Shenzhen, China
Vallabh Vidyanagar, India
Bergen, Norway
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Chapter 1
Stress Identification from Speech Using
Clustering Techniques

Pradeep Tiwari and A. D. Darji

Abstract With the stressful environment of day to day life, pressure in the corporate
world and challenges in the educational institutes, more andmore children and adults
alike are affected by lifestyle diseases. The Identification of the emotional state or
stress level of a person has been accepted as an emerging research topic in the domain
of HumanMachine Interfacing (HMI) as well as psychiatry. The speech has received
increased focus as a modality from which reliable information on emotion can be
automatically detected. Stress causes variation in the speech produced, which can
be measured as negative emotion. If this negative emotion continues for a longer
period, it may bring havoc in the life of a person either physically or psychologi-
cally. The paper discusses the identification of stress by recognising the emotional
state of a person. Herein, four approaches for automatic Emotion Recognition are
implemented and their performances such as accuracy and computation time are
compared. First approach is Stress/Emotion recognition based on Mel-Frequency
Cepstral coefficients (MFCC) feature with Lib-SVM classifier. In other approaches,
Vector Quantization (VQ) based clustering technique is used for feature extraction.
Three algorithms based on VQ have been explored: (a) Linde-Buzo-Gray (LBG)
algorithm, (b) Kekre’s Fast Codebook Generation (KFCG) algorithm (c) Modified
KFCG. The result obtained indicates that VQ based features perform better in com-
parison to MFCC, while KFCG modified algorithm gives further better results. The
Surrey Audio-Visual Expressed Emotion (SAVEE) database of seven universal emo-
tions and ENTERFACE database with six emotions is used to train and test the
multiclass SVM.
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2 P. Tiwari and A. D. Darji

1.1 Introduction

Mental stress is a serious problem nowadays that not only affects the capacity, per-
formance and mood of an individual, but also induces physical and mental health
issues [1]. Under several stressed circumstances or emotions, the attributes of speech
signals vary [2]. Stressed speech is characterized as the speech generated under any
situation that leads the speaker to vary the speech from the neutral condition in the
production of speech [3]. If a speech generated is in a ‘quiet place’ with no work
duties, therefore the generated speech is assumed to be neutral. Stress can be catego-
rized as (a) Emotionally driven stress: Speech generated by a shift in the speaker’s
mental or psychological condition like angry speech, happy speech, etc. (b) External
stress triggered by the atmosphere such as Lombard speech (c) Pathological stressed
speech such as Cold influenced speech, Senior Citizens Speech. In this work, emo-
tionally driven stressed speech and External stress triggered by the atmosphere are
considered. Stress unlike physiological diseases does not show symptoms at an early
stage, so it can be cured before it is a massacre. Stress can be identified with the
help of seven universal human emotions like fear, anger, disgust, happiness, con-
tempt, and surprise and sadness as suggested by Ekman and Friesen [4]. Speech
being non-invasive, non-intrusive in nature attracts the majority of the researchers
and deals with identification of stress or emotion. For the applications like Human
Machine Interface to work on low-cost processors or mobile applications, it becomes
challenging to obtain the accurate results in real time. Thus, this paper focuses on
the investigation of feature extraction techniques which increases the recognition
accuracy and decreases the computational time by suitable modification in features
like clustering, thus arriving at a simpler approach to perform real time fast and
efficient emotion classification. Clustering reduces the size of training vector by
quantizing it into clusters. Hence, the major contribution of this paper is it investi-
gates the techniques which reduce the complexity involved while training and testing
of a classification model considerably which further decreases the computation time
without compromising with the accuracy. Four approaches for automatic Emotion
Recognition are implemented in this paper and their performances such as accuracy
and computation time are compared. First approach is Stress/Emotion recognition
based on Mel-Frequency Cepstral coefficients (MFCC) feature with Lib-SVM clas-
sifier. In other approaches, Vector Quantization (VQ) based clustering technique is
used for feature extraction. Three algorithms based on VQ have been explored: (a)
Linde-Buzo-Gray (LBG) algorithm, (b) Kekre’s Fast Codebook Generation (KFCG)
algorithm (c)ModifiedKFCG. The result obtained shows that the performance ofVQ
based features is better in comparison to MFCC, while KFCG modified algorithm
shows further improvement in the results. Results also illustrates that the cluster-
ing technique reduces the possible overfitting, bias and variance issues along with
reducing the dimensionality of the features thus improving the results.

The remaining paper is organized as follows.Relatedwork is discussed inSect. 1.2.
Section1.3 details the experiments conducted while the results and its analysis is
discussed in Sect. 1.4. Section1.5 describes the future scope and concludes this work.
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1.2 Related Work

Lots of researchers have contributed to emotion and stress identification area in past
one decade. Ramamohan et al. [4] have utilized Sinusoidal features which can be
characterised by its Amplitude, Frequency and Phase as features. Its accuracy is
calculated for four emotions such as Anger, Neutral, Happiness and Compassion
with Vector Quantisation (VQ) and Hidden Markov model (HMM) classification
algorithm which shows better results compared to cepstral features and the linear
prediction algorithm. Shukla et al. [5] considered a database consisting of five emo-
tions, namely angry, neutral, happy, sad and Lombard, using 33 words. VQ and
Hidden Markov model (HMM) were used as classification models for 13 dimen-
sional MFCC features. The result obtained was 54.65% for VQ and 56.02% for
HMM, while a result of 59.44% was found to give human classification of stress.
According to the survey conducted by Hasrul et al. [6] for emotion recognition with
prosodic features such as pitch, MFCCs with Gaussian Mixture Model (GMM), for-
mants with SVM and energy with GMM, energy with GMM gave the best result of
92.3%. Shilpi et al. in 2015 [7] proved that speech signals combined with textual
information improves the accuracy of emotion recognition. MFCC and Mel-Energy
Spectrum Dynamic Coefficients features with Lib-SVM classifier was used by Cha-
van et al. [8] for happiness, sad, anger, neutral, fear, fromBerlin databasewith 93.75%
accuracy. A comparative study for word level and sentence level utterances from the
SUSE database was carried out by Sudhakar et al. in 2014 [9]. Linear Prediction Cep-
stral Coefficients (LPCC) and MFCC features were extracted. They conclude that
word utterances performed better than sentences and 2nd, 3rd and 4th order coeffi-
cients also gave comparable results to 12/13 order coefficients. A novel technique
was proposed by Amiya et al. in 2015 [10]. They combined prosody features, quality
features, derived features and dynamic feature for robust emotion recognition. Anger,
disgust, fear, happy, neutral, sad and surprise emotions were classified using SVM.
Revathy et al. in 2015 [11] discusses the effectiveness of Hidden Markov Model
tool kit (HTK) for speaker independent emotion recognition systems for EMO-DB
database with 68% accuracy. A novel WP-based feature called Discriminative band
WP power coefficients was introduced by Yongming et al. in 2015 [12] for emo-
tion recognition. These features gave improved performance over MFCC. El Ayadi
et al. [13] explains the features, formants, and energy-dependent properties related
to pitch contribute to the recognition of speech emotion. For the SAVEE Database,
Sanaul et al. proposed the speaker-dependent feature by case recommending fea-
ture selection on 106-dimensional audio features [14]. In addition, Davood et al.
used Fast Correlation-Based Filter (FCBF) feature selection on MFCC, Formants,
and related statistical features on the SAVEE database with an average accuracy of
53% for fuzzy ARTMAP neural networks in 2017 [15]. Significant changes were
observed over spectral features when weighted MFCC features were combined with
spectral and prosody features [16]. Deb et al. [17] suggested region flipping based
classification strategy using vowel-like regions and non-vowel-like regions using the
Extreme Learning Machine classification model on the EMO-DB database. Wissam
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et. al. build the SVM model by merging neurogram features and traditional speech
features [18].

This work is targetted for low-cost processors or mobile applications where it
becomes challenging to obtain the accurate results in real time. Thus, there was
a need to investigate feature extraction techniques which increases the recognition
accuracy and decreases the computational time. In the above mentioned literature,
various approaches were considered but the computation time requirement in those
approaches are more. Since, clustering reduces the size of training vector by quan-
tizing it into clusters. Hence,this paper investigates the techniques which reduce the
complexity involved while training and testing of a classification model consider-
ably which further decreases the computation time without compromising with the
accuracy. Experimental results show that the proposed feature considerably improves
emotion recognition performance over MFCC feature.

1.3 Stress Identification System Setup

The Block diagram of stress identification system set-up is represented by Fig. 1.1.
The first step in stress identification system is speech signal acquisition which

is obtained from two standard databases: (i) The Surrey Audio-Visual Expressed
Emotion (SAVEE) database of seven universal emotion (neutral, fear, disgust, happy,
anger, sad and surprise) (ii) ENTERFACE database with 6 emotion (neutral, fear,
disgust, happy, anger, sad and surprise).

The acquired signal will have lots of unwanted part like silence, surrounding
noise, dc offset values etc., and thus it is required to pre-process the speech signal.
Pre-processing includes three steps: (a) Eliminating the redundant information in
the signal (b) Removal of dc offset values which does not carry any information by
the process called normalisation (c) Pre-emphasizing the speech signal by using a
high pass filter since the speech produced is deemphasized at glottis. The next step
is extracting the feature from speech signal. There are various features extraction
techniques like Cepstral Co-efficients, MFCC and LPC coefficients which can be

Fig. 1.1 Block diagram of stress identification system
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applied to get feature vectors. There are two types of speech features which have
been used by the researchers, (a) Prosodic speech features such as pitch and energy,
also called local features. (b) Statistic or transform based features such as MFCC,
Wavelet, also known as global features. MFCC in Fig. 1.2 and Vector Quantisation
based features are considered in this research. Further, a pattern classifier called
support vector machines (SVM) decides the emotion class of the utterance.

1.3.1 Signal Aquisition and Pre-processings

The first step is speech signal acquisition which is accomplished using standard
database. The speech signal which is employed for AER is from standard SAVEE
database of seven universal emotions (Anger, disgust, fear, happy, neutral, sad and
surprise). The acquired signal would consist of unwanted part like silence, surround-
ing noise and dc offset values provided by microphone while recording, so it is
required to pre-process the speech signal. The second step is extracting the feature
from speech signal, wherein algorithms of various features extraction techniques like
Mel frequency cepstral co-efficients fromspeech and facial landmarks from image are
utilised to get feature vectors. These feature vectors will be used in third step where
classifier models like Support vector machine (SVM) would classify the different
emotion classes. The Pre-processing includes normalization and pre-emphasis.

1.3.2 Speech Feature Extraction

The second step is extracting the feature from speech signal, wherein algorithms
which can provide intra-class resemblance and inter-class discrimination are applied
to get feature vectors. The performance of any stress/ emotion identification system
mainly depends on features extracted from speech emotion signal. Mel-frequency
cepstral co-efficients (MFCC) is extracted for ASR and AER.

1.3.2.1 Mel-Frequency Cepstral Coefficients

This is a most widely used speech feature extraction technique found with the mul-
tiplication of Mel-filter bank with the frequency attribute of the signal called Power
spectrum [7].MFCC is based on human hearing perceptions, i.e. MFCC is calculated
by considering the variation of the human ear’s critical bandwidth with respect to
frequency. The MFCC feature extraction technique is as shown in Fig. 1.2.

Mel-Scale orMelody-scale is computed if frequency f is given in Hz, with Eq.1.1
is used.

Sk = Mel( f ) = 2595 ∗ (log10(1 + f

den
)) (1.1)
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Fig. 1.2 MFCC Feature Extraction

Fig. 1.3 Mel Filter Bank

The Mel filter bank obtained is given in Fig. 1.3.
First, the logarithm of the absolute value of the fast Fourier transform of input

signal x[n] is calculated whose inverse fast Fourier transform gives Cepstrum as
shown in Eq.1.2.

Cepstrum = I FT [abs(log(FT (x[n])))] (1.2)

where, FT (x[n]) indicates to the fast Fourier transform of speech signal and
I FT (signal) means the inverse fast Fourier transform of the speech signal. The
short time Fourier transform for a frame is illustrated in Eq.1.3.

Xa[k] =
N−1∑

n=0

x[n]e − j2πnk
N , 0 ≤ k ≤ N (1.3)
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As Xa[k]2 is known as Power spectrum and if it is applied to Mel frequency filter
bank Hm[k] consist of triangular filters, it results intoMel-frequency power spectrum
as provided in Eq.1.4.

S[n] =
N−1∑

n=0

Xa[k]2Hm[k], 0 ≤ m ≤ M (1.4)

Now, the log Mel-frequency power spectrum output is returned back to time
domain by utilizing a compression algorithm called discrete cosine transform on
S[m]. This gives MFCC calculated as shown in Eq.1.5.

MFCC[i] =
M∑

m=1

log(S[m]) cos[i(m − 1

2
)
π

M
] i = 1, 2, . . . , L (1.5)

The value of L is 13 i.e. it produces 13 MFCC coefficients for each frame and M
indicates the length of the speech frames. The diagram shown in Fig. 1.4 represents
the input speech signal and output as extracted MFCC features.

Fig. 1.4 MFCC Feature Extraction
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1.3.2.2 VQ Based Features

Vector Quantization [19] reduces the size of training vector by quantizing it into
clusters called codebook as shown in Fig. 1.5. It reduces the complexity involved
while training and testing considerably as explained in Fig. 1.6.

Since this technique reduces the size of training vectors by quantizing it, it will be
applied after extraction of MFCC feature. The complexity involved while training

Fig. 1.5 Block diagram of stress identification system

Fig. 1.6 Need of training data vector size reduction


