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Pollination-Induced Changes in the 
Morphology and Physiology of  
Dendrobium Orchid Flowers Prior  
to Fertilization: The Roles  
of Ethylene and Auxin

Wouter G. van Doorn†

Mann Laboratory, Department of Plant Sciences, University of 
California, Davis, CA, USA

Saichol Ketsa
Department of Horticulture, Kasetsart University, Chatuchak, 
Bangkok, Thailand and Academy of Science, The Royal Society of 
Thailand, Dusit, Bangkok, Thailand

ABSTRACT

Pollination in Dendrobium, as in several other orchids, induces rapid growth in 
the width of both the ovary and the column (the organ containing the pollinia 
and the stigma). The visible effects of that growth do not occur when non‐
pollinated flowers are exposed to ethylene or after application of the ethylene 
precursor 1‐aminocyclopropane‐1‐carboxylic acid (ACC) to the stigma of non‐
pollinated flowers. However, growth of the ovary and column of pollinated 
flowers is inhibited by the ethylene antagonist 1‐methylcyclopropene (1‐MCP) 
and the ethylene synthesis inhibitor aminooxyacetic acid (AOA). The effects 
on growth, including column and ovary growth, were similar following the 

† Deceased



2	 WOUTER G. VAN DOORN AND SAICHOL KETSA

	 I.	 INTRODUCTION
	 II.	 ORCHID FLOWER STRUCTURE
	III.	� POST-POLLINATION EFFECTS IN ORCHIDS OTHER THAN DENDROBIUM
	 IV.	� ROLE OF HORMONES IN ORCHIDS OTHER THAN DENDROBIUM
	 V.	 POLLINATION IN DENDROBIUM
	VI.	 VISIBLE POST-POLLINATION EFFECTS IN DENDROBIUM

A.	 Color Changes
B.	 Growth Reactions
C.	 Abscission

VII.	� ROLE OF HORMONES IN THE VISIBLE POST-POLLINATION PHENOMENA IN  
DENDROBIUM
A.	 Hormones and Their Precursors in Dendrobium Pollinia
B.	 Ethylene Production after Pollination
C.	 ACC, ACC Synthase, and ACC Oxidase
D.	 Treatment with Ethylene or ACC
E.	 Endogenous Auxin and Treatment with Auxin
F.	 Antagonists of Ethylene
G.	 Antagonists of Auxin

VIII.	CONCLUSIONS
LITERATURE CITED

I.  INTRODUCTION

Pollination can induce rapid changes in flower form and color, as well as 
early flower senescence. Most of these changes also occur, although later, 
in unpollinated flowers. These early effects of pollination have been 
reported in many plant families, but are quite common in the Orchida-
ceae, where they usually occur before fertilization. With many orchids, 
therefore, it is possible to distinguish between the effects of fertilization 
and those of pollination. Hildebrand (1863a,b,c) and Fitting (1909) noted 
that the post-pollination effects in orchids depended on the species.

In the first detailed study on Dendrobium, Hildebrand (1863a) observed 
that fertilization in D. nobile took place several months after pollina-
tion, while early post-pollination effects were visible within 2–3 weeks 
of pollination. The same has been found in commercial Dendrobium 

application of an auxin such as 1‐naphthylacetic acid (NAA) to the stigma, while 
studies with ethylene inhibitors showed that NAA acted through ethylene. The 
known presence in the pollinia of ACC and an auxin‐like compound apparently 
explains the initial growth of the column and ovary in response to pollination.

KEYWORDS: 1‐MCP, ACC, auxin, antiauxin, ethylene, ethylene antagonist, 
ovary growth, column growth, pollen tube, pollinia



1.  POLLINATION-INDUCED CHANGES IN DENDROBIUM	 3

cultivars, which are crosses of Dendrobium species (Luangsuwalai 
et  al.  2008). The visible post-pollination phenomena in Dendrobium 
are, therefore, not due to fertilization but to pollination per se.

The purpose of this review is to present the data that are now available 
on post-pollination phenomena in Dendrobium orchids, more than 150 
years after the publications of Hildebrand. After a short introduction 
to orchid flower morphology, the early post-pollination phenomena in 
some orchids are discussed to show the range of effects. Some examples 
of early work on hormones will also be reviewed in orchids other than 
Dendrobium. This is followed by an analysis of Dendrobium where 
three groups of early visible pollination effects can be distinguished: a) 
color changes, b) growth reactions, and c) senescence. The purpose of 
this review is to summarize the role of hormones, mainly ethylene and 
auxin, in the initial growth of the ovary and column of Dendrobium 
orchids after pollination.

II.  ORCHID FLOWER STRUCTURE

The Asteraceae are likely the largest family of flowering plants, while 
the Orchidaceae appear to be second largest. Although new discov-
eries in the field are relatively rare, new orchid species currently are 
described at a rate of about 500 per year, mainly based on taxonomic 
work. New genera have been described recently at a rate of about 10–13 
per year (Chase et al. 2015).

Orchids generally have a bilaterally symmetric flower made up of 
three sepals and three petals, forming two whorls of colored leaf-like 
appendages (Figure  1.1). These orchid flower appendages are also 
called tepals, but here we will use the terms “petal” and “sepal.” The 
median petal is normally bigger, more colored, and dotted and/or orna-
mented. This floral leaf is known as a lip or labellum and serves as 
a landing platform for insects. The ovary is inferior. The androecium 
(male parts; consisting of 1–3 fertile anthers) and gynoecium (female 
parts) are usually fused into a single structure called a column, whereby 
the male parts (pollen) are situated above the stigma and style (Singer 
et al. 2004). It has been suggested that orchids derive from species with 
six anthers, and that during evolution three, four, and five functional 
anthers were lost, producing the extant orchid subfamilies Apostasi-
oideae, Cypripedioideae, and the monandrous orchids, respectively 
(Johnson and Edwards 2000).

In many species the pollen grains are packaged into large conglom-
erates (pollinia) that are removed as a single unit from the flower. The 
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pollinia, in most species four per flower, can have stalks as well as 
secretions that stick the pollinia to the pollinator’s body. If pollinia 
have such accessory structures for attachment to the pollinator, they 
are called pollinaria. Pollinaria can consist of more than one pollinium 
(Pacini and Hesse  2002; Singer et  al.  2004). In many orchid species 

CURTIS s.n

After
TH. ROCKE

1 cm

1 cm

(a)

(b)

(c)

BOGOR BLUME 1936

10 cm

Figure 1.1  Dendrobium appendiculatum [syn. Flickingeria appendiculata (Blume)] 
flowers. (Source: © Seidenfaden (1980); reproduced with permission.)
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each pollinium often contains several thousands to tens of thousands 
of pollen grains. In one species a pollinium reportedly contained about 
four million pollen grains (Darwin 1877; Schill et al. 1992). In orchid 
flowers with pollinia/pollinaria the stigmatic surface is a cavity that fits 
one or a few pollinia/pollinaria.

III. � POST-POLLINATION EFFECTS IN ORCHIDS OTHER  
THAN DENDROBIUM

Hildebrand (1863a,b,c) studied about 30 orchid species. The degree 
of ovary development, by the time of pollination, depended on the 
species: some (for example, Listera ovata, now called Neottia ovata, 
and Neottia nidus-avis) had ovules that showed relatively advanced 
development, although an embryo-sac was not yet present. After polli-
nation, the ovary enlarged and the ovules started to grow and develop 
further, before the pollen tubes reached the ovary. In the absence of 
pollination, the ovary withered. The sepals and petals in most species 
soon senesced after pollination but did not show early abscission. 
Sepals and petals were usually found in a dry state at the top of ripe 
fruit. In some species these dry sepals/petals eventually fell off. In 
Neottia ovata, by contrast, little effect of pollination was found on 
sepals and petals. They remained attached to the dehiscent fruit while 
still fresh and succulent (Hildebrand 1863a).

Similar observations were reported by Fitting (1909). Pollination 
induced early flower senescence in species of the genera Aerides, Ble-
tia, Calanthe, Coelogyne, Dendrobium, Oncidium, Orchis, Phalaenop-
sis, Platanthera, Rhynchostylis, Stanhopea, Trichoglottis, and Vanda. 
Fitting also showed this in Rhenanthera × maingayi, now Arachnis × 
maingayi (the updated name from Yam et al. 2009). Exceptions were 
the absence of early senescence in Liparis latifolia (now Stichorkis 
latifolia) and in Cymbidium sanguinolentum (now C. chloranthum) 
(updated names from Yam et al. 2009).

Phalaenopsis violacea petals and sepals are white, sometimes green-
ish white, with some violet. Within 2–3 days of pollination, the white 
parts became yellowish and the violet parts turned red. The flower 
closed almost fully and started to wilt. The petals and sepals became 
turgid again 2–3 days later and then started to become green. They sub-
sequently stayed fresh for several months (Fitting 1909). In Phalaenopsis 
lueddemanniana the petals and sepals did not wilt after pollination, but 
within one week of pollination they became fleshy, turned green, and lost 
nonchlorophyllous pigments (red spots and stripes). Similar results were 
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obtained with P. amboinensis, P. fasciata, P. hieroglyphica, and P. pallens. 
Such regreening has also been reported in P. mannii and P. mariae, in the 
orchid Menadenium labiosum, and in Miltonia species (Tran et al. 1995).

In many species, Fitting (1909) observed pollination-induced swell-
ing of the column (the organ containing the male and female parts) as 
well as of the subtending ovary. Additionally, pollination resulted in 
stigmatic closure in species from the genera Coelogyne, Cymbidium, 
Stanhopea, and Phalaenopsis.

Later work generally confirmed these early observations on post- 
pollination effects. Experiments included genera such as Angraecum and 
Cattleya (Strauss and Arditti 1982), Calypso (Proctor and Harder 1995), 
Lemnoglossum and Odontoglossum (Clifford and Owens  1988), 
Cleistes (Gregg 1991), Mystacidium (Luit and Johnson 2001), Cochni-
ella (Abdala-Roberts et al. 2007), Acampe and Bletilla (Huda and Wil-
cock  2012), and Epidendrum (Vega and Marques  2014). Mathur and 
Mohan Ram (1978) reported an increase in anthocyanin in flowers of 
Lantana camara L. during thrips-pollinated senescence. In Ophrys 
fusca, analysis of the labellum transcriptome showed downregulation 
of transcripts involved in the synthesis of scents and pigments (associ-
ated with color fading of the lip), and upregulation of transcripts indi-
cating senescence (Monteiro et al. 2012).

IV. � ROLE OF HORMONES IN ORCHIDS OTHER THAN 
DENDROBIUM

Results of Burg and Dijkman (1967) suggested that at least ethylene and 
auxin had roles in the pollination-induced early senescence of Vanda 
orchids. This was confirmed by Arditti et  al. (1970) in Cymbidium. 
Application of abscisic acid (ABA) to the stigma of Cymbidium increased 
the anthocyanin levels, which also takes place after pollination. How-
ever, ABA treatment did not induce the typical column swelling, loss of 
column curvature, or stigmatic closure (Arditti et al. 1970). Application of 
the auxin 1-naphthyleneacetic acid (NAA) to the stigma, by contrast, pro-
duced all the symptoms brought about by pollination, including increased 
anthocyanin production, early petal and sepal wilting, stigmatic closure, 
and the swelling and loss of curvature of the column. Application of gib-
berellic acid (GA3) also induced these pollination effects, although only 
at high concentrations. Kinetin, a cytokinin, had almost no effect (Arditti 
et al. 1971). Ethylene treatment induced an increase in anthocyanin levels 
and petal and sepal wilting, but did not result in straightening of the 
column or in stigmatic closure (Arditti et al. 1973).
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Application of labeled IAA (indoleacetic acid) to the stigmas of 
Angraecum and Cattleya orchids resulted in virtual immobilization at 
the point of application. Some of the auxin was conjugated into IAA-
aspartate, but this also did not move. As the pollination signal spreads 
quickly to all floral segments, it was suggested that additional sub-
stances, either from the pollinia or produced by pollinated flowers, par-
ticipated in the production of the early pollination phenomena (Strauss 
and Arditti 1982).

Working with Cymbidium, Woltering (1990) and Woltering et  al. 
(1995) showed that 1-aminocyclopropane-1-carboxylic acid (ACC) 
is not mobile. Therefore, ACC is not the signal responsible for inter-
organ communication during senescence. The data suggested that 
pollination-induced ethylene, which is the cause of the increase in ACC 
concentration in various flower parts, rather than ACC is transported 
from the column to the sepals where it induces early senescence.

O’Neill et  al. (1993) found that substances from pollinia do not 
need to be transported out of the stigma, as pollination in Phalaenop-
sis rapidly induced transcription of genes required for ethylene pro-
duction, first in the stigma and then in other parts of the flowers. The 
data suggested that an autocatalytic rise in ethylene production was 
induced first in the stigma, then in other parts of the flower. Porat et al. 
(1998) found that an aqueous extract of pollinia contained two high-
performance liquid chromatography (HPLC) peaks, one of ACC, the 
direct precursor of ethylene, and the other having auxin activity while 
not being free auxin. This is consistent with a role of both ethylene and 
auxin-type compounds, but does not rule out the possibility that there 
are other active substances in the pollinia that help mediate the various 
post-pollination effects. Porat et al. (1995) concluded that an increase 
in ethylene sensitivity following pollination was the initial event that 
triggered the increase in ethylene production in Phalaenopsis. This 
increase in sensitivity has not yet been explained.

Novak et  al. (2014) pointed out that the required role of auxin in 
the maturation of the ovaries, and of the ovules, seems unique to 
orchids. They concluded that the data from Phalaenopsis species 
(Zhang and O’Neill 1993; Tsai et al. 2008) indicate that an auxin-like 
compound from pollinia is involved in a) the initiation of elongation 
of ovary epidermal cells, thereby forming trichomes; b) the increase 
in ovary diameter; and c) depending on the species, the initiation of 
ovule development or the maturation of partially developed ovules. 
They also concluded that treatment with ethylene did not induce these 
effects. Nonetheless, auxin will stimulate ethylene production, and a 
combination of auxin and ethylene is required for optimal ovary/ovule 
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development. Novak et al. (2014) also concluded that auxin was a cause 
of stigmatic closure in Phalaenopsis. Closure was also partially due to 
auxin-induced ethylene production, but treatment with ethylene alone 
had no effect. They additionally suggested that flower senescence was 
induced by an auxin-like compound in the pollinia, whereby auxin at 
least in part would act by increasing ethylene production. It is indeed 
possible that an auxin-like compound in pollinia has this effect, but a 
role of ACC in pollinia, which can also lead to a rise in ethylene pro-
duction through increased gene expression, should not be ignored. Fur-
thermore, in Dendrobium, ethylene is adequate to explain the effect of 
pollination on epinasty, downward movement of the petals and sepals, 
venation, and senescence (see Sections VI and VII).

The idea that the effects of auxin and ethylene during pollination-
induced early senescence in Phalaenopsis are coordinated also follows 
from gene expression data. Auxin upregulated the ethylene biosynthetic 
genes in Phalaenopsis, Phal-ACS2 and Phal-ACS3, and auxin-induced 
ethylene production was secondarily enhanced through ethylene-stim-
ulated Phal-ACS1 expression (Bui and O’Neill  1998). Independent of 
ethylene, auxin lowered transcript levels of Phalaenopsis MADS6, which 
counteracts petal and sepal senescence and inhibits the completion of 
ovary and ovule maturation after pollination. Nonetheless, this gene has 
both auxin and ethylene response elements in the promoter region, which 
suggests that ethylene can also affect its expression (Tsai et al. 2008).

V.  POLLINATION IN DENDROBIUM

The genus Dendrobium has been classified to the tribe Dendrobieae 
(together with Bulbophyllum), in the large subfamily Epidendroideae 
of the Orchidaceae (Pridgeon et  al. 2014). The genus contains about 
1200 species, found in South, East, and Southeast Asia, including India, 
China, Japan, and Australia. Plants are usually epiphytic (as the genus 
name indicates), sometimes growing on rocks, and rarely are terrestrial. 
Species are found in climates as diverse as alpine and desert-like, but 
many are from forests. Flower morphology differs widely. Examples of 
rather outstanding flower shapes are shown in Figure 1.2a–c (for the 
more common flower shape, see Figures 1.5 and 1.6).

The genus seems to contain the shortest-lived flower  –  flowers of  
D. appendiculatum open for five minutes only (van der Cingel 2001). 
The genus apparently also contains a species that produces one of the 
longest-lasting flowers. D. cuthbertsonii (Figure  1.3) plants grow on 
rocks and in trees at high altitudes (700 to 3500 m) and bloom in the 
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cold season. When grown in a mild climate (about 25°C), flowers are 
said to last up to nine months (Schordje 2013).

Many Dendrobium species have fragrant but nectarless flowers, 
which seem to be predominantly pollinated by bees, but pollination 

(a) (b)

(c)

Figure 1.2  Atypical flower morphology in the genus Dendrobium. Dendrobium 
chrysopterum (a), D. limpidum (b), and D. spectabile (c). D. chrysopterum and D. limpi-
dum from Papua New Guinea described by Schuiteman and de Vogel (2001 and 2003, 
respectively). For the common flower form of Dendrobium, see Figures 1.5 and 1.6. 
(Sources: (a) Photo credit: Dendrobium chrysopterum Schuit. & de Vogel. © Andre 
Schuiteman. (b) Photo credit: WWF/Bob Bowser/B2 Photography, Creative Commons. 
(c) Photo credit: © Don Dennis with permission.)
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by flies, wasps, bumblebees, and birds has also been recorded. Bird-
pollinated flowers are usually brightly colored and are found gener-
ally only at higher altitudes. D. antennatum is an exceptional case as it 
seems to be pollinated by the struggle between a spider that resides in 
the flower and a visiting insect (van der Cingel 2001).

Most Dendrobium species seem to bear pollinia (almost always four) 
without attachments and with no viscous material. Two pollinia are 
often connected, which is usually called a pollinarium (Telepova-
Texier  2005). Different species have been shown to have different 
shapes of pollinaria ranging from fusiform to slightly curved or comma 
shaped, with the inside surface slightly flattened, having two almost 
same-sized parts of each pair clinging together either fully along the 
entire length or only partially (Figure  1.4) (Chaudhary et  al.  2012). 
Each pollinium of Dendrobium ‘Kenny’ contained about 38,000 pollen 
grains, while pollinia of ‘Pompadour’ contained about 49,000 (Luang-
suwalai et al. 2008).

Upon pollination in D. speciosum, the pollinia become submerged 
into the viscous liquid of the stigmatic cup. This liquid contains 
detached stigmatic cells and mucilage. The mucilage is considered 
essential for the hydration and germination of the pollen. The stigmatic 
fluid and stigmatic cells apparently have a considerable osmotic poten-
tial, but water still flows into the dehydrated pollen grains (Slater 1991).

The pollen grains are hydrated progressively from the outside of 
the pollinium to the inside. After four days the pollen tetrads in the 

(a) (b)

Figure 1.3  Dendrobium cuthbertsonii, showing its variability in flower color and 
shape. (Source: Photo credit: © Simon Pugh-Jones. https://wsbeorchids.org/2017/365-
days-of-orchids-day-221-dendrobium-cuthbertsonii/.)

https://wsbeorchids.org/2017/365-days-of-orchids-day-221-dendrobium-cuthbertsonii/
https://wsbeorchids.org/2017/365-days-of-orchids-day-221-dendrobium-cuthbertsonii/
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Figure 1.4  Morphology of pollinia (left) and magnified surface of pollen showing 
distinct types of exine morphology (right) in (a) D. anceps, (b) D. infundibulum,  
(c) D. longicornu, (d) D. williamsonii, (e) D. primulinum, (f) D. parishii, (g) D. nobile, (h) 
D. falconeri, (i) D. chrysanthum, (j) D. fimbriatum, (k) D. ocreatum, (l) D. acreatum, (m) 
D. chrysotoxum, and (n) D. densiflorum. (Source: Modified from Chaudhary et al. 2012).

D. anceps D. infundibulum

D. longicornu D. williamsonii

D. primulinum D. parishii

D. nobile D. falconeri

D. chrysanthum D. fimbriatum

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

D. clavatum D. ochreatum

D. chrysotoxum D. densiflorum

(k) (l)

(m) (n)
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center of the pollinium were clumped together, with individual grains 
non-hydrated, while the tetrads on the periphery had broken apart, the 
grains had hydrated, and pollen tubes were initiated. This continued 
until the grains in the center of the pollinium had hydrated, germi-
nated, and produced pollen tubes, by day 7 after pollination. An area of 
the pollinium that was not in contact with the mucilage did not show 
pollen hydration and germination (Slater 1991).

Non-hydrated pollen grains had a dense cytoplasm, and were com-
pacted together. The grains swelled as they hydrated and the cytoplasm 
became vacuolate. After germination the cytoplasm transferred to the 
growing pollen tube tip. The pollen tubes grew through the maze of 
mucilage, detached stigmatic cells, and pollen tubes, towards the wall 
of the stigmatic cup. Upon contacting this wall, they veered towards 
the stylar canal and then proceeded towards the ovary. The detached 
cells of the stigma, insofar as located near the entrance to the stylar 
canal, had lost starch from the amyloplasts by the time the pollen tubes 
had passed. It was suggested that this might nourish the growing pollen 
tubes, as the detached stigma cells located in the remainder of the stig-
matic fluid did not lose starch (Slater 1991).

Slater and Calder (1988, 1990) showed that the stigma of D. specio-
sum provided the material that adhered the pollinia to the pollinator. 
Many orchids from other genera have a modified median stigmatic lobe 
(called a rostellum) which helps adherence of the pollinia to the polli-
nator. Such a structure is not present in D. speciosa (and in most, if not 
all, other Dendrobium species). Instead the pollinia are naked, compact, 
and not sticky. Pollinators get a smear of stigmatic fluid when they pass 
the stigma, either depositing a pollinium or not. When they advance 
further, pollinia will adhere to the stigmatic fluid on their body. The 
viscous material in the stigma of D. speciosum thus also functions as 
“glue” for the transfer of pollinia. The stigma of D. speciosum is rather 
unique as it has glandular cells that are detached and separated from 
each other by their highly viscous secretion (Slater 1991).

In D. nobile, Hildebrand (1863a) found that the pollen tubes formed a 
cord when passing through a channel of the column. On reaching the ovary 
cavity this cord divided into three parts, with each of these parts subse-
quently dividing into two. By day 11 of pollination, the ovary had become 
more developed but no ovules were yet observed. Two months after pol-
lination ovules had formed, showing different degrees of development. 
At that time the cords of the pollen tubes had apparently not changed. 
Three months after pollination all ovules had fully developed. Their 
embryo-sacs were distinct, but no pollen tube had yet reached them. Four 
months after pollination the first two or three cells of the embryo had 


