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Every two years, Groupe Polyphénols (GP) hosts the International Conference on 
Polyphenols (ICP). The XXIX ICP was the first one to be held in the United States in 
Madison, Wisconsin, on the campus of the University of Wisconsin–Madison (UW–
Madison), from July 16 to 20, 2018. Groupe Polyphénols also hosted the 9th Tannin 
Conference (TC) concurrently with the XXIX ICP. Groupe Polyphénols was founded in 
1972 and is the world’s premier society of scientists in the fields of polyphenol chemistry, 
synthesis, bioactivity, nutrition, industrial applications, and ecology.

Madison is Wisconsin’s state capital (the capitol building is shown on the front cover) 
and one of the nicest cities in the great lakes region. UW–Madison is a top ranked University 
(25th worldwide and 19th in the USA) and has a lovely campus with miles of lakefront and 
beautiful scenery adjacent to the state capitol. This venue for the XXIX ICP and 9th TC was 
fitting because Wisconsin’s cranberry industry provides 60 percent of the world’s supply of 
cranberries and is the state’s largest fruit industry. The cranberry industry is also strongly 
dependent on the polyphenolic composition of the fruit. Cranberries are harvested in the 
fall after they turn from yellow-green to bright red, as shown on the front cover. The fruits 
are harvested by flooding the marsh (also called cranberry bogs). After removing the fruits 
from the vine, they float to the surface and are corralled with a floating boom and conveyed 
into trucks (as depicted on the front cover). The fruits are either transferred to a packaging 
facility for the fresh fruit market or to a frozen storage facility for subsequent processing 
into juice or sweetened dried cranberries (SDC). In both cases the bright red color of the 
fruit is a critical component of processing because the fruit is sorted based on color before 
packaging as fresh fruit or processing for juice and SDC (a processing line after sort-
ing  is  also shown on the front cover). The color is a function of six anthocyanins, 
 cyanidin  3-O-galactoside, cyanidin 3-O-glucoside, cyanidin 3-O-arabinoside, peonidin 
3-O-galactoside, peonidin 3-O-glucoside, and peonidin 3-O-arabinoside. In addition to the 
anthocyanins, cranberries contain a large diversity of other monomeric polyphenols, espe-
cially flavonol glycosides, and contain simple phenols such as hydroxycinnamic acids and 
hydroxybenzoic acids. Cranberries also contain proanthocyanidins, which are just as 
important to the economic value of the fruit as the anthocyanins. The importance of proan-
thocyanidins to the cranberry market is a result of pioneering research from the late 1990s 
in which “A-type” interflavan bonds were discovered to be the structural feature of cran-
berry proanthocyanidins that is associated with the prevention of adherence of P-fimbriated 
E. coli to uroepithelial cells, the putative mechanism in the prevention of urinary tract 
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infections. Proanthocyanidin content is now used to market cranberry products (including 
juice, sweetened dried cranberries, and dietary supplements) and consumers widely recog-
nize cranberries as healthy. Therefore, all of the subjects that were discussed at the XXIX 
ICP and 9th TC and the chapters of this volume of Recent Advances in Polyphenol Research 
are of direct importance to Wisconsin’s cranberry industry. The role of polyphenols in this 
industry is an excellent example of the importance of polyphenol research in general.

The XXIX ICP and 9th TC were attended by 189 registrants from 23 countries, with 62 
invited and contributed presentations and 104 posters. This seventh edition of Recent 
Advances in Polyphenol Research presents 11 chapters that represent the work of the invited 
speakers at the XXIX ICP and 9th TC and reflect the depth of science in this important field 
of natural product chemistry. The conference included sessions on the chemistry and 
 physical chemistry of polyphenols; synthesis, genetics and metabolic engineering of poly-
phenols; the effects of polyphenols on the nutrition and health of humans and animals; the 
role of polyphenols in plants and ecosystems; applied research on polyphenols; and a 
 special session devoted to the 9th Tannin Conference.
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1.1  Introduction

Complexity is ubiquitous in biological systems. The main strategy to study complexity has 
been carried out using a top-down approach. Though the top-down approach the simpler 
components of the complex systems are identified, and whenever possible, up to the 
molecular level. In contrast, supramolecular chemistry, a concept well established and rec-
ognized after the 1987 Nobel Prize awarded to Donald J. Cram, Jean-Marie Lehn, and 
Charles J. Pedersen, is a bottom-up approach (Figure 1.1). Supramolecular chemistry stud-
ies how molecules interact to form higher-dimension entities and tends to fill the gap 
between “classical chemistry” and biology (Lehn, 1995).

A beautiful example of supramolecular chemistry is the structure of the metalloantho-
cyanin that gives color to Commelina communis (Kondo et al. 1992; Yoshida et al. 2009). An 
anthocyanin, a flavone, and a metal ion in a ratio 6:6:2 are organized into two parallel 
plans, each one containing three anthocyanins, three flavones, and one metal ion that 
organizes the space Figure 1.1.

There is an alternative to achieve complexity that we coin metamorphosis (Petrov et  al. 
2012). When a molecule (generator) is able to be transformed into other molecules by means 
of successive conversions and as a response to external stimuli, new molecules are formed. 
The complexity results from the number of the species and everything takes place at the bottom.

The pH-dependent multistate of species of anthocyanins and related compounds is a 
paradigm of the metamorphosis concept; see Scheme 1.1.

1.2   Flavylium Cation as a Metamorphosis Generator

The flavylium cation, AH+, is the most stable species at very low pH values, in anthocya-
nins generally for pH<1. The system is conveniently studied by direct pH jumps when base 
is added to the flavylium cation, and reverse pH jumps, defined as addition of acid to 
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equilibrated solutions at higher pH values. After a direct pH jump to moderately acidic 
pHs, the flavylium cation equilibrates in microseconds with quinoidal base, A eq. (1). The 
next step is the formation of the hemiketal, B, through the hydration of AH+ (min) eq. (2), 
followed by the ring opening to form cis-chalcone, Cc, (ms) eq.  (3). The fact that the 
 quinoidal base does not open in acidic medium is a breakthrough discovery (Brouillard 
and  Dubois  1977) crucial for the comprehension of anthocyanins and related 
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compounds systems. The Cc isomerization to trans-chalcone, Ct, in anthocyanins takes 
place in several hours eq.  (4). When the system is equilibrated in moderately acidic pH 
values, a reverse pH jumps restores the flavylium cation. The following set of equilibrium 
reactions accounts for the system:

 
AH AH O H O proton transfera2 3

k

k

a

a

K
 

(1)

 
AH B2 2 3H O H O hydrationh

k

k

h

h

K
 

(2)

 
B Cc

k

k

t

t

Kt tautomerization
 

(3)

 
Cc Ct

k

k

i

i

Ki isomerization
 

(4)

A few years ago we introduced an energy level diagram that accounts for the thermody-
namic of the anthocyanin system in acidic medium (Pina et al. 1997; Pina 2014a). This 
diagram can be straightforwardly constructed provided that the equilibrium constants, 
eq. (1) to eq. (4), of the system have been determined, see Scheme 1.2.

1.3   Extending the Multistate of Anthocyanins and Related 
Compounds to the Basic Region

In many flavylium derivatives from natural or synthetic origin, including anthocyanins, it 
is indispensable to extend the multistate study to basic medium.

AH+ pH = pKa

AH+ pH = 8

A

B

CcCt

AH+ pH = pKh
∆G0 = –RT lnKi

∆G0 = –RT lnKt

∆G0 = –RT lnKh

∆G0 = –RT lnKa

∆G0 = –RT ln10–8

AH+ pH = 0

Scheme 1.2  Energy level diagram for anthocyanins and related compounds in acidic medium. 
Source: Adapted from Pina 2014a. © 2014 John Wiley & Sons.
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In order to account for these new species, eight equilibrium equations should be added 
to eq. (1) through eq. (4).

For the formation of the mono-anionic species1

 A AH O H O proton transferA A2 3 K /  
(5)

 B BH O H O proton transferB B2 3 K /  
(6)

 Cc CcH O H O proton transferCc Cc2 3 K /  
(7)

 Ct CtH O H O proton transferCt Ct2 3 K /  
(8)

And for the formation of the di-anionic species

 A A2H O H O proton transferA A2 3 2 K /  
(9)

 B B2H O H O proton transferB B2 3 2 K /  
(10)

 Cc Cc2H O H O proton transferCc Cc2 3 2 K /  
(11)

 Ct Ct2H O H O proton transferCt Ct2 3 2 K /  
(12)

The system can be generalized for higher charged anionic species.
In spite of the complexity of this system, the set of eqs. 1 through 12 can be simplified 

considering a triprotic acid, eq. (13) through eq. (15), with constants K’a, eq. (19) K”a, eq. (20), 
and K”’a, eq. (21). The complete mathematical development of the system above was previ-
ously reported (supplementary information, Mendoza et al. 2019) and is straightforwardly 
obtained from a mass balance and representation of all species as a function of AH+.

 AH CBH O H O a2 3 K  
(13)

 CB CBH O H O a2 3 K  
(14)

 CB CB2H O H O a2 3 K  
(15)

Where

 
CB A B Cc Ct

 
(16)

 
CB A B Cc Ct

 
(17)

 
CB A B Cc Ct2 2 2 2 2

 
(18)

and

 K K K K K K K Ka a h h t h t i  
(19)

 
K K K K K K K K K K K K

Ka
A A a B B h Cc Cc h t Ct Ct h t i

a

/ / / /

 
(20)



Achieving Complexity at the Bottom Through the Flavylium Cation-Based Multistate 5

K K K K K K K K K K K K
a

A A A A a B B B B h Cc Cc Cc Cc h t C/ / / / / /2 2 2 tt Ct Ct Ct h t i

a a

K K K K
K K

/ /2

 
 (21)

The mole fraction distribution XR of all species can be expressed in terms of the 12 line-
arly independent constants reported in Scheme  1.3. Since the flavylium cation and the 
quinoidal bases are in very fast equilibrium (microseconds scale), it is convenient to con-
sider them altogether. The same is valid for the other species related through the proton 
transfer reaction.

 
X X X X

H K H K K H K K
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a A A a A A A
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3 2
2/ / // A aK
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(22)

where

 D H K H K K H K K Ka a a a a a
3 2

 
(23)
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Since the complex system shown in Scheme 1.3 behaves as a simple triprotic acid, the 
respective apparent equilibrium constants K’a, K”a, and K”’a are experimentally obtained 
from the inflection points of the absorbance representation as a function of the 
pH. Consequently, the term D is a parameter obtained experimentally. In Figure 1.2 the 
example of the heavenly blue anthocyanin is shown (Mendoza et al. 2018).

The question now is to define the experimental strategy to calculate the equilibrium 
 constants of the system.

1.3.1  Reverse pH Jumps from Pseudo-equilibrium Followed by Stopped 
Flow UV-visible Spectroscopy

Recently we have reported a new experimental procedure that allows the experimental deter-
mination of all equilibrium constants (as shown in Scheme  1.3) of the flavylium-based 
multistates including anthocyanins (Mendoza et al. 2019; Mendoza et al. 2018; Slavcheva 
et al. 2018). It is based on the reverse pH jumps defined above, followed by stopped flow. In 
Figure 1.3 the stopped flow traces of the model compound 4’-hydroxyflavylium are shown. 
The initial solutions should be equilibrated or pseudo-equilibrated. The reverse pH jumps 
consist of the addition of acid to make the solutions with pH=1, where flavylium cation is the 
sole species. In both cases of Figure 1.3 the initial absorbance is due to the quinoidal bases 
(independently on their protonation state) that give flavylium cation (absorption at 450 nm) 
during the mixing time of the stopped flow together with some flavylium cation present at 
the initial equilibrium (at lower pH values) prior to the jump; see also Scheme 1.3. This is the 
reason why the mole fraction distribution of the flavylium cation and quinoidal bases are 
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Figure 1.2  Absorption spectrum of heavenly blue anthocyanin, a peonidin derivative, black full 
line, flavylium cation; black pointed line, quinoidal base; black traced line, ionized quinoidal base. 
pK’a=3.47; pK”a=7.05; pK”’a=8.30. Source: Mendoza et al. 2018.
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represented together in eq. (22). At the final very low pH jump (pH=1) the hydration reaction 
becomes faster than the tautomerization because it is directly proportional to the proton con-
centration (Pina 2014b). Therefore, the faster trace is due to the conversion of B into AH+. 
The slower trace is the formation of more flavylium cation from Cc via B (Scheme  1.4) 
(Mendoza et al. 2019).

In anthocyanins and most flavylium derivatives the cis-trans isomerization is much 
slower than the other kinetic processes. It is possible thus to define a transient state 
(pseudo-equilibrium) where the mole fraction of the trans-chalcones is very small. 
Consequently, it is more convenient to carry out the reverse pH jumps from  
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pseudo- equilibrium. Scheme  1.4 illustrates the question in acidic medium, but it is 
generalized to higher pH values. Even if some Ct is formed, the only drawback is the 
loss of sensitivity, because the kinetics of the Ct transformation in flavylium cation is 
much slower and is not detected in the stopped flow experiments. In conclusion, the 
data reported in Figure 1.3, extended to other pH values, allows the calculation of the 
mole fraction distribution of the species A, B, and Cc as well as the respective ani-
onic forms.

The mole fraction distribution of these species can be represented as a function of the 
initial pH of the reverse pH jump (Figure 1.4).

The fitting of Figure 1.4 was carried out by considering for AH+, CB^, CB^-, and CB^2- the 
contributions of the respective forms of quinoidal bases, hemiketals, and cis-chalcones. For 
example, the mole fraction distribution of CB-^ is given by eq. (27) (Mendoza et al. 2019 
supplementary information).
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The mole fractions of the more colored forms, eq. (30), as well of those of hemiketals, 
eq. (31) and cis-chalcones, eq. (31) are thus obtained.
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Considering that the apparent equilibrium constants are experimentally obtained from 
the inflection points of the absorption spectra as a function of pH, the fitting of eq. (30) to 
eq. (32) permits us to obtain the constants an, bn and cn (n = 0, 1 and 2).

On the other hand, eq. (22) to eq. (25) can be re-written for the pseudo-equilibrium:
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Comparing eq. (30) with eq. (33), eq. (31) with eq. (34), and eq. (32) with eq. (35) the fol-
lowing  relations are obtained:
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1.3.2  Reverse pH Jumps from Equilibrium

From eq. (36) to eq. (38) all equilibrium constants except those regarding the trans-chal-
cones can be obtained. Moreover, the cis-trans isomerization constants can be calculated 
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from a reverse pH jump from the equilibrated solutions. Considering that formation of the 
flavylium cation from the trans-chalcones is very slow, this kinetics should be followed by 
a standard spectrophotometer. The quinoidal bases, hemiketals, and cis-chalcones are 
transformed to flavylium cation much faster than the trans-chalcones and appear as an 
initial absorption.2 From this point all the equilibrium constants have been calculated. The 
mole fraction of trans-chalcone is thus obtained from the ratio of the absorbance of the 
trace amplitude/total absorbance. The mole fractions of the other species at equilibrium 
are obtained from those at pseudo-equilibrium, calculating the respective proportion.3 For 
example, if at pseudo-equilibrium A=0.3, B=0.2, and Cc=0.5 and the mole fraction of Ct 
at equilibrium is 0.5, the mole fractions of A, B, and Cc at equilibrium are the following: 
A=0.15, B=0.1, and Cc=0.25.

1.4   The Kinetic Processes

Scheme 1.5 represents the four kinetic processes of anthocyanins and related compounds 
in acidic medium. It is worth noting that, like in the case of the formation of the quinoidal 
base from flavylium cation, all the other anionic species are formed as in Scheme 1.3, from 
proton transfer. This reaction represents step 1 in the kinetic process and takes place in 
microseconds during the mixing time of the stopped flow. Only using special techniques 
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such as temperature jumps (Brouillard and Dubois 1977), and in some favourable cases 
flash photolysis, are these constants obtained.4 This fact makes the kinetics reported in 
Scheme 1.5 the only relevant ones upon direct pH jumps, since the formation of the anionic 
species is immediate when compared with hydration, tautomerization, and isomerization. 
Moreover, the first process after a direct pH jump (from flavylium cation) is the formation 
of the quinoidal base, which equilibrates with the flavylium cation. In the subsequent 
kinetic steps these two species behave as a single one.

The following kinetic step is the hydration followed by tautomerization (Scheme 1.5). 
Except in very acidic solutions (not accessed by direct pH jumps), the tautomerization reac-
tion is faster than hydration and by consequence this last one is the rate-determining step 
of this kinetic process. This kinetic step can thus be considered as in eq. (39).

During the hydration both AH+/A and B/Cc can be considered as a single species.

 

k X k X k H
H

H K K
k HAH h Cc h

a t
h2

1
1

 
(39)

where XAH+ is the mole fraction of AH+ in its equilibrium with A, and XB is the mole frac-
tion of A in its equilibrium with Cc.

In eq. (39) the forward reaction takes place only from the reaction of AH+ to form B, 
because, as mentioned above, the quinoidal base A does not hydrate in acidic medium 
(Brouillard and Dubois 1977).

For anthocyanins and many of the flavylium derivatives, the last step is controlled by the 
isomerization of chalcones, which is by far the slowest process of the kinetics. A similar 
reasoning used for step 2 can be made for step 3. In this case all species except Ct can be 
considered equilibrated.

 
k X k k K K

H K
k kCc i i

h t

a
i i3 ^

 
(40)

1.4.1  Heavenly Blue Anthocyanin

The experimental procedure above reported was used to rationalize the multistate of heav-
enly blue anthocyanin and two derivatives (Scheme 1.6).

Heavenly blue anthocyanin, HBA1, has attracted the attention of the scientific community 
due to its peculiar properties, specifically the fact that the same anthocyanin is used by the 
plant to confer purplish color to the buds and blue color to the petals (Yoshida et al. 1995; 
Goto and Kondo 1991; Kondo et al. 1992). Moreover, in vitro the blue color is persistent in 
neutral and moderately basic solutions (Kondo et al. 1992; Yoshida et al. 2009). Structural 
information regarding HBA1 fully supports the intramolecular stacking shown in Scheme 1.7.

The system was studied up to the mono-anionic forms because at higher pH values a 
slow decomposition takes place and the data does not have sufficient accuracy. In spite of 
equilibrium being reached in one to two weeks, the neutral and mono-anionic species are 
relatively stable. Table 1.1 summarizes the data.
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In Table 1.1 the equilibrium constants of the non-acylated, di-acylated and tri-acylated 
derivatives of heavenly blue anthocyanin are also reported (Scheme 1.8). HBA2 and HBA3 
behave as common anthocyanins, being relatively stable only in acidic medium, preventing 
the calculation of the data regarding the anionic species at equilibrium.

The mole fraction distribution for HBA1 of the several species is represented in Figure 1.5. 
This distribution is in line with the previous observation (Yoshida et al. 1995) that the buds 
of heavenly blue anthocyanin are purple while the petals are blue. In fact the pH of the 
vacuoles in buds is around 6.6, while in petals pH=7.7 (Yoshida et al. 1995). In that pH 
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Scheme 1.6  Heavenly blue anthocyanin HBA1 and their derivatives bis-deacyl-HBA2 and 
tris-deacyl-HBA3. Source: Mendoza et al. 2018.
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Scheme 1.7  Sketch representing the intramolecular copigmentation in polyacylated anthocyanins; 
CPK models of heavenly blue anthocyanin. Source: Mendoza et al. 2018.

pK’a pK”a pK^
a pKa pKh Kt

HBA1 3.5 7.3 3.6 3.8 4.6 1.1

HBA2 — — 2.92 4.23 3.1 0.35

HBA3 — — 1.95 4.19 2.1 0.37

Ki pK^^
a pKA/A- pKB/B- pKCc/Cc- pKCt/Ct-

HBA1 4.0 7.35 7.35 7.5 7.25 7.36

Estimated error 10%.

Table 1.1  Equilibrium constants of heavenly blue anthocyanin and their derivatives. 

Source: Mendoza et al. 2018


