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PREFACIO

Excertos do Prefdcio da Primeira Edigdo

Parece nao haver acordo sobre o que deva constituir um primeiro curso de Cdlculo e
Geometria Analitica. Insistem alguns que a unica via para compreender realmente o Calculo
principia com um estudo completo do sistema dos numeros reais, desenvolvendo-o passo a passo
de uma maneira logica e rigorosa. Argumentam outros que o Cdlculo € fundamentalmente um
instrumento para engenheiros e fisicos; consequentemente acreditam que o curso deve condu-
zir .ds aplicagoes do Cdlculo, fazendo apelo d intuicdo para depois, pela prdtica de resolugdo
de problemas, desenvolver a destreza manipulatoria. Hd muito de correto em ambos os pon-
tos de vista. O Cdlculo é uma ciéncia dedutiva e um ramo da Matemdtica Pura. Ao mesmo
tempo € muito importante lembrar que o Cdlculo tem raizes profundas em problemas fisicos e
que muita da sua poténcia e beleza deriva da variedade das suas aplicacées. E possivel com-
binar um desenvolvimento tedrico profundo com uma sadia formagdo técnica; este livro repre-
senta uma tentativa de estabelecimento de um equilibrio sensato entre os ‘dois pontos de vista.
Embora tratando o Cdaleulo como uma ciéncia dedutiva, o livro ndo pde de parte as apli-
cagoes a problemas fisicos. As demonstragoes de todos os teoremas importantes sdo conside-
rados como uma parte fundamental do desenvolvimento das ideias matematicas; as demons-
tragdes sdo muitas vezes precedidas duma discussdo geométrica ou intuitiva, de modo a dar
ao estudante uma visdo mais penetrante do porqué da demonstragdo. Embora estas discus-
soes intuitivas satisfacam os leitores que ndo estejam interessados na demonstragcdo deta-
lhada, também se inclui a demonstragdo completa para aqueles que preferem uma exposi¢do
mais rigorosa.

A sequéncia dos assuntos neste livro foi sugerida pelo desenvolvimento histdrico e filosdfico
do Cdlculo e da Geometria Analitica. Por exemplo a integragdo é tratada antes da derivacdo.
Ainda que esta ordenagdo de matérias possa ser pouco frequente, é historicamente correcta e
pedagogicamente adequada, além de que é a melhor maneira de tornar patente a verdadeira
conexdo entre o integral e a derivada.

O conceito de integral é apresentado em primeiro lugar para fungées em escada. Uma vez
que o integral duma fung¢do em escada ndo é mais que uma soma, a teoria da integragdo é
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extremamente simples neste caso. Enquanto o estudante aprende as propriedades do integral
para fungoes em escada, ganha experiéncia no uso da notagdo de somagdo e ao mesmo tempo
JSamiliariza-se com a notagdo para integrais. Assim se solidificam os degraus de desenvolvi-
mento, de tal modo que a transigdo de fungdes em escada para fungGes mais gerais parece fd-
cil e natural.

Prefdcio da Segunda Edigdo

A segunda edi¢do difere da primeira em muitos aspectos. Juntou-se a Algebra Linear, os
teoremas da média e as aplicagdes de rotina do Cdlculo foram introduzidos nos primeiros
capitulos e acrescentou-se grande nimero de novos exercicios simples. Uma andlise rdpida do
indice de matérias revela que o livro foi dividido em capitulos de menor extensdo, cada um
deles dedicado a um conceito importante. Vdrias Secgoes foram escritas de novo e reorgani-
zadas de modo a proporcionar uma melhor motivagdo e melhorar o curso das ideias.

Como na primeira edigdo, cada conceito novo importante vem precedido de uma intro-
dugdo historica, descrevendo o seu desenvolvimento desde uma primitiva nogdo fisica intuita
até a sua formulagdo matemdtica precisa. O estudante descobre algo dos esforcos do passado
e dos triunfos dos homens que mais contribuiram para o assunto. Deste modo o estudante
torna-se um participante activo na evolugdo das idéias e ndo um mero observador passivo dos
resultados.

A segunda edigdo, tal como a primeira, estd dividida em dois volumes. As duas primeiras
tergas partes do volume I tratam o Cdlculo para fungdes de uma varidvel, incluindo séries e
uma introdugdo ds equagées diferenciais. A iltima terga parte deste volume introduz a Alge-
bra Linear com aplicagées d Geometria e d Andlise. Grande parte destes temas apoiam-se
solidamente no cdlculo de exemplos que ilustram a teoria geral. Proporciona uma mistura de
Algebra e Andlise e contribui para preparar o caminho para a transicdo do Cdlculo a uma
varidvel para o Cdlculo com vdrias varidveis, tratado no volume I1. Um desenvolvimento mais
amplo da Algebra Linear aparece como necessdrio na segunda edigdo do Volume II.

Uma vez mais reconheco com agrado a minha divida para com os Professores H. F. Bola-
nenblust, A. Erdélyi, F. B. Fuller, K. Hoffmann, G. Springer e H. S. Zuckerman. A sua
influéncia na primeira edigdo continuou na segunda. Na preparacdo da segunda edi¢do
recebi também a ajuda do Professor Basil Gordon que sugeriu muitas modificacées. Agrade-
cimentos sdo também devidos a George Springer e William P. Ziemer que leram as ultimas
provas. O pessoal de Blaisdell Publishing Company prestou, como sempre, grande ajuda;
apreciei a sua simpdtica aceitagdo dos meus desejos respeitantes ao formato e tipografia.

Finalmente tenho especial satisfagdo em expressar a minha gratiddo a minha esposa, por
ter contribuido por diversas formas na preparagdo de ambas as edigoes. Como testemunho do
meu agradecimento dedico-lhe, com prazer, este livro.

Pasadena, California T.M.A.
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INTRODUCAO

Parte I — Introdugdo histdrica

I 1.1 Os dois conceitos basicos do calculo

O notavel progresso conhecido pela ciéncia e tecnologia, durante o ultimo século, foi
devido em grande parte ao desenvolvimento da Matematica. O ramo da Matematica conhe-
cido por Calculo integral e diferencial é um instrumento natural e poderoso para atacar uma
variedade de problemas que aparecem na Fisica, Astronomia, Engenharia, Quimica, Geolo-
gia, Biologia e noutros campos, incluindo mais recentemente alguns das Ciéncias Sociais.

Para dar a o leitor uma ideia dos muito diversos tipos de problemas que podem ser trata-
dos pelos métodos do Calculo, expde-se a seguir uma pequena amostra de questoes seleciona-
das dos exercicios que aparecem em capitulos posteriores deste livro.

Com que velocidade deve ser langado um foguetdo, para que nao volte a tombar na Terra?
Qual é o raio do menor disco circular que cobre todo o tridngulo isosceles de perimetro L?
Qual € o volume do material extraido de uma esfera de raio 2r, se for atravessada por um
orificio cilindrico, de raio r, e cujo eixo passa pelo centro da esfera? Se uma cultura de bacteé-
rias cresce proporcionalmente 4 quantidade que existe em cada instante, e se a populagio
duplica ao fim de uma hora, quanto tera aumentado ao fim de duas horas? Se uma forga de
dez quilos faz esticar de um metro uma corda eléstica, qual o trebalho necessrio para
esticar a corda de quatro metros?

Estes exemplos, escolhidos em varios dominios, ilustram algumas das questdes técnicas
que podem ser resolvidas por aplicagoes mais ou menos rotinadas do Calculo.

O Calculo é mais do que um instrumento técnico — &€ uma compilaggo de ideias atraentes e
excitantes, que interessaram o pensamento humano durante séculos. Estas ideias estdo rela-
cionadas com velocidade, drea, volume, taxa de crescimento, continuidade, tangente a uma
curva e com outros conceitos dizendo respeito a uma variedade de dominios. O Calculo
obriga-nos a nao ir além, antes de pensarmos cuidadosamente acerca do significado destes
conceitos. Outro aspecto notavel do Calculo é o seu poder de sintese. Muitos destes conceitos
podem ser formulados de maneira que se reduzam a dois outros problemas, mais especializa-
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dos, de natureza puramente geométrica. Passamos em seguida a uma breve descrigao destes
problemas.

Consideremos uma curva C situada acima duma reta horizontal (base), como se indica na
fig. L.1. Suponhamos que esta curva goza da propriedade de ser intersetada por cada verti-
cal, no maximo, uma vez. A parte sombreada da figura ¢ formada pelos pontos situados
abaixo da curva C, acima da horizontal, e entre dois segmentos verticais paralelos que unem
C com a horizontal. O primeiro problema fundamental do Calculo ¢ o seguinte: Determinar
um numero que dé a medida da drea da parte sombreada da figura.

Consideremos em seguida uma reta tangente a curva C, como se mostra na fig. I.1. O
segundo problema fundamental pode enunciar-se do modo seguinte. Determinar um niimero
que dé o declive desta reta.

/

Linha tangente a C

Fig.I.1

Fundamentalmente o Calculo ocupa-se da formulagéo exata e da resolugdo destes dois
problemas particulares. Permite-nos definir os conceitos de area e tangente, e calcular a area
de uma dada regido, ou o declive de tangente a uma curva dada. O Cdleculo Integral ocupa-
se do problema da area e sera discutido neste primeiro capitulo. O Cdlculo Diferencial
ocupa-se do problema da tangente e sera analisado no Capitulo 4.

O estudo do Calculo requer uma certa preparagao matematica. O presente capitulo trata
desses conceitos basicos e esta dividido em quatro partes: a primeira parte da uma perspec-
tiva historica; a segunda refere a notagao e terminologia da teoria dos conjuntos; a terceira
trata do sistema dos numeros reais; e finalmente a quarta parte trata da indugdo matematica
e da notagdo somatoria. Se o leitor esta familiarizado com estes temas pode abordar directa-
mente o desenvolvimento do Calculo integral, no capitulo 1. Caso contrario devera
familiarizar-se com as matérias contidas nesta introdugio, antes de iniciar o estudo do Capi-
tulo.
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I 1.2 Introdugao histérica

A origem do Calculo integral remonta a mais de 2000 anos, quando os gregos tentavam
resolver o problema da determinagio de areas por um processo que designaram de método de
exaustdo. As ideias fundamentais deste método sdo elementares e podem descrever-se, suma-
riamente, do modo seguinte: dada uma regido cuja area pretende determinar-se, inscrevemos
nela uma regido poligonal que se aproxime da regido dada e cuja area seja de calculo facil.
Em seguida, escolhemos outra regiao poligonal que dé uma melhor aproximagio e continua-
mos o processo tomando /inkas poligonais com cada vez maior numero de lados, de modo a
cobrir a regiao dada. O metodo esta ilustrado na fig. .2 para o caso duma regido semicircu-
lar. Este método foi usado com &xito por Arquimedes (287-212 a. C.), para estabelecer for-
mulas exactas das areas do circulo e de algumas outras figuras particulares.

Depois de Arquimedes, o desenvolvimento do método de exaustdo teve que esperar quase
18 séculos até que o uso de simbolos e técnicas algébricas se tornaram parte usual da mate-
matica. A Algebra elementar, que hoje é familiar 2 maioria dos alunos dos ultimos anos do
ensino secundario, era completamente desconhecida no tempo de Arquimedes, fato que tor-
nava impossivel estender 0 método a qualquer classe de regides, sem se conhecer um modo
adequado de expressar os extensos calculos numa forma compacta e simplificada.

/AR

Fig. .2 O método de exaustdo aplicado a uma regido semicircular.

Uma mudanga lenta, mas revclucionaria, no desenvolvimento das notagGes matematicas
teve inicio no século xvi. O complicado sistema de numeragio romana foi gradualmente
substituido pelos cardteres arabicos utilizados ainda hoje, os sinais + e — foram introduzi-
dos pela primeira vez e comegaram a reconhecer-se as vantagens da notagdo decimal.
Durante este mesmo periodo, os brilhantes resultados dos matematicos italianos Tartaglia,
Cardano e Ferrari na determinagéio de solugdes algébricas para as equagdes ciibica e do
quarto grau estimularam o desenvolvimento da Matematica e encorajaram a aceitagio da
nova e superior linguagem algébrica. Com a larga introdugio dos bem escolhidos simbolos
algébricos ressuscitou o interesse pelo antigo método de exaustiio, e grande niimero de resul-
tados parciais foram descobertos no século XvI por pioneiros tais como Cavalieri, Toricelli,
Roberval, Fermat, Pascal e Wallis.

Gradualmente, 0 método de exaustao foi transformado no que hoje se designa por Calculo
Integral, nova e poderosa disciplina com uma grande variedade de aplicagdes ndo sé em pro-
blemas geométricos respeitantes a areas e volumes, mas também em problemas de outras
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ciéncias. Este ramo da Matematica, que conservou alguns dos aspetos originais do método
de exaustao, recebeu o seu maior impulso no século xvii, devido principalmente aos esforgos
de Isaac Newton (1642-1727) e Gottfried Leibniz (1646-1716) e o seu desenvolvimento conti-
nuou até ao século x1x, data em que matematicos como Augustin-Louis Cauchy (1789-1857)
e Bernhard Riemann (1826-1866) lhe deram uma base matematica solida. Posteriores aper-
feigoamentos e extensdes da teoria estdo ainda a ser levados a cabo na Matematica contem-
poranea.

I11.3 O método de exaustiio para a area de um “segmento parabolico”

Antes de passarmos ao estudo sistematico do Calculo integral, sera instrutivo aplicar o me-
todo de exaustdo directamente a uma das figuras particulares estudadas pelo proprio Arqui-
medes. A regido em questdao esta representada na figura 1.3 e pode descrever-se do modo
seguinte: se escolhermos um ponto arbitrario na base da figura e designarmos por x a sua dis-
tancia a 0, a distancia vertical deste ponto a curva é x*. Em particular, se o comprimento da
base é b a altura da figura é b2. A distancia vertical de x a curva designa-se por “ordenada”
de x. A curva assim descrita é uma pardbola e a regido limitada pela curva e pelos dois seg-
mentos de recta chamar-se-a segmento parabdlico.

Larb?
x'Z
0 X b Aproximagao por defeito.  Aproximagdo por excesso.
Fig. 1.3 Segmento Fig. 14
parabdlico.

Esta figura pode ser contida num retdngulo de base b e altura 5%, como se vé na fig. I.3.
Observando a figura ¢ evidente a afirmagdo de que a area do segmento parabdlico & menor
que metade da area do retangulo. Arquimedes fez a descoberta surpreendente de que a
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3

area do segmento parabdlico é exactamente um tergo da area do retangulo, isto e, 4 = 5

representando 4 a area do segmento parabdlico. Mostremos como se chega a este resultado.

g & b3
area do rectingulo = — k* e — >
n

Fig. 1.5 Calculo da area dum segmento parabolico.

Deve notar-se que o segmento parabolico desenhado na fig. 1.3 ndo é exactamente o que
Arquimedes considerou, e que os pormenores dos calculos que se seguem nao sao exata-
mente os utilizados por ele. Contudo as ideias essencias sao as de Arquimedes; 0 que apre-
sentamos aqui pode considerar-se o0 método de exaustao exposto com uma notagdo moderna.

O meétodo consiste simplesmente no seguinte: divide-se a figura num certo numero de ban-
das e obtém-se duas aproximagoes da area da regido, uma por defeito e a outra por excesso,
usando dois conjuntos de retdngulos como se indica na fig. 1.4 (utilizam-se retdngulos, em
vez de poligonos quaisquer, para simplificar os calculos). A area do segmento parabolico &
maior que a area total dos retdngulos interiores, mas é menor que a dos retangulos exterio-
res. Se cada banda se subdivide, para se obter uma nova aproximagao com maior numero de
bandas, a area total dos retangulos interiores aumenta, enquanto a area total dos retangu-
los exteriores diminui. Arquimedes compreendeu que se podia obter a area com qualquer
grau de aproximagao desejado, bastando para tanto tomar um nimero suficiente de bandas.

O calculo efetivo efectua-se como a seguir se indica. Com o objectivo de simplificar os
calculos divide-se a base em n partes iguais, cada uma de comprimento b/n (ver fig. 1.5). Os
pontos de divisdo correspondem aos seguintes valores de x:
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b 2b 3b (n—1)b nb _
n R n !Tl

b.

= . kb ;
A expressao geral dum ponto de divisdo é x = o onde k toma os valores sucessivos k=0,

1, 2, 3, ..., n. En cada ponto kb/n constroi-se o retangulo exterior de altura (kb/n)?, como se
indica na fig. I.5. A area deste retangulo é o produto da base pela altura e é igual a

n/ \n n®
Designando por S, a soma das areas de todos os retdngulos exteriores, uma vez que a area

do k-enésimo retiangulo é (b*/n*)k?, obtem-se
s—b—3(12+22+32+---+n2) (1.1)
n n;; # g
Do mesmo modo se obtém a expressao da soma S, dos rectangulos interiores:

ba
n?

1%+ 22+ 34 + (n — 1. (12)

Sy =

A forma destas somas é de grande importincia no calculo. Note-se que o fator que mul-
tiplica 6%/n® na equagdo (I.1) é a soma dos quadrados dos n primeiros inteiros positivos

12+22+...+n2_

[O fator correspondente na equagdo (I.2) € analogo, apenas a soma tem unicamente n-1
parcelas]. O calculo desta soma por adigdo directa das parcelas, para um grande valor de n, &
fastidioso, porém existe uma identidade interessante que torna possivel calcula-la dum modo
mais simples; a identidade &

P (1.3)

(= 0 =]

3
12+2“"+---+n2=’—;-+

E valida para todo o inteiro n > 1 e pode provar-se do modo seguinte: Considere-se a igual-
dade (k+1)°* = k* + 3k* + 3k + 1 escrita na forma

W43+ 1 =(k + 1) — &2
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Fazendo k = 1, 2, ..., n — 1, obtém-se as n — 1 formulas

3:1243-141=22-13
3-2243-241=3%-28

n—12+3n—1D+1=n—(n—1)0>2

Somando as igualdades, membro a membro, todos os termos do segundo membro se elimi-
nam, excepto dois, resultando

I+ 24+ =12 +3[L 2+ -+ =D+ @—1)=n — 12

A expressao do segundo paréntesis reto € a soma dos termos de uma progressio aritmé-

tica, cujo valor é % n(n — 1). Por conseguinte a ultima igualdade da-nos

nﬁ

Ie+2z+...+(n_1)2=——n—2+}—1. (L4)
3 2 6

Somando n? a ambos os membros obtemos {I.3).
As expressoes exactas dadas nos segundos membros de (1.3) e (I.4) ndo sdo necessarias ao
objectivo que se persegue. Tudo o que necessitamos € a dupla desigualdade

3
1%+?+-~4{n—1f<%«<ﬁ+2h+n-+n” (L5)

valida para todo o inteiro n >1. Esta dupla desigualdade pode ser deduzida facilmente de (I.3)
e (I.4), ou direitamente por indugido (ver Secgdo I 4.1).
Multiplicando (I.5) por b’/n® e considerando (I.1) e (I.2) obtém-se

bﬂ
%<;<& (L.6)

para todo o » inteiro e positivo. A dupla desigualdade (I.6) exprime que, para todo o » inteiro
e positivo, o numero b*/3 esta compreendido entre s, €S,. Podemos agora provar que b/3¢é

o0 unico numero que goza desta propriedade, isto &, que se 4 € um numero qualquer que veri-
fica
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5, <A<LS, €7
para todo o inteiro e positivo n, entdo 4 = b*/3. Foi devido a este fato que Arquimedes
concluiu que a area do segmento parabdlico & b%/3.

Para provar que 4 = b3/3 utiliza-se uma vez mais a dupla desigualdade (1.5). Somando n’ a
ambos os membros da desigualdade da esquerda em (I.5) obtém-se;

3
12+22+"'+n2<n§+n2.
Multiplicando por b*/n?, e considerando (I.1), pode escrever-se
<=4+ =, (L8)

Analogamente, subtraindo »* a ambos os membros da desigualdade da direita em (1.5) e mul-
tiplicando por b*/n3, obtém-se:

3 3
b——b—<s,,. (1.9)

e Rl (1.10)

A>—, AL —, A=

b P b?
3 3 3

Se provarmos que as duas primeiras conduzem a contradi¢des, entdo necessariamente tera
b . . .
que ser A = —, uma vez que, no estilo de Sherlock Holmes, se esgotam assim todas as possi-

3
bilidades.

Suponhamos que a desigualdade 4 > b%/3 era verdadeira. Da segunda desigualdade em
(I.10) obtém-se

A—=< = (L.11)
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para todo o inteiro n 2> 1. Uma vez que 4 — b*/3 & positivo, podemos dividir ambos os mem-
bros de (I.11) por A — b%/3 e multiplicar em seguida por n para obter a desigualdade

ba
"< i—bs

para todo o n ja referido. Mas esta desigualdade é evidentemente falsa para n >b*/(4-5%/3).
Portanto a desigualdade A > b%/3 conduz a uma contradigdo. De maneira analoga se pode

b ; o g s
provar que 4 < -5 conduz igualmente a uma contradi¢do e por conseguinte devera ser

A = b*/3, como ja se afirmara.
*I 1.4 Exercicios

1. (a) Modificar a regifio indicada na fig. I.3 supondo que a ordenada, para cada valor de x,
¢ 2x* em vez de x?. Desenhar a nova figura. Repetir para este caso os passos principais da
anterior se¢do edeterminar o efeito desta modificag¢do no calculo da area. Fazer o mesmo

se a ordenada, para cada x, é (b) 3x%, (c) % x%,(d) 2% + 1, (e) ax® + c.

2. Modificar a regido na fig. 1.3, supondo que a ordenada, para cada x, é x* em vez de x°.
Desenhar a nova figura.
(a) Usar uma construgao analoga a indicada na fig. .5 e mostrar que as somas exterior
e interior S, e s, sdo dadas por

b* b
Sp=g(P+2 4 +0), =[P+ + -+ —1)].

(b) Usar a dupla desigualdade (que pode ser demonstrada por indugdo; ver Secgdo
1.4.2.).

nt
13+23+---+(n—1)3<z<13+23+---+n3 (1.12)

para provar que s, < b*/4 < S, para todo o n e provar que b*/4 é o unico nimero com-
preendido entre s, e S, para qualquer n.

(¢) Que valor substitue 5*/4 se a ordenada, para cada x, for ax® + ¢?
3. As desigualdades (I.5) e (I.12) sdo casos particulares da dupla desigualdade mais geral

k+1

E ok g ... — 1)
B® 2N +(m-1) <k+1

S 1B 428 foom s hpF (1.13)
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valida para todo o inteiro n > 1 e todo o inteiro k > 1. Suposta (I.13) verdadeira, generali-
zar os resultados do Exercicio 2.

I 1.5 Analise critica do método de Arquimedes

Mediante calculos analogos aos feitos na Secgdo I 1.3, Arquimedes concluiu que a area do
segmento parabolico considerado é »%/3. Este facto foi aceite como um teorema matematico,
até que, passados cerca de 2000 anos, se pensou que deviam ser analisados os resultados
dum ponto de vista mais critico. Para compreender as razoes porque houve quem puzesse em
davida a validade da conclusdo de Arquimedes, &€ necessario conhecer algo acerca das impor-
tantes mudangas que tiveram lugar na historia recente da Matematica.

Cada ramo do conhecimento é um conjunto de ideias descritas por intermeédio de palavras
e simbolos, e ndo se podem compreender estas ideias sem um conhecimento exacto do signifi-
cado das palavras e dos simbolos utilizados. Alguns ramos do conhecimento, conhecidos por
sistemas dedutivos, sao diferentes de outros pelo facto de que um certo nimero de conceitos
“nao definidos™ sdo escolhidos @ priori e todos os restantes conceitos no sistema sio defini-
dos a partir daqueles.

Certas afirmagdes acerca destes conceitos ndo definidos toman-se como axiomas ou pos-
tulados e outras relagdes que podem deduzir-se destes axiomas sdo chamadas teoremas. O
exemplo mais familiar de um sistema dedutivo é a Geometria euclidiana estudada por toda a
pessoa culta desde a época da Grécia Antiga.

O espirito da primitiva matematica grega, seguindo o método de postulados e teoremas
como na Geometria dos Elementos de Euclides, dominou o pensamento matematico até a
época do Renascimento. Uma nova e vigorosa fase no desenvolvimento da Matematica
comecou com a apari¢io da Algebra no sec. xvi, e os 300 anos que se seguiram foram teste-
munhas de grande quantidade de importantes descobertas. O raciocinio 16gico, preciso,do mé-
todo dedutivo, com o uso de axiomas, defini¢Oes e teoremas, esteve manifestamente ausente
durante este periodo. Em vez disso, os pioneiros nos séculos Xvi, XVII € XVIli recorriam a uma
mistura de raciocinio dedutivo combinado com intui¢ao, mera conjectura e misticismo, e nao
surpreendera que se tenha visto mais tarde que alguns dos seus resultados eram incorrectos.
Contudo, um numero surpreendentemente grande de importantes descobertas ocorreram
neste periodo e uma grande parte deste trabalho sobreviveu a prova da Historia — um prémio
a destreza e engenho daqueles cientistas.

Quando o caudal de novas descobertas comegou a diminuir, um novo e mais critico
periodo apareceu. Pouco a pouco os matematicos viram-se forgados a voltar as ideias classi-
cas do método dedutivo, numa tentativa de colocar a nova Matematica numa base firme.
Esta fase de desenvolvimento, que comega em principios do século XIX e continuou até o
momento presente, alcangou um grau de abstracgdo e pureza logica que ultrapassou todas as
tradi¢oes da ciéncia Grega. Simultineamente proporcionou uma compreensao mais clara dos
fundamentos, ndo s6 do Calculo, mas de todos os ramos da Matematica.

Existem varias formas de estruturar o Calculo como sistema dedutivo. Uma maneira possi-
vel & tornar 0s numeros reais como conceitos nao definidos. Algumas das regras que regem



