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PREFÁCIO 

Excertos do Prefácio da Primeira Ediriio 

Parece niio haver acordo sobre o que deva constituir um primeiro curso de Cálculo e 
Geometría Analítica. 1 nsistem alguns que a única vi a para compreender realmente o C á/culo 
principia com u m estudo completo do sistema dos números reais. desenvo/vendo-o passo a passo 
de uma maneira lógica e rigorosa. A rgumentam out ros que o Cálculo é fundamentalmente um 
instrumento para engenheiros e físicos; consequentemente acreditam que o curso deve condu­
zir .as ap/icaroes do Cálculo. fazendo apelo ti intui(Oo para depois, pela prática de resolu(Oo 
de problemas. desenvolver a destreza manipulatória. Há muito de carreta em ambos os pon­
tos de vista. O Cálculo é urna ciencia dedutiva e um ramo da Matemática Pura. Ao mesmo 
tempo é muito importante lembrar que o Cálculo tem raízes profundas em problemas físicos e 
que muita da sua potencia e belez a deriva da variedade das suas ap!icaroes. É possível com­
binar um desenvolvimento teórico profundo com uma sadiaformariio técnica; este livro repre­
senta uma tentativa de estabelecimento de u m equilibrio sensato entre os 'dais pontos de vista. 
Embora tratando o Cálculo como uma ciencia dedutiva, o livro niio poe de parte as apli­
caroes a problemas físicos. As demonstraroes de todos os teoremas importantes siio conside­
rados como uma parte fundamental do desenvolvimento das ideias matematicas; as demons­
traroes siio muitas vezes precedidas duma discussiio geométrica ou intuitiva, de modo a dar 
ao estudante urna visiio mais penetrante do porqué da demonstrariio. Embora estas discus­
soes intuitivas satisfaram os leitores que niio estejam interessados na demonstrariio deta­
lhada, também se incluí a demonstrariio completa para aqueles que preferem uma exposiriio 
mais rigorosa. 

A sequéncia dos assuntos neste livro foi sugerida pelo desenvolvimento histórico e filosófico 
do Cálculo e da Geometría Analítica. Por exemplo a integrariio é tratada antes da derivariio. 
A inda que esta ordenariio de matérias possa ser pouco frequente, é historicamente correcta e 
pedagogicamente adequada, além de que é a melhor maneira de tornar patente a verdadeira 
conexiio entre o integral e a derivada. 

O conceito de integral é apresentado em primeiro lugar parafunroes em escada. Uma vez 
que o integral duma funriio e m es cada niio é mais que uma soma, a teoría da integrara o é 
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VIII Prefácio 

extremamente simples neste caso. Enquanto o estudante aprende as propriedades do integral 
parafunroes em escada, ganha experiencia'no uso da notarao de somarao e ao mesmo tempo 
familiariza-se com a notarao para integrais. Assim se solidificam os degraus de desenvolví­
mento, de tal modo que a transirao defunroes em escada parafunroes mais gerais parece fá­
cil e natural. 

Prefácio da Segunda Edirtio 

A segunda edirao dijere da primeira em muitos aspectos. Juntou-se a Álgebra Linear, os 
teoremas da média e as aplicaroes de rotina do Cálculo foram introduzidos nos prime iros 
capítulos e acrescentou-se grande número de novas exercícios simples. Urna análise rápida do 
índice de matérias revela que o livro foi dividido em capítulos de menor extensa o, cada um 
deles dedicado a um conceito importante. Várias Secroesforam escritas de novo e reorgani­
zadas de modo a proporcionar urna melhor motivarao e melhorar o curso das ideias. 

Como na primeira edirao, cada conceito novo importante vem precedido de urna intro­
durao histórica, descrevendo o seu desenvolvimento desde urna primitiva nora o física intuita 
até d sua formularao matemática precisa. O estudante des cobre algo dos esforros do passado 
e dos triurifos dos homens gue mais contribuiram para o assunto. Deste modo o estudante 
torna-se um participante activo na evolurao das idéias e nao um mero observador passivo dos 
resultados. 

A segunda edirao, tal como a primeira, está dividida em dois volumes. As duas primeiras 
terras partes do volume I tratam o Cálculo para funroes de urna variável, incluindo séries e 
urna introdurao as equaroes diferencíais. A última terra parte deste volume introduz a Álge­
bra Linear com aplicaroes d Geometría e a Análise. Grande parte destes temas apoiam-se 
solidamente no cálculo de exemplos que ilustram a teoría geral. Proporciona urna mistura de 
Álgebra e Análise e contribuí para preparar o caminho para a transi(:tio do Cálculo a urna 
variável para o Cálculo com várias variáveis, tratado no volume //. Um desenvolvimento mais 
amplo da Álgebra Linear aparece como necessário na segunda edirao do Volume //. 

Urna vez mais reconhe(:o com agrado a minha dívlda para com os Professores H. F. Bola­
nenblust. A . Erdélyi, F. B. Fuller. K. Hoffmann, G. Springer e H. S. Zuckerman. A sua 
influencia na primeira edirao continuou na segunda. Na prepararao da segunda edirao 
recebi também a ajuda do Professor Basil Gordon que sugeriu muitas modificaroes. Agrade­
cimentas sao também devidos a George Springer e William P. Ziemer que leram as últimas 
pravas. O pessoal de Blaisdell Publishing Company prestou, como sempre, grande ajuda; 
aprecíei a sua simpática aceitarao dos meus desejos respeitantes ao formato e tipografia. 

Finalmente tenho especial satisfarao em expressar a minha gratidao a minha esposa, por 
ter contribuido por diversas formas na prepararao de ambas as ediroes. Como testemunho do 
meu agradecimento dedico-lhe, com prazer, este livro. 

Pasadena, Califórnia T.M.A. 
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INTRODU<;AO 

Parte I-Introdurao histórica 

1 1.1 Os dois conceitos básicos do cálculo 

O notável progresso conhecido pela ciencia e tecnología, durante o último século, foi 
devido em grande parte ao desenvolvimento da Matemática. O ramo da Matemática conhe­
cido por Cálculo integral e diferencial é um instrumento natural e poderoso para atacar urna 
variedade de problemas que aparecem na Física, Astronomía, Engenharia, Química, Geolo­
gía, Biología e noutros campos, incluindo mais recentemente alguns das Ciencias Sociais. 

Para dar a o leitor urna ideia dos muito diversos tipos de problemas que podem ser trata­
dos pelos métodos do Cálculo, expoe-se a seguir urna pequena amostra de questoes seleciona­
das dos exercicios que aparecem em capítulos posteriores deste livro. 

Com que velocidade deve ser lanyado um foguetao, para que nao voltea tombar na Terra? 
Qua! é o raio do menor disco circular que cobre todo o triangulo isósceles de perímetro L? 
Qua! é o volume do material extraído de urna esfera de raio 2r, se for atravessada por um 
orificio cilíndrico, de raio r, e cujo eixo passa pelo centro da esfera? Se urna cultura de bacté­
rias cresce proporcionalmente :a quantidade que existe em cada instante, e se a populayao 
duplica ao fim de urna hora, quanto terá aumentado ao fim de duas horas? Se urna for9a de 
dez quilos faz esticar de um metro urna corda elástica, qual o trebalho necessário para 
esticar a corda de quatro metros? 

Estes exemplos, escolhidos em vários dominios, ilustram algumas das questoes técnicas 
que podem ser resolvidas por aplicayoes mais ou menos rotinadas do Cálculo. 

O Cálculo é mais do que um instrumento técnico - é urna compilayao de ideias atraen tes e 
excitantes, que interessaram o pensamento humano durante séculos. Estas ideias estao rela­
cionadas com velocidade, área, volume, taxa de crescimento, continuidade, tangente a urna 
curva e com outros conceitos dizendo respeito a urna variedade de dominios. O Cálculo 
obriga-nos a nao ir além, antes de pensarmos cuidadosamente acerca do significado destes 
conceitos. Outro aspecto notável do Cálculo é o seu poder de síntese. Muitos destes conceitos 
podem ser formulados de maneira que se reduzam a dois outros problemas, mais especializa-

1 
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dos, de natureza puramente geométrica. Passamos em seguida a urna breve descri9ao destes 
problemas. 

Consideremos urna curva C situada acima duma reta horizontal (base), como se indica na 
fig. 1.1. Suponhamos que esta curva goza da propriedade de ser intersetada por cada verti­
cal, no máximo, urna vez. A parte sombreada da figura é formada pelos pontos situados 
abaixo da curva C, acima da horizontal, e entre dois segmentos verticais paralelos que unem 
C coma horizontal. O primeiro problema fundamental do Cálculo é o seguinte: Determinar 
um número que de a medida da área da parte sombreada da figura. 

Consideremos em seguida urna reta tangente a curva C, como se mostra na fig. 1.1. O 
segundo problema fundamental pode enunciar-se do modo seguinte. Determinar um número 
que de o declive desta reta. 

Fig.l.l 

Fundamentalmente o Cálculo ocupa-se da formula9iio exata e da resolu9iio destes dois 
problemas particulares. Permite-nos definir os conceitos de área e tangente, e calcular a área 
de urna dada regiao, ou o declive de tangente a urna curva dada. O Cálculo Integral ocupa­
se do problema da área e será discutido neste primeiro capítulo. O Cálculo Diferencial 
ocupa-se do problema da tangente e será analisado no Capítulo 4. 

O estudo do Cálculo requer urna certa prepara9ao matemática. O presente capítulo trata 
desses conceitos básicos e está dividido em quatro partes: a primeira parte dá urna perspec­
tiva histórica; a segunda refere a nota9ao e terminología da teoría dos conjuntos; a terceira 
trata do sistema dos números reais; e finalmente a quarta parte trata da indu9iio matemática 
e da nota9iio somatória. Se o leitor está familiarizado com estes temas pode abordar directa­
mente o desenvolvimento do Cálculo integral, no capítulo l. Caso contrário deverá 
familiarizar-se comas matérias contidas nesta introdu9ao, antes de iniciar o estudo do Capí­
tulo. 
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1 1.2 Introdu~áo histórica 

A origem do Cálculo integral remonta a mais de 2000 anos, quando os gregos tentavam 
resolver o problema da determina¡,:ao de áreas por um processo que designaram de método de 
exaust5o. As ideias fundamentais deste método sao elementares e podem descrever-se, suma­
riamente, do modo seguinte: dada urna regiao cuja área pretende determinar-se, inscrevemos 
nela urna regiao poligonal que se aproxime da regiao dada e cuja área seja de cálculo fácil. 
Em seguida, escolhemos outra regiao poligonal que de urna melhor aproxima¡,:ao e continua­
mos o processo tomando linhas poligonais com cada vez maior número de lados, de modo a 
cobrir a regiao dada. O método está ilustrado na fig. 1.2 para o caso duma regiao semicircu­
lar. Este método foi usado com exito por Arquímedes {287-212 a. C.), para estabelecer fór­
mulas exactas das áreas do círculo e de algumas outras figuras particulares. 

Depois de Arquímedes, o desenvolvimento do método de exaustao teve que esperar quase 
18 séculas até que o uso de símbolos e técnicas algébricas se tornaram parte usual da mate­
mática. A Álgebra elementar, que hojeé familiar a maioria dos alunos dos últimos anos do 
ensino secundário, era completamente desconhecida no tempo de Arquímedes, fato que tor­
nava impossível estender o método a qualquer classe de regioes, sem se conhecer um modo 
adequado de expressar os extensos cálculos numa forma compacta e simplificada. 

Fig. 1.2 O método de exaustao aplicado a urna regiao semicircular. 

Urna mudan¡,:a lenta, mas revolucionária, no desenvolvimento das nota¡,:oes matemáticas 
teve inicio no século XVI. O complicado sistema de numera¡,:ao romana foi gradualmente 
substituido pelos caráteres arábicos utilizados ainda hoje, os sinais + e - foram introduzi­
dos pela primeira vez e come¡,:aram a reconhecer-se as vantagens da nota¡,:ao decimal. 
Durante este mesmo período, os brilhantes resultados dos matemáticos italianos Tartaglia, 
Cardano e Ferrari na determina¡,:ao de solu¡,:oes algébricas para as equa¡,:oes cúbica e do 
quarto grau estimularam o desenvolvimento da Matemática e encorajaram a aceita¡,:ao da 
nova e superior linguagem algébrica. Com a larga introdu¡,:ao dos bem escolhidos símbolos 
algébricos ressuscitou o interesse pelo antigo método de exaustao, e grande número de resul­
tados parciais foram descobertos no século XVI por pioneiros tais como Cavalieri, Toricelli, 
Roberval, Fermat, Pascal e Wallis. 

Gradualmente, o método de exaustao foi transformado no que hoje se designa por Cálculo 
Integral, nova e poderosa disciplina com urna grande variedade de aplica¡,:oes nao só em pro­
blemas geométricos respeitantes a áreas e volumes, mas também em problemas de outras 
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ciencias. Este ramo da Matemática, que conservou alguns dos aspetos originais do método 
de exaustao, recebeu o seu maior impulso no século xvn, devido principalmente aos esfor9os 
de Isaac Newton (1642-1727) e Gottfried Leibniz (1646-1716) e o seu desenvolvimento conti­
nuou até ao século XIX, data em que matemáticos como Augustin-Louis Cauchy (1789-1857) 
e Bernhard Riemann (1826-1866) lhe deram urna base matemática sólida. Posteriores aper­
feiyoamentos e extensoes da teoría estao ainda a ser levados a cabo na Matemática contem­
poranea. 

1 1.3 O método de exaustiio para a área de um "segmento parabólico" 

Antes de passarmos ao estudo sistemático do Cálculo integral, será instrutivo aplicar o mé­
todo de exaustao directamente a urna das figuras particulares estudadas pelo próprio Arquí­
medes. A regiao em questao está representada na figura 1.3 e pode descrever-se do modo 
seguinte: se escolhermos um ponto arbitrário na base da figura e designarmos por x a sua dis­
tancia a O, a distancia vertical deste ponto a curva é x2 • Em particular, se o comprimento da 
base é b a altura da figura é b2 • A distancia vertical de x a curva designa-se por "ordenada" 
de x. A curva assim descrita é urna parábola e a regiao limitada pela curva e pelos dois seg­
mentos de recta chamar-se-á segmento parabólico . 

.------------------
' 

o X b 

Fig. 1.3 Segmento 
parabólico. 

Aproximayao por defeito. Aproxima9iio por excesso. 

Fig. 1.4 

Esta figura pode ser contida num retangulo de base be altura b2, como se ve na fig. 1.3. 
Observando a figura é evidente a afirmayao de que a área do segmento parabólico é menor 
que metade da área do retangulo. Arquímedes fez a descoberta surpreendente de que a 
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bl 
área do segmento parabólico é exactamente um terro da área do retangulo, isto é, A = 3 
representando A a área do segmento parabólico. Mostremos como se chega a este resultado. 

área do rectangulo = 

o b 2b kb 

n n n 

Fig. 1.5 Cálculo da área dum segmento parabólico. 

Deve notar-se que o segmento parabólico desenhado na fig. 1.3 nao é exactamente o que 
Arquímedes considerou, e que os pormenores dos cálculos que se seguem nao sao exata­
mente os utilizados por ele. Contudo as ideias essencias sao as de Arquímedes; o que apre­
sentamos aqui pode considerar-se o método de exaustao exposto com urna nota¡yao moderna. 

O método consiste simplesmente no seguinte: divide-se a figura num certo número deban­
das e obtem-se duas aproxima¡yoes da área da regiao, urna por defeito e a outra por excesso, 
usando dois conjuntos de retangulos como se indica na fig. 1.4 (utilizam-se retangulos, em 
vez de polígonos quaisquer, para simplificar os cálculos). A área do segmento parabólico é 
maior que a área total dos retangulos interiores, mas é menor que a dos retangulos exterio­
res. Se cada banda se subdivide, para se obter urna nova aproxima¡yao com maior número de 
bandas, a área total dos retangulos interiores aumenta, enquanto a área total dos retangu­
los exteriores diminui. Arquímedes compreendeu que se podía obter a área com qualquer 
grau de aproxima¡yao desejado, bastando para tanto tomar um número suficiente de bandas. 

O cálculo efetivo efectua-se como a seguir se indica. Com o objectivo de simplificar os 
cálculos divide-se a base em n partes iguais, cada urna de comprimento b/n (ver fig. 1.5). Os 
pontos de divisiio correspondem aos seguintes valores de x: 
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O,~, 2b , 3b, . . . , (n - l)b, nb = b . 
n n n n n 

A expressiio geral dum ponto de divisiio é x = kb , onde k toma os valores sucessivos k= O, 
n 

1, 2, 3, ... , n. En cada ponto kb/n constroi-se o retfmgulo exterior de altura (kb/n)2 , como se 
indica na fig. 1.5. A área deste retfmgulo é o produto da base pela altura e é igual a 

Designando por S 11 a soma das áreas de todos os retangulos exteriores, urna vez que a área 

do k-enésimo retangulo é (b3/n3)k2, obtem-se 

sn = b: (12 + 22 + 32 + ... + n2). 
n 

Do mesmo modo se obtém a expressiio da soma S 11 dos rectangulos interiores: 

(l.l) 

(I.2) 

A forma destas somas é de grande importancia no cálculo. Note-se que o fator que mul­
tiplica b3 /n3 na equa9iio (I.l) é a soma dos quadrados dos n primeiros inteiros positivos 

12 + 22 + ... + n2 . 

[O fator correspondente na equar.tiio (1.2) é análogo, apenas a soma tem unicamente n-1 
parcelas]. O cálculo desta soma por adir,riio directa das parcelas, para um grande valor den, é 
fastidioso, porém existe urna identidade interessante que torna possível calcula-la dum modo 
mais simples; a identidade é 

2 • n3 n2 n 
12 + 2 + · · · + n· =-+- +-. 

3 2 6 
(!.3) 

É válida para todo o inteiro n 2: 1 e pode provar-se do modo seguinte: Considere-se a igual­
dade (k+ 1)3 = k 3 + 3k2 + 3k + 1 escrita na forma 

3k2 + 3k + 1 = (k + 1 )3 - k3• 



Fazendo k = 1, 2, ... , n - 1, obtém-se as n - 1 fórmulas 

3 · 12 + 3 · 1 + 1 = 23 - 13 

3 . 22 + 3 . 2 + 1 = 33 - 23 

3(n - 1)2 + 3(n - 1) + 1 = n3 - (n - 1)3• 
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Sornando as igualdades, membro a membro, todos os termos do segundo membro se elimi­
nam, excepto dois, resultando 

3[12 + 22 + · · · + (n - 1)2] + 3[1 + 2+ · · · + (n - 1)] + (n - 1) = n3 - P. 

A expressao do segundo parentesis reto é a soma dos termos de urna progressao aritmé­

tica, cujo valoré+ n(n- 1). Por conseguinte a última igualdade dá-nos 

2 2 2 n3 n2 n 1 + 2 + · · · + (n - 1) = - - - + -. 
3 2 6 

(1.4) 

Sornando n2 a ambos os membros obtemos (1.3). 
As expressoes exactas dadas nos segundos membros de (1.3) e (1.4) nao sao necessárias ao 

objectivo que se persegue. Tudo o que necessitamos é a dupla desigualdade 

(l. S) 

válida para todo o inteiro n ¿l. Esta dupla desigualdade pode ser deduzida facilmente de (1.3) 
e (1.4), ou direitamente por indw;:ao (ver Sec9ao I. 4.1). 

Multiplicando (I.S) por b 3/n3 e considerando (1.1) e (1.2) obtém-se 

(1.6) 

para todo o n inteiro e positivo. A dupla desigualdade {1.6) exprime que, para todo o n inteiro 
e positivo, o número b3 / 3 está compreendido entre sn e Sn . Podemos agora provar que bl/3 é 

o único número que goza desta propriedade, isto é, que se A é um número qualquer que veri­
fica 
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(I.7) 

para todo o inteiro e positivo n, entao A = b3/3. Foi devido a este fato que Arquímedes 
concluiu que a área do segmento parabólico é b3/3. 

Para provar que A = b3/3 utiliza-se urna vez mais a dupla desigualdade ( 1 .5). Sornando n 2 a 
ambos os membros da desigualdade da esquerda em (1.5) obtém-se: 

Multiplicando por b3/n3, e considerando (1.1), pode escrever-se 

(1.8) 

Analogamente, subtraindo n2 a ambos os membros da desigualdade da direita em (1.5) e mul­
tiplicando por b3/n3, obtém-se: 

Porém, qualquer número A verificando (1. 7) deve igualmente verificar 

para todo o inteiro n ~ l. Existem, entao, unicamente tres possibilidades: 

A> ba 
3 , A<~ 3 , 

b3 
A=-. 

3 

(1.9) 

(1.10) 

Se provarmos que as duas primeiras conduzem a contradil;:oes, en tao necessariamente terá 

que ser A = ~3 
, urna vez que, no estilo de Sherlock Holmes, se esgotam assim todas as possi­

bilidades. 

Suponhamos que a desigualdade A > b3/3 era verdadeira. Da segunda desigualdade em 
(1.1 O) obtém-se 

(I.ll) 
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para todo o inteiro n ~l. Urna vez que A - b3 /3 é positivo, podemos dividir ambos os mem­
bros de (1.11) por A - b3/3 e multiplicar em seguida por n para obter a desigualdade 

para todo o n já referido. Mas esta desigualdade é evidentemente falsa paran ~b3 1 (A-b3/ 3). 
Portanto a desigualdade A > b3/3 conduz a urna contradi9ao. De maneira análoga se pode 

provar que A < ~ conduz igualmente a urna contradi9ao e por conseguinte deverá ser 

A = b3 /3, como já se afirmara. 

*1 1.4 Exercícios 

l. (a) Modificar a regiao indicada na fig. 1.3 supondo que a ordenada, para cada valor de x, 
é 2x2 em vez de x2• Desenhar a nova figura. Repetir para este caso os passos principais da 
anterior se9ao e determinar o efeito desta modifica9ao no cálculo da área. Fazer o mesmo 

se a ordenada, para cada x, é (b) 3x3, (e)+ x2, (d) 2x2 + 1, (e) ax2 +c. 

2. Modificar a regiao na fig. 1.3, su pondo que a ordenada, para cada x, é x3 em vez de x2 • 

Desenhar a nova figura. 
(a) Usar urna constru9ao análoga á indicada na fig. 1.5 e mostrar que as somas exterior 
e interior sn e sn sao dadas por 

b4 
Sn = 4 [13 + 23 + ... + (n - 1)3] . 

n 

(b) Usar a dupla desigualdade (que pode ser demonstrada por indu9ao; ver Sec9ao 
1.4.2.). 

n4 
¡3 + 23 + ... + (n _ 1)3 < _ < ¡ 3 + 23 + ... + n3 

4 
(1.1 2) 

para provar que s < b4/4 < S para todo o n e provar que b4/4 é o único número com-n n -

preendido entre sn e S n para qualquer n. 

(e) Que valor substitue Q4 /4 se a ordenada, para cada x, for ax3 +e? 
3. As desigualdades (1.5) e (1.12) sao casos particulares da dupla desigualdade mais geral 

n k+I 
¡k + zk + . .. + (n - l)k < -- <¡k + zk + ... + n k 

k+ 1 
(1.13) 
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válida para todo o inteiro n ~ 1 e todo o inteiro k ~ l. Suposta (1.13) verdadeira, generali­
zar os resultados do ExerciCio 2. 

1 1.5 Análise crítica do método de Arquímedes 

Mediante cálculos análogos aos feítos na Secr;:ao I 1.3, Arquímedes concluiu que a área do 
segmento parabólico considerado é b3/3. Este facto foi aceite como um teorema matemático, 
até que, passados cerca de 2 000 anos, se pensou que deviam ser analisados os resultados 
dum ponto de vista mais crítico. Para compreender as razoes porque houve quem puzesse em 
dúvida a validarle da conclusao de Arquímedes, é necessário conhecer algo acerca das impor­
tantes mudanr;:as que tiveram lugar na história recente da Matemática. 

Cada ramo do conhecimento é um conjunto de ideias descritas por intermédio de palavras 
e símbolos, e nao se podem compreender estas ideias sem um conhecimento exacto do signifi-. 
cado das palavras e dos símbolos utilizados. Alguns ramos do conhecimento, conhecidos por 
sistemas dedutivos, sao diferentes de outros pelo facto de que um certo número de conceitos 
"nao definidos" sao escolhidos a priori e todos os restantes conceitos no sistema sao defini­
dos a partir daqueles. 

Certas afirmar;:oes acerca destes conceitos nao defmidos toman -se como axiomas o u pos­
tulados e outras relar;:oes que podem deduzir-se destes axiomas sao chamadas teoremas. o 
exemplo mais familiar de um sistema dedutivo é a Geometría euclidiana estudada por toda a 
pessoa culta desde a época da Grécia Antiga. 

O espirito da primitiva matemática grega, seguindo o método de postulados e teoremas 
como na Geometría dos Elementos de Euclides, dominou o pensamento matemático até a 
época do Renascimento. Urna nova e vigorosa fase no desenvolvimento da Matemática 
comer;:ou com a aparir;:ao da Álgebra no sec. XVI, e os 300 anos que se seguiram foram teste­
munhas de grande quantidade de importantes descobertas. O raciocinio lógico, preciso,do mé­
todo dedutivo, como uso de axiomas, definir;:oes e teoremas, esteve manifestamente ausente 
durante este período. Em vez disso, os pioneiros nos séculos XVI, xvn e XVIII recorriam a urna 
mistura de raciocinio dedutivo combinado com intuir;:ao, mera conjectura e misticismo, e nao 
surpreenderá que se tenha. visto mais tarde que alguns dos seus resultados eram incorrectos. 
Contudo, um número surpreendentemente grande de importantes descobertas ocorreram 
neste período e urna grande parte deste trabalho.sobreviveu a prova da História - um prémio 
a destreza e engenho daqueles dentistas. 

Quando o caudal de novas descobertas comer;:ou a diminuir, um novo e mais crítico 
período apareceu. Pouco a pouco os matemáticos viram-se forr;:ados a voltar as ideias clássi­
cas do método dedutivo, numa tentativa de colocar a nova Matemática numa base firme. 
Esta fase de desenvolvimento, que comer;:a em príncipios do século XIX e continuou até o 
momento presente, alcanr;:ou um grau de abstracr;:ao e pureza lógica que ultrapassou todas as 
tradir;:oes da ciencia Grega. Simultaneamente proporcionou urna compreensao mais clara dos 
fundamentos, nao só do Cálculo, mas de todos. os ramos da Matemática. 

Existem várias formas de estruturar o Cálculo como sistema dedutivo. Urna maneira possí­
vel é tornar os números reais como conceitos nao definidos. Algumas das regras que regem 


