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Preface

This book presents the advances in communications, signal processing, and VLSI
taken from the excerpts of the proceedings of the International Conference on
Communications, Signal Processing and VLSI held by the ECE Department,
National Institute of Technology Warangal during October 23–24, 2019. This
conference offered an excellent forum for exchange of ideas among interested
researchers, students, peers, and practitioners in the upcoming areas of signal
processing, 5G communications, chip design, image processing, and machine
learning. It focused on the congregation of the deft designers across academy and
industry, aiming to improve the living standards of mankind.

The selected proceedings of IC2SV 2019 included in this book were peer
reviewed and thoroughly checked for plagiarism using Turnitin software. We thank
the administration, NIT Warangal, for their support and all the authors for sharing
their research outcomes that helped to publish this book.

Mangalore, India
Bhopal, India
Warangal, India
Warangal, India
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Gibbs-Shannon Entropy and Related
Measures: Tsallis Entropy

G. Ramamurthy and T. Jagannadha Swamy

Abstract In this research paper, it is proved that an approximation to the Gibbs-
Shannon entropymeasure naturally leads to the Tsallis entropy for the real parameter
q = 2. Several interesting measures based on the input as well as the output of
a discrete memoryless channel are provided and some of the properties of those
measures are discussed. It is expected that these resultswill be of utility in Information
Theoretic research.

Keywords Entropy · Approximation · Memoryless channel · Entropy-like
measures

1 Introduction

From the considerations of statistical physics, J. Willard Gibbs proposed an inter-
esting entropy measure. Independently, motivated by the desire to capture the uncer-
tainity associated with a random variable, C. E. Shannon proposed an entropy
measure. It is later realized that Gibbs and Shannon entropy measures are very
closely related. From the considerations of the statistical communication theory,
definingmutual information (based on the definition of conditional entropymeasure),
Shannon successfully proved the channel coding Theorem (which defined the limits
of reliable communication from a source to destination over a noisy channel) [1].
Thus, from the point of viewof information theory, Shannon entropymeasure became
very important and useful.

Also, in recent years, Tsallis proposed an entropy measure generalizing the
Boltzmann-Gibbs entropy measure. The authors became interested in the relation-
ship between the Tsallis entropy and the Shannon entropy. Under some conditions,
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2 G. Ramamurthy and T. Jagannadha Swamy

the authors proved that the Shannon entropy leads to the Tsallis entropy. As a natural
generalization, the authors proposed interesting measures defined on probability
mass functions and the channel matrix of a Discrete Memoryless Channel (DMC).

This research paper is organized as follows. In Sect. 2, an approximation to the
Shannon entropy is discussed and the relationship to the Tsallis entropy is proved.
In Sect. 3, interesting measures on probability mass functions are proposed. Finally,
conclusions are reported in Sect. 4.

2 Approximation to Gibbs-Shannon Entropy Measure:
Tsallis Entropy

It is well known that the Gibbs-Shannon entropy measure associated with a discrete
random variable (specified by the probability mass function {{pi } for 1 ≤ i ≤ M}
is given by

H(X) = −
M∑

i=1

pi log2 pi (1)

Also, in recent years, Tsallis proposed another entropy measure which in the case
of a discrete random variable is given by

Sq(p) = 1

q − 1

(
1 −

∑
x
p(x)

)q
(2)

where S denotes the entropy, p (.) is the probability mass function of interest and
“q” is a real parameter. In the limit as q approaches 1, the normal Boltzmann—
Gibbs entropy is recovered. The parameter “q” is a measure of the non-extensivity
of the system of interest. The authors became interested in knowing whether there
is any relationship between the Gibbs-Shannon entropy measure and the Tsallis
entropy under some conditions. This question naturally led to a discovery which is
summarized in the following Lemma.

Lemma 1 Consider a discrete random variable X with finite support for the
probability mass function. Under reasonable assumptions, we have that

H(X) ≈
(
1 −

∑M

i=1
p2i

)
loge2 = S2(p) log

e
2 (3)

Proof From the basic theory of infinite series [2], we have the following: for |x | < 1,
we have that
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loge(1 − x) = −x + x2

2
− x2

3
+ · · · + (−1)n+1 (−x)n

n
+ · · ·

Let pi = (1 − qi ) with 0 < pi < 1. Then we have 0 < qi < 1.
Thus, we have

loge(1 − qi ) = −qi + q2
i

2
− q3

i

3
+ · · · (4)

Now let us consider the entropy H(X) of a discrete random variable, where X
assumes finitely many values. We have that

H(x) = −
∑M

i=1
pi log

pi
2 bits

= −
∑M

i=1
(1 − qi ) log2(1 − qi ) bits

= −
∑M

i=1
(1 − qi ) loge(1 − qi ) log2 e (5)

Now using the above infinite series and neglecting the terms q2
i
2 ,

q3
i
3 , and so on,

we have that

H(x) ≈ −
∑M

i=1
(1 − qi )(−qi ) log

e
2

≈
(∑M

i=1
pi

)
(1 − pi ) log

e
2

≈
(
1 −

∑M

I=1
p2i

)
loge2 (Q.E.D.)

Remark Thus, the square of the L2 − norm of the vector corresponding to the
probability mass function (of a discrete random variable) is utilized to approximate
the entropy of the discrete random variable. In summary, we have that

H(x) ≈ f (p1, p2, . . . pM) = (1 −
∑M

i−1
p2i ) log

e
2 (6)

Thus, an approximation to theGibbs-Shannon entropy naturally leads to the scaled
Tsallis entropy for the real parameter q = 2. The quantity H(X) with the above
approximation is rounded-off to the nearest integer. For the continuous case, i.e. for
probability density functions associated with continuous random variables, similar
result can easily be derived and is avoided for brevity.

Note If the logarithm is taken to a different base, a scaling constant should be
included.

We would like to study the properties satisfied by the function f (.,.,…,)
approximating the entropy. The following claim can easily be proved.
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Lemma 2 The maximum value of f (p1, p2, . . . , pM) is attained when {pi }Mi=1 are
all equal, i.e. pi = 1

M for 1 ≤ i ≤ M Q.E.D.

Proof The proof follows by the application of the Lagrange Multipliers method.
Detailed proof is avoided for brevity Q.E.D.

Thus, the maximum value of approximation to the entropy of a discrete random
variable assuming “M” values is

(
1 − 1

M

)
loge2.

It is easy to see that this approximation to the Gibbs-Shannon entropy satisfies
only two (out of four) axioms satisfied by the Shannon entropy functional.

Remark As in the proof of the above Lemma, it is possible to provide higher order
approximations to the Gibbs-Shannon entropy measure. Also, in the spirit of Lemma
1, Renyi and other types of entropies can easily be approximated. The details are
avoided for brevity.

3 Novel Measures on Probability Distributions

Shannon’s entropy of a discrete random variable constitutes an important scalar-
valued measure defined on the class of probability mass functions (of the discrete
random variables). In contrast to the moments of discrete random variables, the
entropydoes not dependon the actual values assumedby thediscrete randomvariable.
Thus, one is naturally led to the definition of other measures associated with discrete
random variables which depend only on the probability mass function (and not the
values assumed by it).

3.1 Lq-Norm of Probability Vectors: Tsallis Entropy

• We first treat the probability mass function of a discrete random variable as
a vector of probabilities. It should be kept in mind the M-dimensional prob-
ability vector (corresponding to “M” values assumed by the discrete random
variable) lies on a hyperplane in the “positive orthant” (of the M-dimensional
Euclidean space) only. Also, as a natural generalization, we can also concep-
tualize an “infinite-dimensional” probability vector corresponding to a discrete
random variable which assumes infinitely many values.

• Consider a “probability vector” (corresponding to the associated probability mass
function—finite or infinite dimensional) and define the Lq -norm of the vector (in
the same manner as done in pure mathematics). Let
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Mq(p) =
[∑∞

j=1
[px ( j)]

q
] 1

q
for q ≥ 1 (7)

As discussed in [3], some interesting properties are satisfied by Mq . Also, all
the results associated with Lq -norm (in pure mathematics) such as the Holder and
Minkowski inequalities can be readily invoked with the measure Mq .

It is elementary to see that such a measure can easily be related to the Tsallis
entropy. Specifically, we have that

Mq
q = 1 − (q − 1)Sq(p) (8)

Now let us define the following function naturally associated with the Lq -norm,
i.e. Mq .

gq(p) = 1 − Mq(p)

It is easy to see that for any two real numbers q1, q2 such that q1 > q2, we have
that

gq1(p) > gq2(p)

In view of this, it is easy to reason that limq→∞ gq(p) = 1. In a similar spirit, it
is possible to derive an inequality associated with (q − 1)Sq(p), i.e. scaled Tsallis
entropy (for different values of the real parameter “q”).

• Based on the properties of Mq , it is easy to see that the probability mass function-
based infinite-dimensional probability vectors always belong to discrete Hilbert
space.

• Let us first consider the case where the support of the probability mass function
is finite. The L2-norm of the associated probability vector is

M2 =
[∑M

j=1
[pX ( j)]2

] 1
2

(9)

We reasoned in the previous section that such a measure naturally arises in
approximating the Gibbs-Shannon entropy functional/measure (to a good degree
of accuracy).

• Using a similar approach, the conditional entropy can be approximated. Also,
using the approximation for H(X/Y)/H(Y/X), H(X)/H(Y), the mutual information
between the input and output of a Discrete Memoryless Channel (DMC) can be
approximated. The details are avoided for brevity.



6 G. Ramamurthy and T. Jagannadha Swamy

3.2 Quadratic Forms Associated with Probability Mass
Functions

• Clearly, the expression in (3) is an interesting measure defined over the Vector,
pX representing the probability mass function. Thus, one is naturally led to the
definition of a quadratic form defined over the vector pX . Specifically, let us define
quadratic forms associated with the channel matrix, Q (of a DMC),
i.e. pTX Q pX .

Since pTX Q = pY,, we readily have that

pTX Q pX = pTY pX = 〈pY , pX 〉 (10)

Claim Thus, the quadratic form associated with the channel matrix of a DMC
represents the inner producy between the probability vectors pY and pX .

• It readily follows that in the case of a “noiseless channel”, we have that Q = I and
thus the quadratic form becomes the “square of the Euclidean length” (L2-norm)
of the probability vector. It is thus always positive.

• In view of the relationship of the Tsallis entropy to the Gibbs-Shannon entropy
measure, we define the following measure associated with the stochastic matrix
W and the probability vector pX , i.e.

S2 = 1 − pTXW pX .

If W is the channel matrix of a discrete memoryless channel, the above measure
has an interesting interpretation (discussed previously). In this case,

S2 = 1 − pTXW pX = 1 − pTX pY .

It is easy to reason that this measure is non-negative. Also using Lemma 2, the
above entropy-type measure can be bounded.

It is interesting to see its interpretation when W is the state transition matrix of a
homogeneous Markov chain. In this case, the state of the dynamical system captured
through an associated probability vector evolves through the associated Markov
chain. (We can capture the idea of initial entropy, transient entropy and equilibrium
entropy of the associated Markov chain modeling the physical phenomena.)

Furthermore, W could be a doubly stochastic matrix. It is immediate that when
W happens to be an identity matrix, i.e. W = I, then the above measure is the Tsallis
entropy for parameter q = 2 (i.e. an approximation to the Gibbs-Shannon entropy
measure).



Gibbs-Shannon Entropy and Related Measures … 7

• Hence, we would like to study the properties of the quadratic form using the Inner
product between two probability vectors (namely the input and output probability
vectors of a DMC). In that effort, we would like to address the following question:

Q: How does the inner product of two probability vectors summarize the
“similarity/dissimilarity” of probability mass functions?

In this effort, we invoke theCauchy-Schwartz inequality associatedwith bounding
the inner product between two vectors:

[
pTY pY

]2 ≤
[∑M

i=1
p2X (i)

][∑M

i=1
p2Y (i)

]
(11)

• It is easily seen that the following holds true:

∑M

i=1
p2X (i) =

{ {1 if pX is degenerate
{< 1 if pX is non - degenerate

(12)

• Furthermore, theminimumpossible value of
∑M

i=1 p
2
X (i) (i.e. value of 1/M)occurs

when pX (i) = 1/M for all 1 ≤ i ≤ M.
• Also, it should be noted that the inequality in (11) reduces to equality only when

pX (i) = py(i) for all 1 ≤ i ≤ M.

That is, the inner product between probability vectors pX and pY attains the
“maximum” value when they are both the same (equal).

• Suppose pX is the invariant probability distribution (also called the steady-
state probability distribution) of the homogeneous Discrete Time Markov Chain
(DTMC) associated with the Channel matrix Q (a stochastic matrix). In this case,
we have that

pTX Q = pTX (13)

Then the quadratic form associated with pX becomes

pTX QPX = pTX pX > 0

Thus, the quadratic form attains themaximum value. Equivalently, we have that in
this case, the value of the quadratic form is the same as that in the case of a noiseless
channel.

• In the same spirit of the definition ofmutual information, let us define the following
scalar “measure” between the input and output of a DiscreteMemoryless Channel
(DMC).
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J(X;Y) = pTX Q pY = pTY pY (14)

where pX corresponds to the input probability vector (i.e. the input probability mass
function) and pY corresponds to the output probability vector. Let us investigate
some of the properties of the scalar measure J(X; Y).

(i) Since pTX Q = PT
Y , we have that p

T
Y pY > 0.

Also, we have that J(X; X) = = pTX Q pX = pX ≥ 0.
That is, J(X; X) is zero when the probability vectors pX , pY are orthogonal vectors

(as in the case of vector spaces).

(ii) J(Y; X) = pTY Q pX . Now substituting pTY = pTX Q,

we have that J (Y; X)= pTY pY = J (X; Y). Thus the scalar measure is symmetric.

Now we check whether the scalar-valued measure satisfies the triangular
inequality. (The random variable X is the input to a discrete memoryless channel
whose output is Y. Y is in turn the input to another discrete memoryless channel
whose output is Z.)

J (X; Y ) = pTX Q pY = pTY pY ,

J (Y ; Z) = pTY Q pZ = pTZ pZ ,

Hence, we necessarily have that

J (X; Y ) + J (Y ; Z) = pTY pY + pTZ pZ

But by definition J (X; Z) = pTX QPZ = PT
Z PZ

Thus J (X; Y ) + J (Y ; Z) ≥ J (X; Z)
Hence the triangular inequality is satisfied. Thus, the following Lemma is

established.

Lemma 3 The scalar-valued measure

J (X; Y ) = pTX Q pY = pTY pY (15)

between the probability vectors (corresponding to the probability mass functions of
the random variables X, Y) is a “Pseudo-Metric” on the space of probability vectors
(where the random variable Y is the output of a DiscreteMemoryless Channel whose
input is X).
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In the spirit of the definition of the Tsallis entropy, we can define an Interesting
entropy-type measure 1- J(X; Y). It is precisely the Tsallis entropy of the probability
mass function of the output of a discrete memoryless channel.

Remark It is well known that higher degree forms (multivariate polynomials)
are captured through Tensors. Thus using tensors, new measures can be defined
generalizing the above ideas. The details are not provided for brevity.

3.3 Now We Summarize the Results Discussed so Far
in the Following

J(X) =
[∑∞

j=1 [pX ( j)]
2
] 1

2
is like the “Euclidean Length” of a probability vector.

In Lemma 1, it was shown that 1 − [J (X)]2 approximates the Gibbs-Shannon
entropy of the random variable X.

• J(X; Y) is a scalar-valued measure on the input X and output Y of a discrete
memoryless channel.

4 Conclusions

In this research paper, the relationship between the Gibbs-Shannon entropy measure
and the Tsallis entropy (for q = 2) is demonstrated. Based on this result, various
interesting measures associated with probability mass functions (defined at the input
and output of a Discrete Memoryless Channel) are defined. It is expected that these
results will be of utility in Information Theoretic Investigations.
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Recognition of Natural
and Computer-Generated Images Using
Convolutional Neural Network

K. Rajasekhar and Gopisetti Indra Sai Kumar

Abstract RecognizingNatural Images (NI) andComputer-Generated Images (CGI)
by a human is difficult due to the use of new-age computer graphics tools for designing
more photorealistic CGI images. Identifying whether an image was captured natu-
rally or if it is a computer generated image is a fundamental research problem. For this
problem, we design and implement a new Convolutional Neural Network (ConvNet)
architecture along with data augmentation techniques. Experimental results show
that our method outperforms existing methods by 2.09 percentage for recognizing
NI and CGI images.

Keywords Convolutional neural network · Computer-generated image · Natural
image ·MATLAB · Image processing · Image forensics

1 Introduction

Identification of Natural Images (NI) and Computer-Generated Images (CGI) has
become an important research problem. Computer graphics now a days has evolved
into the same photorealism as natural images due to various graphics designing
tools. However, recognizing the differences between the images is difficult. The
methods that exist now are based on the statistical and intrinsic properties of images,
i.e. to design a category-distinctive feature with a proper threshold to separate the
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Fig. 1 Computer-generated
ımage

Fig. 2 Naturally captured
ımage

two classes. This method performs well for simple datasets and poorly on complex
datasets, for example, Columbia dataset, comprising images of different origins.

Today’s methods based on Convolutional Neural Network (ConvNet) have gained
more popularity in analyzing visual imagery and the reason for this is to learn auto-
maticallymultiple levels of representation for a given task in an “end-to-end”manner
[1]. This makes ConvNet more suitable for complex datasets in image recognition
tasks. Inspired by the recent success of ConvNet, we and several other researchers
chose this approach for CGI andNI recognition tasks. Ourmethod gives good perfor-
mance for the complex dataset of Google Image Search (Google) images versus
Photo-Realistic Computer Graphics (PRCG) images from different origins and close
to real-world applications.

Image forensics is an active field where images are analyzed. But in recent years,
computers are able to generate photorealistic images which have become more chal-
lenging for forensics to determine whether the image is real or fake. In multimedia
security, a number of approaches use ConvNet for steganalysis and image forensics.
From Figs. 1 and 2, we get an impression that the first image is naturally generated
and the second image is computer generated which is in contrast to reality.

2 Related Work

ConvNet for Recognition of Computer Generated Image and Natural Images.
For the recognition of CGI and NI using ConvNet, there are two different works
where one is presented in IEEE WIFS by Rahmouni et al. [2]. In this work, they
followed a three-step procedure: filtering, statistical feature extraction, and classifi-
cation. They considered a relatively simple dataset (Raise versus Level-Design) with
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homogeneous NIs and CGIs from the green channel. The second work is done by
Quan et al. by using deeper and particularly designed cascaded convolutional layer
with the Columbia dataset mainly Google versus PRCG and using all three channels
of an image, i.e. red, blue, and green [3]. Qian et al. proposed amodel on ConvNet for
steganalysis and reported promising results [4]. Later, Pibre et al. studied the “shape”
of ConvNet and identified the best ConvNet model after numerous experiments [5].

3 Dataset Used for Implementation

We conducted our experiment on Columbia photographic images and photorealistic
computer graphics dataset [6, 7] considering

• 800 PRCG images from 40 3D graphic websites (prcg_images)
• 800 natural images from Google image search. (google_images)
• 800 natural images from authors’ personal collection (personal images)

We considered all three channels of an image, i.e. Red, Blue, and Green. These
images are collected from different sites and are of different origins.

4 Framework Proposed

Recognition of NIs and CGI images can be treated as a binary classification problem
because we give an image as input and obtain a binary label as output.

Before giving input to the network, we augment the data using imageDataAug-
menter so that the data will be according to the input size of the network and also
it provides preprocessing image augmentation options like resizing, rotation, reflec-
tion, etc. for the data. These preprocessed images are fed to the ConvNet network
architecture which is arranged as shown in Fig. 3 so a trained model (.mat file) of
required accuracy is obtained after training the network with the data. The model
generated will be used to recognize the NI and CGI images. Here, we split the data
into two sets: one is for training and the other is for validation; this is mainly for the
purpose of obtaining the generalized model for recognition.

4.1 Network Architecture

Our network architecture consists of four convolution layers, three fully connected
layers, one SoftMax layer, and a classification layer. An image is taken as an input
using the image input layer. The input size of the image for the network is (233
× 233 × 3) Normalization as zerocenter. In our network, a convolutional 2D layer
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Fig. 3 Network architecture

(Conv_1), batch normalization layer (batchnorm_1), ELU layer (elu_1), and max-
pooling 2D layer (maxpool_1) are treated as a single layer as there are 4 layers [8,
9]. All the max-pooling 2D layers have the same pool size of 3 × 3 and a stride of
2,2, and zero padding. The fully connected layers are followed by the Dropout layer
each [10]. The dropout probability value is kept default. The SoftMax layer gives a
probability vector of class labels. Therefore, the dimension of its output is equal to
the number of classes, and the sum of its output is 1. Finally, classification layer is
used to produce the output label. Our network layer description is shown in Fig. 4.

4.2 Optimizer

The stochastic gradient descent with momentum (SGDM) is the optimizer used in
the network for training [11]. The training options are chosen as follows: minibatch
size of 36, initial learn rate as 10-9, validation frequency as 9, and the number of
epochs to train is based on the accuracy that is needed to get. We actually trained for
300 epochs in order to obtain the required accuracy for the model. We also shuffled
the data at every epoch so that the model will be able to generalize the data outside
the datasets used. We can also choose the learn rate schedule to be piecewise and the
drop factor and the drop period to be any random values. But at the initial stage, we
choose the learn rate schedule to be constant and later we manually decreased the
learn rate.

4.3 Training

We actually split the data into two sets with 75% of data used to train the network and
the remaining 25% data used to validate the trained model. Minibatch size is made
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Fig. 4 Layer description

to be 36 and the number of epochs is chosen to be 200. So the network is trained
for 6600 iterations at a constant learn rate of 0.001 got by a validation accuracy of
79 percent for this run as shown in Fig. 5. Though we can choose the learn rate to
be piecewise, we actually choosen learn rate manually after obtaining the model
with 79 accuracy and varied the learn rate within a range from 10-3 to 10-6 for 100
epochs so that our model achieved good accuracy. Here, the validation frequency
is maintained at 8; this is mainly used to calculate the validation accuracy and loss
of the model to generalize the model to other data. For every epoch, it took around
5 min and for every iteration it took 0.135 min; here in MATLAB, there is an option
to do it parallely so it uses cores of the CPU to work simultaneously.

One point to be noted here is we split the data according to the label of the folder
name, i.e. folder containing natural images are named google_images and the other
folder is named as prcg_images. So the classification layer gets the names for their
binary labels from these folder names.
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Fig. 5 Training plot for accuracy versus ıteration and loss versus ıteration

5 Results

5.1 Implementation Details

MATLAB R2019a. All of the experiment is done in the MATLAB R2019a Deep
Learning package [10, 11] using Deep Learning Toolbox and the Deep Network
Designer application. We have designed our network architecture using the Deep
Network Designer app and generated code for the network architecture. We used
image augmentation techniques to the data before applying them to the network. We
split the data into training and validation in a 3:1 ratio.

In Training options, we choose sgdm optimizer and related parameters for this
experiment and trained the network. After training, in order to improve the accuracy
of the model, we save the checkpoints and retrain the network. Figure 6 shows the
classified images by the trained model, and Fig. 7 gives the probabilities for the
classification of the images as prcg_image and google_image.
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Fig. 6 Classified ımages

Fig. 7 Classification
probabilities

5.2 Visualization of ConvNet Layers

After the model with the required accuracy is obtained, we visualize the network
layers for the data it gets trained in. For this purpose, in MATLAB the Deep-
DreamImage option will be available. Figure 8 gives details about the patterns that
are grasped by the hidden layers in the ConvNet.

Figure 9 shows the table for activation strength and the classification layer through
this layer visualization; we can say that Natural Images have more complex patterns

Fig. 8 Visualization of
hidden ConvNet layers
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Fig. 9 Classification layer
activation strength and
visualization

and Computer Generated Images have fewer complex patterns and are mostly simple
patterns.

Through this, we can say that CGI images nowadays are getting more photore-
alistic so the pattern complexity in CGI is increasing. Maybe in the future, their
differentiation will be more difficult compared to now.

Visualization of Activations for Test Images. For the testing purpose, we give some
Natural and Computer Generated images and visualize the activations of the layers.
Figure 10 shows the activations of the layers for the NI and CGI images. Figure 11
shows the strong activation of the layer to recognize the image. These are actually
the normalized images which are gray; otherwise, they are black and white in color.
After that, we apply this model to the video to detect the frames in the video whether

Fig. 10 Activations of
ConvNet layer 1 by CGI and
NI

Fig. 11 Strong activations
of ConvNet layer 1


