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Preface

The unit circle S1 in the complex number system C and its self-mappings have
played a major role in the history of mathematics. Below we give many striking
examples. The central theme throughout this book will be to understand higher
dimensional analogues, where things are more subtle and ideas from many fields of
mathematics make their appearance.

In one dimension, if f is holomorphic (complex analytic) in a neighborhood
of the closure of the unit disk B1, and f maps the circle to itself, then f is a finite
Blaschke product. One can draw the same conclusion assuming only that f is a
proper holomorphic mapping from B1 to itself. In particular such functions are
rational. Our primary topic will be the study of holomorphic rational maps sending
the unit sphere in the source complex Euclidean space Cn to the unit sphere in some
target space C

N . We call such mappings rational sphere maps. We use the terms
monomial sphere map and polynomial sphere map with obvious meaning; even
these mappings exhibit remarkably interesting and complicated behavior as the
source and target dimensions rise.

In this book, a rational sphere map f is complex analytic where it is defined. In
other words, f depends on the z variables but not on the �z variables. In Chap. 6 we
briefly discuss some differences between holomorphic polynomial sphere maps and
real polynomial sphere maps. In particular, in complex dimension n at least 2, the
only non-constant holomorphic polynomial maps sending the unit sphere to itself
are linear, whereas there are real polynomial sphere maps of every degree.
I considered the title Complex Analytic Rational Sphere Maps to prevent possible
confusion, but the shorter title seems more appealing.

In some sense, this book is a research monograph, as it develops in a systematic
fashion most of the research on rational sphere maps done in the last forty years. It
differs however from many monographs in several ways, which we now describe.

First of all, scattered throughout the book are a large number of computational
examples; the author feels that merging the abstract and concrete enhances both.
Many times in his work on this subject, a theorem resulted from trying to cast a
collection of examples into one framework. Some readers will stare at these
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formulas, observe subtle patterns, and pose their own open questions. Other readers
may find the formulas distracting. I hope that I have achieved the right balance.
Chaps. 3 and 4 include formulas that could not easily be obtained by hand com-
putation. Mathematica was used to help perform some of these calculations. The
author acknowledges assistance in coding received from Jiri Lebl, Daniel Lichtblau,
Dan Putnam, and Bob Vanderbei. Some results from coding have led to theorems
and others have led to unanswered questions. Both types of results appear here.
Section 4.9 includes recent code by Lichtblau [1].

Second, I have included more than 100 exercises. Most of these are computa-
tional and have a simple purpose: give the reader something to do when things
become confusing. These exercises are numbered by Chapter and often appear in
the middle of a section. Given the many search tools available, this method seems
most appropriate. This book hopes to expose some beautiful mathematics; it is not a
calculus text where long lists of exercises appear at the end of each section. The
exercises are meant for readers who enjoy them but none are indispensable to the
general development.

I have posed fifteen open problems here. They belong to many parts of math-
ematics; the symmetry of the unit sphere is responsible for their variety. These
problems appear within the text but are repeated in a short chapter at the end of the
book. The author hopes that this book will enhance research by engaging others in
both what is known and where this knowledge leads.

Section 1.7 provides a kind of global positioning system for the book. It locates
where in the book some of the fundamental results are discussed and indicates what
happens in each chapter. The author modestly hopes that both experts and novices
find this map to be useful both in learning about rational sphere maps and navi-
gating the book.

To introduce the subject of rational sphere maps, we provide several examples in
one dimension and indicate how to extend the ideas to higher dimensions.

Example 1 Many elementary trigonometric identities are easily proved by
combining the binomial expansion with de Moivre’s formula

ðcosðhÞþ i sinðhÞÞm ¼ ðeihÞm ¼ eimh ¼ cosðmhÞþ i sinðmhÞ: ð�Þ

In fact every trig identity follows from the following facts:

1. The complex numbers are a field.
2. cos zð Þ ¼ eiz þ e�iz

2 and sin zð Þ ¼ eiz þ e�iz

2i :

3. For complex numbers z;w we have ezþw ¼ ezew.
4. Complex conjugation is continuous, and hence e�z ¼ �ez.

It is natural to take (2) as the definition of the trig functions. Combining (2) and
(3) yields cos2ðzÞþ sin2ðzÞ ¼ 1. Combining (3) and (4) yields jeihj2 ¼ 1 when h is
real. Item (4) is needed because the exponential function is defined by its power
series; one needs to know that the conjugate of a convergent infinite sum is the
infinite sum of the conjugated terms.
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Formula (*) is closely related to the map z ! zm, which sends the circle to itself,
and hence is a monomial sphere map. One higher dimensional analogue of this
mapping will be the tensor product z ! z�m for z 2 C

n. The tensor product pro-
vides a monomial sphere map, but requires a higher dimensional target space. We
will encounter restricted tensor products and a kind of tensor division.

Example 2 The unit circle can be regarded as the unitary group Uð1Þ. The m-th
roots of unity form a finite cyclic subgroup Cm under multiplication. The map
z ! zm sends the circle to itself and is invariant under Cm. We will study analogues
in higher dimensions in Chap. 5, by associating both invariant and equivariant
groups with rational sphere maps. The unitary group UðnÞ and the holomorphic
automorphism group of the unit ball arise throughout. In addition, representations
of Cm in Uð2Þ lead in Chap. 3 to interesting combinatorial results.

Example 3 The theory of Fourier series is based upon the complete orthonormal
system feimhg for L2ðS1Þ. Closely related is the result that the monomials z ! zm

form a complete orthogonal system for L2ðB1Þ. The analogous statement for the
monomials z ! za holds in any dimension.

Example 4 Riemann surfaces arose from trying to visualize the space of solu-
tions to equations such as zm ¼ w. We will study proper mappings from Bn to BN ;
the image of the ball is then an n-dimensional complex variety. We also study a
subvariety of Bn � C

N associated with a rational sphere map. This variety contains
the graph of the map, but exceptional fibers often arise.

Example 5 Each factor (including the eih term) of the Blaschke product

eih
Ym

j¼1

aj � z
1� �ajz

can be regarded as an automorphism of the unit disk. In n dimensions, the auto-
morphism group of the unit ball Bn is the Lie group SUðn; 1Þ divided by its center.
We will see tensor products of automorphisms, but (as in Example 1) new phe-
nomena arise. Not every rational sphere map is a tensor product of automorphisms.

Example 6 Example 5 shows that every polynomial q that does not vanish on the
closed unit disk is the denominator of a rational sphere map that is reduced to
lowest terms. Proving the analogous statement in higher dimensions is much more
subtle and seems to require Hermitian analogues of Hilbert’s 17-th problem. Let us
elaborate. Suppose z 2 C

n and rðz;�zÞ is a real-valued polynomial. When the values
of r are non-negative, we naturally ask whether r is a Hermitian sum of squares;
that is, can we write

rðz;�zÞ ¼
Xk

j¼1

jf jðzÞj2

for (holomorphic) polynomials f j? The answer is not necessarily. What can we
say? The resulting ideas (see Chap. 2) enable us to prove the following result. Let q
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be a polynomial that does not vanish on the closed unit ball in C
n. Then there is an

integer N and a polynomial mapping p : Cn ! C
N such that p

q is reduced to lowest

terms and defines a rational sphere map. There are no bounds possible on N nor on
the degree of p that depend only upon n and the degree of q. We emphasize that the
easy proof in one dimension does not require these ideas. This discussion combines
with Hermitian linear algebra to give Theorem 2.15, which provides a general
description of all rational sphere maps.

Example 7 In Chap. 3 we will introduce a class of polynomials in two variables
that arise from considering group-invariant monomial sphere maps. These poly-
nomials turn out to be related to Chebyshev polynomials and they exhibit a long list
of remarkable properties. One of these properties is that the so-called freshman’s
dream: ðxþ yÞd is congruent to xd þ yd modulo d if and only if d ¼ 1 or d is prime,
holds for these polynomials f dðx; yÞ as well.

Example 8 In Chap. 7 we establish a sharp bound on the volume of the image of
a polynomial sphere map. A one-dimensional version of this result is quite
appealing and we discuss it in detail as well.

The underlying theme in this book derives from the following simple observa-
tions. First, the collection of rational sphere maps with a given source dimension n
and target dimension N has little algebraic structure, unless n ¼ N. In Chap. 2, we
show that there is considerably more structure to the problem if we regard the target
dimension as a variable. Determining the rational sphere maps of degree d in source
dimension n and unspecified target dimension leads to a system of linear equations
for the inner products of unknown vectors. See Theorem 2.15. If we assume these
vectors are orthogonal, then we obtain a linear system for unknown non-negative
numbers. This case is equivalent to the study of monomial sphere maps, which we
investigate in Chaps. 3 and 4. Even in the monomial case, the dimension of the set
of solutions tends to infinity as the degree tends to infinity.

As usual in Mathematics, when there are too many solutions to a problem, one
can restrict the solutions by optimizing various quantities. For example, in Chap. 7,
we discuss the volume of the image of the ball under a polynomial sphere map of
degree d. We show that the homogeneous mapping z�d provides the maximum
volume. Chaps. 3 and 4 consider minimizing two somewhat related quantities for
monomial sphere maps of degree d in source dimension n. One of these quantities is
the minimum target dimension; the other is the minimum value of the map at the
point with coordinates all equal to 1. We obtain some rather difficult combinatorial
and asymptotic results about these problems.

Let us a say a few words about prerequisites. The author believes that everything
in this book should be accessible to most mathematicians, including graduate
students. Because of the symmetry of the unit sphere, however, the material
interacts with nearly all fields of mathematics. We use basic facts from complex
analysis, linear algebra, functional analysis, and algebra. We will sometimes use
ideas from elementary differential geometry and we will employ combinatorial
reasoning. No deep theorems are required. The only prerequisite is appreciation
of the ideas.
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Numbering in this book is done by Chapter. Thus, for example, Proposition 1.5
means the fifth proposition in Chap. 1. It precedes Corollary 1.1, because there are
no items called corollary before it. We do not number every displayed equation.
This point is worth elaborating. Paul Halmos (I don’t know the precise reference,
but he said so!) once suggested that every equation should be numbered, because
even if the author never refers to a given equation, someone else might. On the
other hand, numbering everything seems to clutter things too much. I hope, unre-
alistically of course, that I have compromised by numbering an equation if and only
if it should be numbered.

I wish to acknowledge various mathematicians who have contributed to my
understanding of the ideas in this book, or who have coded some computations:
Eric Bedford, Dan Burns, Paulo Cordaro, Peter Ebenfelt, Jim Faran, Franc
Forstnerič, Dusty Grundmeier, Zhenghui Huo, Bernhard Lamel, Jiri Lebl, Daniel
Lichtblau, Han Peters, Dan Putnam, Bob Vanderbei, and Ming Xiao. I also
acknowledge Simon Kos, a physicist, who made an important contribution to the
ideas in Chap. 3. Quite a few of the results in this book are outgrowths of work I did
with Jiri Lebl and other work I did with Ming Xiao. Their contributions have been
indispensable. Many other mathematicians have indirectly contributed, primarily
via their own inspiring work. I have also benefited from attending meetings and
conferences over the years. Let me specifically mention programs at the American
Institute of Math, workshops in Serra Negra (Brazil), conferences at the Erwin
Schrödinger Institute (Vienna, Austria), and various special sessions at AMS sec-
tional meetings.

I thank Chris Tominich of Springer for his role as editor and especially for his
solicitation of useful reviews. I thank the anonymous reviewers for their comments;
I modestly hope that I have improved the book by dealing with their suggestions
and criticisms.

During the preparation of this book I have been supported by NSF Grants
DMS-1066177 and DMS 13-61001. I also acknowledge support from the
Kenneth D. Schmidt Professorial Scholar award from the University of Illinois.
I dedicate this book to my wife Annette and our four children John, Lucie, Paul, and
Henry.

Urbana, USA John P. D’Angelo
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Chapter 1
Complex Euclidean Space

This chapter develops basic properties of complex Euclidean space. Some of the
main ideas are unitary transformations, the holomorphic automorphism group of the
unit ball, the use of Hermitian forms, and proper holomorphic mappings. We also
gather some elementary combinatorial information.

1 Generalities

The notation C
n denotes complex Euclidean space of dimension n. As a set, it

consists of n-tuples of complex numbers z = (z1, ..., zn). The notation includes the
information that Cn is an inner product space. The inner product of vectors z and
w is defined by

〈z, w〉 =
n∑

j=1

z jw j .

We denote the corresponding squared norm by

‖z‖2 = 〈z, z〉 =
n∑

j=1

|z j |2.

The set Cn is then a metric space with distance function given by ‖z − w‖. As a
consequence, we have all the usual notions from point-set topology. In particular, a
subset� is open if, for each p ∈ �, there is a positive ε such that ‖z − p‖ < ε implies
z ∈ �. We denote the unit ball, centered at the origin, byBn . Its boundary is the unit
sphere S2n−1. Odd dimensional spheres arise throughout this book. We assume the
reader knows such terms as connected, compact, limit, sequence, subsequence and
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2 1 Complex Euclidean Space

so on. A domain will be an open, connected set. As a metric space Cn is complete,
and hence Cn is a Hilbert space of dimension n.

Remark 1.1 Weuse the notations ‖z‖ and 〈z, w〉 for the normand the inner product in
any (unspecified) dimension. The implication ‖ f (z)‖2 = 1 on ‖z‖2 = 1 often arises.
Here z and f (z) need not live in the same dimensional space. In one dimension, |ζ|
denotes the magnitude of a complex number ζ.

Several copies of complex Euclidean spaces often arise in the same discussion.
Suppose N = K + L . We will write CN = C

K ⊕ C
L , where the symbol ⊕ denotes

orthogonal sum.When A is a subspace ofCN , we let A⊥ denote the orthogonal com-
plement of A, and thus CN = A ⊕ A⊥. In these settings, the Pythagorean theorem
holds:

‖z ⊕ w‖2 = ‖z‖2 + ‖w‖2.

When M < N , we often regard C
M as a subspace of CN . For w ∈ C

M , we write
either w ⊕ 0 or (w, 0) for the corresponding element in C

N .
We say a bit now about tensor products and discuss them inmore detail in Chap.2.

If v ∈ C
M and w ∈ C

N , we can form an element v ⊗ w in CMN whose components
are v jwk for 1 ≤ j ≤ M and 1 ≤ k ≤ N in some specified order. It is easy to see that
‖v ⊗ w‖2 = ‖v‖2 ‖w‖2; thus, the squared norm of a tensor product is the product
of the squared norms. See Lemma 2.1.

Let � be an open subset of Cn . Suppose f : � → C
N is a function. Then f is

holomorphic if, for each p ∈ �, f is complex differentiable at p. In other words,
there is a (complex) linear map d f (p) : Cn → C

N such that

f (p + h) = f (p) + d f (p)h + error(p, h),

where limh→0
error(p,h)

‖h‖ = 0. We assume the reader knows possible equivalent defini-
tions; for example, f is locally given by a convergent (vector-valued) power series,
or f satisfies the Cauchy-Riemann equations. On several occasions we will have
holomorphic mappings defined on open balls, and we use without comment that the
power series expansion converges uniformly on compact subsets of the ball.

Assume � is connected. If all the power series coefficients of f vanish at a point
p ∈ �, then f vanishes identically. The standard proof is to observe that the set of
such points is both open and closed in �.

On occasion, we will need the following form of the maximum principle.

Proposition 1.1 (Maximum principle) Let � be a bounded, open, and connected
subset of Cn. Suppose f : � → C

N is holomorphic and extends continuously to the
boundary ∂�. Then:

• For all z ∈ �, ‖ f (z)‖ ≤ sup∂� ‖ f ‖.
• If there exists a z ∈ � where ‖ f (z)‖ = sup∂� ‖ f ‖, then f is a constant.

The following obvious consequence of the maximum principle provides a strong
contrast to the real case. For example, the polynomial (x1)2 + · · · + (xn)2 is constant



1 Generalities 3

on the unit sphere inRn but it is not constant. A holomorphic function that is constant
on too large of a set must itself be constant. We need only the following simple case.

Corollary 1.1 Suppose f is holomorphic in a domain containing the closed unit
ball, and f is constant on the sphere. Then f is constant.

Proof If z �→ f (z) − c vanishes on the sphere, then (by the first part of themaximum
principle) ‖ f (z) − c‖ vanishes on the ball. Hence, f − c vanishes identically on its
domain. (Recall that a domain is connected.) �

Recall that a linear transformation L : Cn → C
n isunitary if L preserves the inner

product. Thus, 〈Lz, Lw〉 = 〈z, w〉 for all z, w. It follows trivially that ‖Lz‖2 = ‖z‖2
for all z. The converse also holds. Thus, L is unitary if and only if ‖Lz‖2 = ‖z‖2
for all z. In other words, 〈Lz, Lz〉 = 〈z, z〉 for all z implies the apparently stronger
statement 〈Lz, Lw〉 = 〈z, w〉 for all z, w. This fact provides an easy example of
polarization.

Remark 1.2 (Polarization) It is often crucial in complex analysis to regard z and
its conjugate z as independent variables. In rather general circumstances, when an
identity involving z and z holds for all choices of z, we may replace z by w, and
the identity will hold for all z, w. We will often have identities that hold on the unit
sphere defined by ‖z‖2 = 1. We may then replace z in the identity with w and the
resulting identity will hold when 〈z, w〉 = 1.

Example 1.1 We give a beautiful example of polarization. Consider a harmonic
function u defined near the origin in R

2. We wish to find a holomorphic function f
whose real part is u. Thus, we must have

f (z) + f (z)

2
= u

(
z + z

2
,
z − z

2i

)
= u(x, y). (1.1)

We polarize (1.1) by assuming that z and z are independent variables. For example,
if we suppose f (0) = 0 and set z = 0, then we obtain the formula

f (z) = 2u
( z

2
,
z

2i

)
. (1.2)

Formula (1.2) recovers f from u without the usual process involving differentiation,
integration, and the Cauchy-Riemann equations. Careful thought shows that we are
assuming here that u is real-analytic. Proving that a harmonic function in the plane
is real-analytic is usually done by showing that it is the real part of a holomorphic
function. The result about real-analyticity holds in all dimensions. It can be proved
by estimating the size of the successive derivatives after starting with the mean-value
property.

The following ideas are equivalent to polarization and arise throughout complex
analysis. Consider a polynomial or convergent series
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f (z, z) =
∑

a,b

cabz
azb

in the variables (z, z) ∈ C
n × C

n with f (0, 0) = 0. The terms in the series
∑

ca0za

are calledholomorphic terms, those in
∑

c0bz
b are called anti-holomorphic terms,

and the remaining terms are calledmixed terms. One says pure terms to mean any
terms that are not mixed. Suppose f (z, z) vanishes identically. Then cab = 0 for
all multi-indices a, b. In particular, the series of holomorphic terms, the series of
anti-holomorphic terms, and the series of mixed terms all vanish identically.

Exercise 1.1 Use the technique of Example 1.1 to find a holomorphic function f
whose real part is the given u(x, y).

• u(x, y) = x2 − y2.
• u(x, y) = ex cos(y).
• u(x, y) = ln(x2 + y2). (Note that we cannot set z equal to 0 here!)

Unitary transformations arise throughout this book. The definition implies that
the composition of unitary maps is unitary, and the next proposition implies that
the collection U(n) of unitary maps on C

n is a group. We can identify U(n), when
regarded as unitarymatrices, as a subset of complexEuclidean space of dimension n2.
An n × nmatrix is unitary if and only if its column vectors form an orthonormal basis
ofCn . Thus, this subset is closed and bounded. The group operations ofmultiplication
and taking inverses are smooth. The next two propositions summarize the basic facts
about unitary transformations.

Proposition 1.2 Let L : Cn → C
n be linear. The following are equivalent:

(1) L is unitary.
(2) For all z, w, we have 〈Lz, Lw〉 = 〈z, w〉.
(3) For all z, we have ‖Lz‖2 = ‖z‖2.
(4) L is invertible and L−1 = L∗. (Here, L∗ is the adjoint of L.)

Proposition 1.3 The unitary group U(n) is a compact Lie group.

A Lie group G is a smooth manifold endowed with a binary operation (g, h) �→
gh that makes G into a group, and for which this operation and the operation of
taking inverses are smooth maps. We don’t use any major results from the theory of
Lie groups or their Lie algebras, but specific examples of Lie groups arise throughout
the book. We mention some of the groups that will arise.

The special unitary group SU(n) consists of those unitary maps with determinant
equal to 1. The n-torus T(n) consists of those diagonal maps

z = (z1, ..., zn) �→ U (z) = (eiθ1 z1, ..., e
iθn zn).

We often identify the n-torus with U(1) × · · · × U(1). Notice also that operators
permuting the variables are unitary. Hence, (by Cayley’s theorem) every finite group
is isomorphic to a subgroup of U(n).
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Let n = p + q. The groupsU(p, q) are groups of n-by-n matrices preserving the
Hermitian form

p∑

j=1

|z j |2 −
n∑

j=p+1

|z j |2.

The subgroup SU(p, q) consists of those matrices in U(p, q) with determinant 1. In
this book, we use only SU(p, 1), for the following reason. The quotient of the group
SU(n, 1) by its center is isomorphic to the group of holomorphic automorphisms
of the unit ball in C

n , but we prefer a more concrete description in terms of linear
fractional transformations. See Sects. 2 and 3.

An interesting class of examples of finite unitary groups arises in this book. In
each case, the group itself is cyclic of order p, but the representations as subgroups
of U(2) differ.

Example 1.2 Let η be a primitive p-th root of unity and assume q is relatively prime
to p. Let �(p, q) denote the cyclic subgroup of U(2) generated by

(
η 0
0 ηq

)
.

The special cases �(p, 1) and �(2r + 1, 2) play surprising major roles in this book.

The next proposition has been used innumerable times by the author and will be
applied on several occasions in this book.

Proposition 1.4 Let B denote a ball in Cn. Assume that f : B → C
N and g : B →

C
M are holomorphic maps. Suppose ‖ f (z)‖2 = ‖g(z)‖2 on B.

• If M = N, then there is a U ∈ U(N ) such that f (z) = Ug(z) for z ∈ B.
• If M < N, then there is a U ∈ U(N ) such that f (z) = U (g(z) ⊕ 0).

Proof See [15] or [19] for a proof. �

Exercise 1.2 Determine the real dimensions of U(n) and SU(n). (Proposition 1.7
and Corollary 1.4 give the answers when n = 2.)

Weconclude this section bydefining rational spheremap. The simplest examples
are given by unitary maps. In Sect. 3, we find all the equi-dimensional examples
(automorphisms of the unit ball when n ≥ 2). Most of our discussion is devoted to
rational sphere maps in the positive codimension case; in other words, when the
target dimension exceeds the source dimension.

Definition 1.1 A rational sphere map is any rational map f = p
q satisfying the

following properties:

• p : Cn → C
N is a (holomorphic) polynomial.

• q : Cn → C is a (holomorphic) polynomial, with q(z) �= 0 when ‖z‖ ≤ 1.
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• f = p
q is reduced to lowest terms.

• ‖p(z)‖2 = |q(z)|2 when ‖z‖2 = 1.

Let p : Cn → C
N be a polynomial. When p sends the unit sphere in the source

to the unit sphere in the target, we call p a polynomial sphere map. When also each
component of p is a single monomial, we call p amonomial sphere map.

Remark 1.3 By Proposition 1.4, we can draw a very strong conclusion if ‖p‖2 =
|q|2 holds on the ball. In fact, p = L(q ⊕ 0) for some linear map L . The equality
‖p‖2 = |q|2 on the sphere is much weaker; we will spend most of this book studying
its solutions!

2 The Groups Aut(B1), SU(2), and SU(1, 1)

Before discussing the automorphism group of the unit ball in C
n , we recall the

situation in one dimension. We also briefly consider the special unitary group SU(2)
and the group SU(1, 1).

Let Aut(B1) denote the set of holomorphic maps f : B1 → B1 such that f is
bijective and has a holomorphic inverse. We begin with the famous Schwarz lemma.

Proposition 1.5 (Schwarz lemma) Let f : B1 → C be holomorphic. Suppose
f (0) = 0 and | f (z)| ≤ 1. Then the stronger inequality | f (z)| ≤ |z| holds on B1.

Proof Since f (0) = 0, the function g defined by g(z) = f (z)
z is also holomorphic.

For any r < 1, its maximum absolute value on the disk |z| ≤ r is achieved on the
circle |z| = r . Therefore,

|g(z)| ≤ max|z|≤r

( | f (z)|
r

)
≤ 1

r
. (1.3)

Letting r tend to 1 in (1.3) shows that |g(z)| ≤ 1 and hence | f (z)| ≤ |z|. �

Corollary 1.2 Suppose f : B1 → B1 is a holomorphic automorphism with f (0) =
0. Then f is a rotation. Thus, f (z) = eiθz.

Proof Applying Proposition1.5 to both f and f −1 gives | f (z)| = |z|. Either the
one-dimensional version of Proposition1.4 or elementary complex analysis forces
f (z)
z to be a constant map, and the conclusion follows. �

Lemma 1.1 Suppose |w| < 1 , |ζ| < 1, and eiθ is on the unit circle. Then

• |eiθ + ζw|2 = |1 + weiθζ|2.
• |eiθw + ζ|2 < |eiθ + ζw|2.
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Proof By expanding the squared magnitudes, the equality is equivalent to

1 + 2Re(eiθζw) + |ζw|2 = 1 + 2Re(eiθ(wζ)) + |wζ|2

and hence holds. Expanding the squared norms and cancelling the equal real part
terms shows that the inequality is equivalent to |w|2 + |ζ|2 < 1 + |wζ|2, which is
equivalent to |w|2(1 − |ζ|2) < 1 − |ζ|2. This inequality holds because both |w| < 1
and |ζ| < 1. �

Lemma 1.2 For |w| < 1, |ζ| < 1 put f (z) = eiθ z−w
1−wz and g(z) = eiφ z−ζ

1−ζz
. Then

their composition is of the same form:

(g ◦ f )(z) = eiγ
z − s

1 − sz

where eiγ = eiφ eiθ+ζw

1+weiθζ
and s = eiθw+ζ

eiθ+ζw
. Furthermore, |s| < 1.

Proof Compute g( f (z)). Then clear denominators bymultiplying by 1 − wz. Factor
(eiθ + ζw) from the numerator and (1 + ζweiθ) from the denominator. The result
is the claimed formula for s. Also, by Lemma 1.1, the factors we extracted have the
same magnitude. Hence, eiφ times their quotient is on the unit circle. Finally, note
that |s|2 < 1 if and only if |eiθw + ζ|2 < |eiθ + ζw|2, which was proved in Lemma
1.1. �

Corollary 1.3 The collection of maps in Lemma 1.2 form a group under composi-
tion.

Proof By Lemma 1.2, the composition of such maps is of the same form. Putting
ζ = −eiθw shows that each such map has an inverse of the same form. �

Proposition 1.6 Aut(B1) is the set of functions f for which

f (z) = eiθ
z − w

1 − wz
, (1.4)

where |w| < 1 and eiθ is on the unit circle.

Proof It follows from Corollary 1.3 that each such f is an automorphism. We must
show that there are no others. Let h be an automorphism with h(0) = w. For f as
in (1.4), f ◦ h is an automorphism sending w to 0. By Corollary 1.2 of Schwarz’s
lemma, f ◦ h is a rotation U , and h = f −1 ◦U has the desired form. �

The following proposition will not be explicitly used in the book, but its impor-
tance in physics and geometry suggests its inclusion. See [38] and its references
for the many uses of SU(2) in physics. It is useful for us because of the major role
the unit sphere, especially in two complex dimensions, plays in this book. Further-
more, comparing SU(2) with SU(1, 1) is interesting and SU(1, 1) is closely related
to Aut(B1).
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Recall that sets are diffeomorphic if there is a smooth bijective map with a smooth
inverse between them.

Proposition 1.7 The sets SU(2) and the unit sphere S3 are diffeomorphic.

Proof Given p = (z, w) ∈ C
2, we define U (z, w) to be the 2-by-2 matrix

U (p) = U (z, w) =
(

z w

−w z

)
.

The mapping U is obviously injective on all of C2. Assume |z|2 + |w|2 = 1. Com-
puting U (z, w)U (z, w)∗ gives

(
z w

−w z

) (
z −w

w z

)
=

(|z|2 + |w|2 0
0 |z|2 + |w|2

)
=

(
1 0
0 1

)
.

Thus, if (z, w) ∈ S3, thenU (z, w) is unitary. Furthermore, det(U (z, w)) = 1 aswell.
Therefore,U : S3 → SU(2). The mapU is obviously smooth; we need to prove that
it is bijective with a smooth inverse.

A 2-by-2 matrix M =
(
a b
c d

)
is unitary if these equations are met:

|a|2 + |b|2 = |a|2 + |c|2 = |c|2 + |d|2 = 1

ab + cd = 0.

It is in SU(2) if also ad − bc = 1. First suppose that b = 0. Then |a| = 1 and
hence both c = 0 and |d| = 1. In this case, M = U (a, 0). Suppose that b �= 0; then
c = ad−1

b and we get the equation

ab + ad − 1

b
d = 0.

It follows that 0 = a|b|2 + (ad − 1)d = a(1 − |d|2) + a|d|2 − d = a − d and
hence a = d . Thus, c = −b and M = U (a, b). Hence, U is surjective. The inverse

map T sending a unitary matrix

(
a b
c d

)
to its first row (a, b) is obviously also

smooth. �

Corollary 1.4 The sets S3 × S1 and U(2) are diffeomorphic.
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Proof By the Proposition, it suffices to show that SU(2) × S1 and U(2) are diffeo-

morphic. Given M ∈ SU(2) and eiθ ∈ S1, put A(M, eiθ) =
(
eiθ 0
0 1

)
M . Then A is a

diffeomorphism. �

Proposition 1.7 implies that the unit sphere S3 is a Lie Group. The only spheres
that are Lie groups are S1 and S3, although this fact is not so easy to prove. Another
useful result in physics (which is easy to prove) is that the quotient of SU(2) by
the subgroup of two elements ±I is the special orthogonal group SO(3). For us, it
will be important (and shown in Chapter 6) that all odd dimensional spheres have an
unbounded realization associated with the Heisenberg group.

Exercise 1.3 What is the group multiplication on S3 determined by Proposition
1.7? In other words, let p1 = (z1, w1) and p2 = (z2, w2) be points on the sphere.
Define p1 ∗ p2 by applying the inverse map T to the product U (p1)U (p2). Thus,
p1 ∗ p2 = T (U (p1)U (p2)). Find this formula.

Exercise 1.4 In proving Corollary 1.4, what would go wrong if we defined A by
A(M, eiθ) = eiθM?

Let n = p + q. The groups SU(p, q) are groups of n-by-n matrices with deter-
minant 1 and preserving the Hermitian form

p∑

j=1

|z j |2 −
n∑

j=p+1

|z j |2.

In the special case where n = 2, we determine the relationship between SU(1, 1) and

the automorphisms of the unit disk. Put J =
(
1 0
0 −1

)
. A matrix M lies in SU(1, 1)

if and only if det(M) = 1 and M∗ JM = J . Assuming that M =
(
a b
c d

)
, we see, in

a manner similar to the proof of Proposition 1.7, that M ∈ SU(1, 1) if and only if M
has the form

M =
(
a b
b a

)
(1.5)

where now |a|2 − |b|2 = 1.Note theminus sign and thata �= 0. Since |a|2 − |b|2 = 1
allows |a| to be arbitrarily large, formula (1.5) shows that SU(1, 1) is not compact.
Notice also that the center of SU(1, 1) consists of the matrices ±I . (The center of a
group G is the set of elements g such that gh = hg for all h ∈ G.)

Let us identify a fraction ζ
w
with the row vector (ζ w). Thus, the complex number

z is identified with the row vector (z 1). Given M in SU(1, 1), we multiply the
row vector (z 1) on the right by M to obtain the row vector (az + b bz + a). Our
identification ∼ with this row vector as a fraction yields
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(z 1)M ∼ a

a

(
z + b

a

1 + b
a z

)
. (1.6)

Writing a
a in the form eiθ, we see that (z 1)M ∼ eiθψ(z) where ψ is a holomorphic

automorphism of the unit disk. If we replace (a, b) by (−a,−b), then the map on
the right-hand side of (1.6) is unchanged. We obtain the following conclusion.

Proposition 1.8 The group Aut(B1) is isomorphic to the quotient of SU(1, 1) by its
center ±I .

Proof Let M be as in (1.5). Define amap T : SU(1, 1) → Aut(B1) by putting T (M)

to be the map on the right-hand side in (1.6). Note that a
a is an arbitrary element of

the unit circle and b
a is an arbitrary element of the unit disk. Thus, by Proposition

1.6, T is surjective. Lemma 1.2 implies that T is a group homomorphism. It is not
an isomorphism, because T (−M) = T (M), but it is two-to-one. The conclusion
follows. �

In dimension n, there is an isomorphism from SU(n, 1) divided by its center to
Aut(Bn). We prefer the concrete expression, from Theorem 1.1 in the next section,
in terms of the linear fractional transformations generalizing (1.4).

3 Automorphisms of the Unit Ball

Let � be a set and let Aut(�) denote the group of its automorphisms. Let us clarify
what we mean by the term automorphism. An automorphism must be a bijection
from� to itself. When� has some given algebraic structure, an automorphism must
preserve this structure. An automorphism of a finite set is simply a permutation of
that set. An automorphism of a vector space V is an invertible linear map from V
to itself. For us, � will be an open subset of complex Euclidean space C

n and a
holomorphic automorphism will be a biholomorphic mapping from � to itself.
Thus, f : � → � is holomorphic (complex analytic), injective, and surjective. The
inverse mapping f −1 is also holomorphic. Since the composition of functions is an
associative operation, it follows that Aut(�) is a group under composition. When �

is an open subset of some complex Euclidean space, the notation Aut(�) denotes
the group of holomorphic automorphisms of �.

Remark 1.4 By definition, a mapping f : � → � is a holomorphic automorphism
if f : � → � is holomorphic, injective, surjective, and the inverse mapping is also
holomorphic. One can show that the holomorphicity of the inverse mapping follows
automatically. By contrast, however, things differ for smooth functions. The function
x �→ x3 on R is of class C∞, injective, and surjective, but the inverse function is not
smooth at 0. For holomorphic maps, this situation does not arise.
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Next, we give a concrete description of the automorphism group of the unit ball.
The book [71] has a similar treatment and also contains a huge amount of analytic
information about holomorphic functions on the unit ball.

Let a ∈ C
n satisfy ‖a‖2 < 1. Write s = √

1 − ‖a‖2. Define a linear map La by

La(z) = 〈z, a〉
s + 1

a + sz. (1.7)

We define a rational map φa by

φa(z) = a − Laz

1 − 〈z, a〉 . (1.8)

For each a ∈ Bn , we will show that φa is an automorphism of the unit ball Bn .
Furthermore, φa is a rational sphere map.

Lemma 1.3 For La as in (1.7), and φa as in (1.8), the following holds:

• La(a) = a.
• 〈Laz, a〉 = 〈z, a〉.
• La(La(z)) = 〈z, a〉a + (1 − ‖a‖2)z.
• φa(a) = 0.

Proof The first item:

La(a) = 〈a, a〉
s + 1

a + sa = ‖a‖2
s + 1

a + sa = 1 − s2

1 + s
a + sa = a.

The second item:

〈Laz, a〉 = 〈〈z, a〉a
s + 1

, a〉 + s〈z, a〉 = 〈z, a〉
s + 1

(1 − s2) + s〈z, a〉 = 〈z, a〉.

The third item:

La(La(z)) = La

( 〈z, a〉
s + 1

a + sz

)
= 〈z, a〉

s + 1
La(a) + s

( 〈z, a〉
s + 1

a + sz

)

= 〈z, a〉
s + 1

(1 + s)a + s2z = 〈z, a〉a + (1 − ‖a‖2)z.

The final item follows from the first item. �

Lemma 1.4 φa maps the unit sphere to itself.

Proof It suffices to show on the unit sphere that (1.9) holds:

‖a − Laz‖2 = ‖a‖2 − 2Re〈a, Laz〉 + ‖Laz‖2 = |1 − 〈z, a〉|2. (1.9)
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In anticipation of a later calculation we will show that

‖a − Laz‖2 − |1 − 〈z, a〉|2 = (‖a‖2 − 1)(1 − ‖z‖2). (1.10)

The conclusion follows from (1.10) upon setting ‖z‖2 = 1. To prove (1.10), we
expand everything using La(z) = 〈z,a〉

s+1 + sz and the second item of Lemma 1.3. We
also use 2Re〈z, a〉 = 2Re〈a, z〉. Putting these things together shows that the left-hand
side of (1.10) equals

(‖a‖2 − 1) + |〈z, a〉|2
(

1 − s2

(s + 1)2
+ 2s

s + 1
− 1

)
+ s2‖z‖2 = (‖a‖2 − 1) + s2‖z‖2.

Finally, we use s2 = 1 − ‖a‖2 to obtain (1.10). �

Lemma 1.5 φa ◦ φa = I .

Proof After clearing denominators, we use the items in Lemma 1.3:

φa(φa(z)) =
a − La

(
a−La(z)
1−〈z,a〉

)

1 − 〈 a−La(z)
1−〈z,a〉 , a〉

= (1 − 〈z, a〉)a − La(a) + La(La(z))

1 − 〈z, a〉 − 〈a − La(z), a〉

= (1 − ‖a‖2)z
(1 − ‖a‖2) = z.

�

Exercise 1.5 Write down an explicit formula for the automorphism φa when a =
(0, ..., 0,α).

The automorphism group Aut(Bn) is the real Lie Group SU(n, 1)/Z . Here Z
denotes the center of the group SU(n, 1). See Exercise 1.6. Rather than regarding
Aut(Bn) in this way, we give explicit formulas as rational mappings in Theorem
1.1. To better understand Aut(Bn), we need Corollary 1.5 below, an analogue of
Schwarz’s lemma (Proposition 1.5) in n-dimensions, and also Corollary 1.6.

Corollary 1.5 Let f : Bn → BN be holomorphic and f (0) = 0. Then ‖ f (z)‖ ≤
‖z‖ holds for z ∈ Bn.

Proof Choose a non-zero z ∈ Bn . Let l be a linear functional on CN with l( f (z)) =
‖ f (z)‖ ≤ 1 and ‖l‖ ≤ 1. Define the linear map L : C → C

N by ζ �→ ζz
‖z‖ . Then‖L‖ = 1 as well. Put g = l ◦ f ◦ L . Then g satisfies the hypotheses of Schwarz’s

lemma in one dimension and therefore |g(ζ)| ≤ |ζ|. Put ζ = ‖z‖. We get


