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Introduction
Published in the new Sciences encyclopedia launched in
2020 by ISTE Ltd, this book aims to introduce readers to
key themes in oceanography and marine ecology by
focusing on how concepts are evolving. First, we briefly
recall (see Chapter 1) some elements of the history of
oceanography, the birth of which is conventionally dated by
the expedition of the British ship Challenger (1872–1876).
The main concern of ocean physicists at that time was to
understand ocean circulation and characterize ocean water
masses at the basin scale and then, through major
international programs, at the scale of the global ocean.
With the creation of new tools, physical oceanography has
gradually evolved toward describing and modeling ocean
variability at different scales and studying its interactions
with the atmosphere within a context of climate change
(see Chapter 2). Chemical oceanography, also born with the
voyage of the Challenger, after a phase dominated by
analytical chemistry for the determination of seawater
elements and their stoichiometry, has evolved toward
biogeochemistry through the development of concepts at
the interface between physics, chemistry, biology and
geology to understand the relationships between nutrients
and major ocean cycles in relation to the atmosphere (see
Chapter 3). Biological oceanography, which originated in
the 19th Century in marine stations in the coastal
environment, has spread to the wider ocean, developing
concepts in marine ecology, in particular to explain how
pelagic biomes work. The impact of the genomic approach
is overturning traditional concepts in marine biology,
particularly with regard to biodiversity and functions often
expressed at the cellular level (see Chapter 4). About 2.4
billion years ago, the composition of the two fluid envelopes



of planet Earth underwent a drastic change, with the
“great oxidation event”, leading to significant changes in
ocean chemistry that had previously been displaced toward
lower oxidation/reduction “redox” potentials, typical of
anoxic environments. The Challenger expedition had dealt
a final blow to the idea of an abiotic ocean beyond the first
500 m. In the 20th Century, one of the major discoveries
was that of hydrothermal oases in ocean ridges, showing
that anoxia could go hand in hand with the production of
organic matter by chemosynthesis (see Chapter 5).
While the Challenger expedition marked the birth of
oceanography, this discipline has experienced, since the
1960s, a real “golden age” on a global scale with the
massive recruitment of researchers, the launch of
dedicated vessels and underwater vehicles, the emergence
of international programs, technical revolutions
(bathythermograph, automatic nutrient salt analyzers,
instrumented buoys, chromatography for pigment analysis,
etc.), the satellite revolution concerning a growing number
of parameters and an increasingly interdisciplinary
approach. The time is therefore right to combine these
advances.
The last three chapters of this book go beyond the
traditional routes of oceanography works. First, they
attempt, through an interdisciplinary approach, to
anticipate the future of a warmer, more acidified and less
oxygenated ocean in the context of climate change. This is
due to anthropogenic emissions of greenhouse gases, in
particular carbon dioxide, more than a quarter of which is
captured in the ocean, but at the cost of changing the
chemical balance of carbonates (see Chapter 6). They then
show how our ability to observe the ocean, not only on a
large scale but also on a small scale, changes our
understanding of the processes that control its functioning,
physically, chemically and biologically (see Chapter 7).



Finally, we present (see Chapter 8) three challenges the
oceans face in the 21st Century:

– Can we exploit biological resources within the
framework of sustainable development?
– Is the exploitation of its deep mining resources
compatible with respect for the biodiversity of the
seabed?
– Should the ocean be manipulated to better regulate
climate change?



1
The Challenger Expedition: The Birth
of Oceanography

1.1. The Challenger cruise (1872–
1876)
It is to Great Britain’s credit that the first major
oceanographic expeditions were organized, thus confirming
its undeniable supremacy over the oceans (Rule,
Britannia!).
One name came to be highly recognized at the end of the
19th Century, the English naturalist Charles Wyville
Thomson (see Box 1.1). For many (Deacon 2001), the
circumnavigation of the HMS Challenger he commanded
between 1872 and 1876 marked “Year 1” of offshore
oceanography. This multidisciplinary expedition sponsored
by the Royal Society of London is the most expensive ever
undertaken, at a cost of about 10 million pounds today.
It is true that Great Britain was at the height of its
maritime domination and could not bear the idea of the
United States, Germany or Sweden taking the lead. Let us
examine the contributions of this circumnavigation of
68,916 miles across all oceans to the far reaches of the
Southern Ocean using sails for transit and the steam
engine at stations, especially for dredging.
This expedition with precise objectives (Corfield 2003) was
out of the ordinary due to the meticulous preparation of the
ship. Eighteen months were needed to select the old, 70-m,
three-masted warship, set up laboratories and housing,
winches and oceanographic equipment to study the



distribution of pelagic fauna, collect organisms living at
depth, multiply bathymetric measurements and take water
samples at all depths.



Box 1.1. Charles Wyville Thomson and John
Murray
The two major players in the Challenger cruise
The English naturalist Charles Wyville Thomson (1830–
1882, Linlithgow), fascinated by crinoids, true living
fossils, confirmed that life is abundant and diversified up
to a depth of at least 4,500 m and that there is a deep
ocean circulation. He published his results in The
Depths of the Sea (1873), the first book dealing with the
great depths, which made him the true founder of
modern oceanography. He was entrusted by the British
navy with the direction of the Challenger cruise and was
knighted upon his return in 1876.



Figure 1.1. Sir John Murray (©NOAA Ocean
exploration and research)
John Murray (1841, Cobourg–1914, Kirkliston) (see
Figure 1.1), a man capable of all during this cruise, was
responsible for the publication, at the British
government’s expense, of the 50 volumes published
between 1880 and 1895. With quite a bit of humor,
Murray wrote in the introduction: “Our knowledge of
the ocean was, in the strict sense, superficial.” In 1912,
he published with the Norwegian Johan Hjort The
Depths of the Ocean (1912), whose first chapter
summarizes the history of oceanography from its
origins. He was also knighted in 1898.



This mission was considered exceptional due to its
significant number of staff. When the Challenger left
Portsmouth on December 21, 1872, it had 243 officers,
crew and scientists on board.
The head of the mission, Scotsman Wyville Thomson, was
not in good health and returned exhausted from this
journey. John Murray, another Scot, in charge of studying
deep sediments, was a skillful and vigorous man. The Scot
John Buchanan, a chemist, irascible and pretentious, was
the genius of DIY and invention. Henry Moseley, a true
naturalist, also an astronomer, was assisted by the German
Rudolph von Willemoes-Suhm, who died during one of the
first stops. John Wild was the expedition’s secretary and
artist.
The monotony of the soundings and dredgings (see Figure
1.2) during the Challenger’s journey (see Figure 1.3) led to
a number of defections by the crew: about 60 abandoned
the voyage and about 10 died.



Figure 1.2. Dredging and sounding on board the HMS
Challenger (©NOAA Ocean exploration and research)



Figure 1.3. “Around the world” trip of the Challenger
between December 21, 1872 and May 24, 1876
Still out of the ordinary, the 713 days at sea allowed 362
“stations”: determination of depth, meteorological
conditions, direction and speed of the surface current,
sampling of the surface layer of the sediment, sampling of
bottom water and measurement of its temperature. In
addition to most stations, plankton sampling by hauls of net
and bottom dredging and trawling with beam trawls were
carried out.
This expedition marked the beginning of oceanography
because of its major contributions to ocean knowledge:

1) It definitively put an end to the theory of the British
naturalist Edward Forbes (1843) who had stated that
there could be no life beyond 400 m. Certainly, as early
as 1861, the rise of a telegraph cable immersed 1,800
m at the bottom of the Mediterranean on which solitary
corals had settled had already eroded this hypothesis
(not to mention the forgotten work of the pharmacist



and naturalist from Nice Antoine Risso in Histoire
naturelle des crustacés des environs de Nice, published
in 1816);
2) Of the 7,000 species harvested, about 1,500 were
new; showing the richness and diversity of the deep
environment, which Thomson (1873) translated into
these terms:
It is inhabited by a fauna more rich and varied on
account of the enormous extent of the area, and with
organisms in many cases apparently even more
elaborately and delicately formed and more exquisitely
beautiful, in their soft shades of coloring and the
rainbow tints of their wonderful phosphorescence, than
the fauna of the well- known belt of shallow water.
3) It specified the topography of the seabed showing a
depth of more than 8,183 m in the Mariana trench (the
Challenger did not have a longer cable!) and
highlighted the mid-Atlantic ridge, thus preparing the
way for Alfred Wegener’s (1912) continental drift
theory;
4) It showed that sediments were formed from pelagic
organisms: globigerin, diatomaceous earth, pteropod
and red mud from the deep sea;
5) It brilliantly confirmed the constancy of the relative
proportions of the various salts contained in seawater,
having been previously observed in 1819 by the Swiss
Alexandre Marcet and, in 1855, by the American
Matthew Fontaine Maury. We will elaborate on this at
the beginning of Chapter 3.

Carpenter’s hope to discover the mechanisms of ocean
circulation was not materializing, despite valuable
information gathered on vertical profiles of temperature,
salinity and density, including confirmation that cold waters


