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Preface

We are pleased to publish this proceedings of the First International Conference on
Industrial IoT, Big Data and Supply Chain (IIoTBDSC). The novelty in the scope is
attracting contributions to some crucial aspects of our interconnected world. People
and devices are defining high-tech services with open problems to face in reliability,
efficiency, speed and accuracy.

We have received 120 submissions. After a peer-review process and paper
improvement, 46 final papers were selected.

The conference proceeding scope is to demonstrate that today’s challenges can
be faced with crossover knowledge fields. Industrial Internet of Things (IIoT) allows
the network of IoT devices to communicate, analyze data and process informa-
tion collaboratively. Big Data (BD) infrastructure problem domains require to deal
with the 5V’s: volume, velocity, variety and veracity. Supply chain requires modern
advancement and support from IIoT and big data to make all services efficient, fast,
accurate and reliable. These three can combine and work together to produce more
significant impacts and contributions as follows.

Thematurity of IoT technologies can grow and become part of our everyday lives.
BD 5Vs is a must to provide affordable BD analytics using machine learning, AI,
statistical and other advanced techniques, models and methods, which can create
values for people and organizations adopting it. Suppliers can know the updates on
their stocks and demands. Manufacturers and transport companies know the work-
loads, destination and resource distributions. Owners and customers are also stake-
holders receiving benefits from these approaches. At the end of the day, the supply
chain can reach a greater sustainable ecosystem with the help of IIoT and big data.
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vi Preface

We are grateful for the opportunities to serve the community. We will organize
IIoTBDSC 2021 again and will publicize it in due course.

We wish you a happy reading of our selected papers.

Yours sincerely,
Middlesbrough, UK
Leeds, UK
Barcelona, Spain
November 2020

Prof. Victor Chang
Dr. Muthu Ramachandran

Prof. Víctor Méndez Muñoz
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Chapter 1
A Modelling Framework for CPS-Based
Industry 4.0: Application
to Manufacturing Systems

Zakaria Benzadri, Takieddine Bouheroum, Youcef Ouassim Cheloufi,
Mohamed Nadir Hassani, and Faiza Belala

Abstract Recently, digital transformation, known as the Fourth Industrial Revo-
lution (Industry 4.0), has become a promising technological framework used to
integrate and extend manufacturing processes at the intra and inter-organizational
levels of smart factories. Among the most important technologies in Industry 4.0,
cyber-physical systems (CPS) are recent complex systems, subject to distributed
control, cooperation, influence, cascading effects, and emerging behaviours. Nowa-
days, few research attempts and industrial companies are interested in integrating
CPSs to study, design, and implement more intelligent manufacturing systems. The
main objective of this paper is to bring the migration to CPS-based Industry 4.0 and
its new features while proposing a cross-layers and generic architecture (I4.0-CPS)
validated through a realistic case study of the manufacturing process of a grader in
an Algerian company (ENMTP-Somatel-Liebherr).

1.1 Introduction

The industrial revolution is a concept that has fundamentally changed our society and
economy. It marks the passage from a system of artisanal production based on coal,
textiles, and steam engines (First Industrial Revolution—mechanization), through a
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system that takes advantage of the fields of electricity, oil and chemistry (Second
Industrial Revolution—Electrification), and to a system whose dynamics come from
electronics, computers, audio–visual, and nuclear power (Third Industrial Revolu-
tion—automation). Recently, digital transformation, known as the Fourth Industrial
Revolution, is a promising technological framework used to integrate and extend
manufacturing processes at the intra- and inter-organizational levels of smart factories
[1]. This emerging digital transformation claims to be a fusion of the virtual world,
computer design, management (operations, finance, and marketing) and real-world
products, and objects. It refers to the use of digital technology tomakemanufacturing
operations more agile, flexible, and customer-focused.

Today, the evolution of information and communication technologies has led to
the birth of the new industrial revolution. As a result, several strategic initiatives have
been launched around the world: “smart manufacturing” in the USA, “Internet+” in
China (see [2]), “industry of the future” in France, and “Industry 4.0” in Germany;
the term Industry 4.0 seems to be gaining international acceptance. Companies in the
world including Algerian ones are facing the Industry 4.0 revolution which imposes
new challenges and new modes of production, such as exploitation and massive
management of data, interconnection of machines, dematerialization of communi-
cation and distribution channels, the restructuring of the company for flexible and
personalized production, etc. In this view, we identify the following key challenges,
requiring each factory to act for the transformation to Industry 4.0: (C1) standard-
ization of rules and processes that permits us to identify a set of findings to move
towards Industry 4.0; (C2) connectivity and change tracking of hundreds of heteroge-
neous services, machines, or factories distributed over different sites; (C3) transition
from re-engineering software systems and manufacturing processes to modular and
maintainable solutions.

1.1.1 Context and Problematic

The Industry 4.0 is defined as a collective term for technologies and concepts of
company’s value chain [1, 3–5]. Cyber-physical systems, Internet of things, big data,
cloud computing, edge computing, and fog computing are among the core tech-
nologies for Industry 4.0. In this context, cyber-physical systems (CPSs) are recent
complex systems, subject to distributed control, cooperation, influence, cascading
effects, and emerging behaviours. They may be considered as sensors and actuators
that monitor physical processes and create a virtual copy of the physical world in
a plant [6]. In general, CPSs are a new class of engineered systems that offer close
interaction between cyber and physical components; they are expected to play a
major role in the design and development of future systems. However, nowadays,
few research attempts and industrial companies are interested in integrating CPSs to
study, design, and implement more intelligent manufacturing systems, in the context
of Industry 4.0. CPSs can play a major role in smart manufacturing and production
processes, thus offering significant advantages in terms of time, resources, and costs
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compared to conventional production systems. Indeed, currentmodelling approaches
of this type of systems are based on classical notations and languages assuming that
are monolithic, based on central control, global visibility, hierarchical structures, and
coordinated activities.

Within the software engineering framework, model-based solutions may hold
promise for the development cycle ofCPS-based production systems. These solutions
focus on amore abstract concern than conventional programming, taking into account
the seamless integration of heterogeneousCPS components and their coordination. In
this work, we identify, in an explicit manner, all the stages of designing a distributed
and intelligent production system, depending on the above CPS and Industry 4.0
principles [7], from abstraction to architecture, and from model to realization (in
response to the identified challenges: C1; C2; and C3).

Related Work
In the literature, few research works exist for modelling CPS; most are driven by a
genericmethodologywithout reference to an explicit design process, focusing instead
on isolated stages such as simulation, development, or verification. On the other
hand, the used model notations (BPMN, Rdps, UML, etc.) for this type of systems
are often inappropriate, emphasizing only one aspect while neglecting others. Some
architectures, deduced frompublishedworks, have been identified and summarized in
the table below, and their authors, each according to its particular area of interest, take
into consideration only significant layers of these architectures, which can possibly
host the Industry 4.0 components, but not leading to a model abstracting the details
of the corresponding production systems and facilitating their design.

Through Table 1.1, we notice that almost of the existing approaches represent
good attempts to model their corresponding manufacturing systems. Their estab-
lished architectures are structured on several hierarchical layers: the network, the
plant, the system, the cell, and the station. We also note that only the RAMI4.0
reference architecture makes it possible to describe the production system according
to several views. In this case, a complete three-dimensional description has been
defined. Concerning the third column of Table 1.1, it indicates how to define the indi-
vidual components of a production system; obviously the architecture 5C inherits the
CPS principle to distinguish between the physical elements of a production system,
its computation components, and its connection elements (network). So,more impor-
tancemust therefore be given to their integration. The genericity criterion depicts that
the last two works in Table 1.1 are intended for the description of particular systems
developed in a very particular context. Examples of technologies and components
are considered.

In this paper, we propose a multi-view, cross-layer, and generic architecture
(called I4.0-CPS) to respond to our major concerns, namely the abstraction of static
and behavioural aspects, the distribution and heterogeneity of its entities, and the
intelligent handling of data. The proposed approach is illustrated through a real-
istic case study of the manufacturing process of a grader in an Algerian factory
(ENMTP-Somatel-Liebherr).
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Table 1.1 Related work traits

Architecture Cross-layer Multi-views CPS-based Generic Underlying model

RAMI 4.0 [8] + + − + −
Architecture 5C [9] + − + + −
PERFoRM [10] + − − − −
FC-CPMTS [11] + − − − −

1.1.2 Paper Organization

The remainder of the paper is organized as follows. Section 1.2 is dedicated to the
presentation of the proposed cross-layers CPS-based architecture for Industry 4.0
(I4.0-CPS). Section 1.3 describes the case study to be used throughout the paper
to illustrate our approach. Finally, Sect. 1.4 concludes the paper by giving some
perspectives.

1.2 A Cross-Layers Architecture for CPS-Based Industry
4.0

Knowing that the architectural reference model of Industry 4.0 (RAMI4.0) consists
of a three-dimensional coordination system, it describes all the essential aspects
of Industry 4.0, namely [8] a layer dimension, a life cycle dimension, and lastly a
dimension specifying the hierarchy. In the same thought, we give in this section a
multi-layered architecture based on CPS, which makes it possible to understand and
model an intelligent factory while integrating new concepts related to the decentral-
ization and intelligence of production processes in Industry 4.0. This lies in the way
to make the computational components of Industry 4.0 collaborate with the physical
world in a distributed way using data access and processing services available on the
Internet. The proposed architecture, illustrated in Fig. 1.1, offers two different views
to describe a production system in an intelligent factory: (1) the functional view
consists of four levels (see Fig. 1.1) which permit to specify the physical (resources,
products, machines, routers, sensors, etc.) or computational (servers, computers, web
application, etc.) elements of a production system that are described according to
their position in the different layers (or levels); (2) the network view consists of
three levels: edge, fog, and cloud computing, associating and specifying the means
intended for the corresponding functional level. In what follows, we describe each
of the functional view levels by referring to the associated network view levels:

• Manufacturing asset level (MA). In this level, different robots, machines, and
applications are available for the manufacturing process. The machines can
detect products and retrieve the process information they need. As a result, some
corresponding functionalities are identified (summarized on the right in Fig. 1.1).
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Fig. 1.1 Multi-layered architecture I4.0-CPS

• Gathering data level (GD). Significant information must be inferred from the
data collected. The IoT should offer promising transformational solutions for this,
which can also be realized at the fog level.

• Control level (CO). This level plays the pivotal role of the proposed architec-
ture. Information is transmitted to it from every machine, process, or system
connected to form the plant network. After collecting massive amounts of infor-
mation, specific analyses must be used to extract useful information to better
understand the state of individual components.

• Business intelligence level (BI). This level acts as a supervisory control to make
the machines self-configurable and self-adaptive.

1.3 Case Study: A Grader Manufacturing System

Algerian companies are facing a new industrial revolution that imposes new chal-
lenges, particularly with regard to new production and communication models. We
contribute, through this work to bring a solution to a modelling problem posed by
production systems in the context of Industry 4.0. ENMTP-Somatel-Liebherr, one of
the Algerian national companies, is active in the production of hydraulic excavators,
wheel loaders, self-propelled cranes, and graders. The proposed architecture dealing
with the modelling of intelligent production systems is illustrated and projected on
an example of the manufacture of the “SOMATEL grader 5410”. This allows us to
study in depth the manufacturing process of a grader in this company and to identify
a set of findings to move this factory towards Industry 4.0, such as the appropriation
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Fig. 1.2 Architecture instance of I4.0-CPS for the machining process

of new technologies, the control and the sharing of data across the network, orga-
nizational restructuring of the company, and the development of a digital plan. In
Somatel-Liebherr, several micro-processes constitute the producing grader process:
Debitage, Mecano welding, machining, pre-assembly, and final assembly. In this
work, we are interested in the machining process, which begins with the blank steel
wafer and ends with factory parts, having the desired shapes and characteristics.
According to our formalization approach, Fig. 1.2 shows the application of the I4.0-
CPS architecture for our case study.Wededuce the following generic and cross-layers
architecture for describing the spatial organization for ourmanufacturing process.We
focus on the collaboration that occurs during the machining of parts used in, product
manufacturing, synchronization, deployment, and decision-making. This collabora-
tion is governed by a well-defined organization of the different elements constituting
this I4.0-CPS architecture. Obviously, the physical and software components of the
corresponding CPS are deeply intertwined, each operating at different spatial scales,
represented by the different levels of the I4.0-CPS architecture: MA, GD, CO, and
BI, and interacting with each other through fog or cloud computing, to describe the
functioning of the intelligent machining process in SOMATEL as shown in Fig. 1.2.
Two aspects are considered in this model:

Static aspect. We specify the physical elements (machines, resources, and manu-
factured products) at the MA level as well as some sensors useful to collect certain
information. We have chosen to host each operation (turning, milling, drilling, heat
treatment, and grinding) of the machining process in a separate unit. The next level in
the architecture (GD level) contains the data conversion tools for exploitation. Level
CO (control), distributed on two levels (CO1 and CO2) in our case study, contains the
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supervisory computers or servers, which collect the information from the lower levels
and provide useful data or actions for other layers. We note that at level CO1, the
functionality associated with each operation in the machining process is performed
by a separate fog node. CO2 level is provided by two different servers: one for hosting
the used applications and the other is reserved for data storage. At the BI level, we
combine cloud servers to study, analyse, and make decisions in order to improve
the functioning of the production process in question. Eventually, an optimization or
reconfiguration can be considered.

Interaction aspect. The essential contribution of our approach is that it allows seam-
less integration between heterogeneous systems consisting of computing devices
and/or distributed sensors and actuators. Sensors and actuators provide an interface
between the physical and cyber worlds. The proposed I4.0-CPS architecture takes
into account this aspect and pays particular attention to the interactions that may
exist between the different components of this machining process in a well-defined
organizational context, and they are schematized by arrows in Fig. 1.2. We thus
distinguish between the inter-layer interactions linking the elements constituting the
CPS, belonging to different levels of the I4.0-CPS architecture, and the intra-layer
interactions governing the functional links between the elements of the same layer.

1.4 Conclusion and Perspectives

In this paper, we tackled the challenges in managing the life cycle development of
production systems in smart manufacturing. We relied on CPSs to give an efficient
framework for modelling this type of complex systems. Especially, we have defined
a multi-level architecture I4.0-CPS dealing with structure and behaviour aspects.

Future research will aim at (1) the elaboration of the corresponding service-
oriented architecture in order to describe typically the possible interactions between
the physical and logical entities of CPS-based systems; (2) a transcription to a
component-based model to take advantage of its abstraction and reuse aspects
during the production system development life cycle: design, implementation, and
deployment.

References

1. Qin, J., Liu, Y., Grosvenor, R.: A categorical framework of manufacturing for industry 4.0 and
beyond. Procedia Cirp 52, 173–178 (2016)

2. Chang, V., Xu, Y.K., Zhang, J., Xu, Q.: Research on intelligent manufacturing development
approach for China’s local valve industry. Smart Sustain. Built Environ. (2020)

3. Chang, V.I., Lin, W.: How Big Data transforms manufacturing industry: a review paper. Int. J.
Strateg. Eng. (IJoSE) 2(1), 39–51 (2019)

4. Benzadri, Z., Bouanaka, C., Belala, F.: Big-CAF: a bigraphical-generic cloud architecture
framework. Int. J. Grid Util. Comput. 8(3), 222–240 (2017)



10 Z. Benzadri et al.

5. Bouheroum, A., Benzadri, Z., Belala, F.: Towards a formal approach based on bigraphs for fog
security: case of oil and gas refinery plant. In: 2019 7th International Conference on Future
Internet of Things and Cloud (FiCloud), pp. 64–71. IEEE (2019).

6. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical systems:
a survey. IEEE Syst. J. 9(2), 350–365 (2014)

7. Xu, L.D., Xu, E.L., Li, L.: Industry 4.0: state of the art and future trends. Int. J. Prod. Res.
56(8), 2941–2962 (2018).

8. Hankel, M., Rexroth, B.: The reference architectural model industry 4.0 (RAMI 4.0). ZVEI,
April, 410. IBM. (2020). IBM Rational Software Architect Designer (2015). https://www.ibm.
com/developerworks/downloads/r/architect/index.html.

9. Lee, J., Bagheri, B., Kao, H.-A.: A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

10. Leitão, P., Barbosa, J., Pereira, A., Barata, J., Colombo, A.W.: Specification of the perform
architecture for the seamless production system reconfiguration. In: Iecon 2016–42nd annual
conference of the IEEE industrial electronics society, pp. 5729–5734 (2016).

11. Zhou, Z., Hu, J., Liu, Q., Lou, P., Yan, J., Li, W.: Fog computing-based cyber-physical machine
tool system. IEEE Access 6, 44580–44590 (2018)

https://www.ibm.com/developerworks/downloads/r/architect/index.html


Chapter 2
A Deep Classifier for Crowdsourcing
User Requests

Feifei Niu, Chuanyi Li, and Bin Luo

Abstract Software feature requests are proposed by users online to ask for new
features of software covering diverse aspects of software properties, such as usability,
security, and performance. They are valuable sources of software requirements. Early
detection of request categories enables them to be stored structurally and incorporated
into requirements specifications. Butmanually analyzing and labeling the category of
user requests is a labor-intensive and time-consuming task. In this paper, we propose
a deep learning-based approach to automatically classify user requests, where both
statistical and semantical text features are adopted. The main contributions of this
work are comparing the effectiveness of different deep learning algorithms in feature
request classification and exploring the proper way to apply deep learning to solve
the requests classification issue. Three research questions are answered by exper-
iments to illustrate the contributions. The experimental results derived from the
dataset collected from Sourceforge.net show that the deep classifier works prop-
erly on utilizing different types of features, classifying user requests, and combining
with active learning.

2.1 Introduction

As an early phase of software development, requirement classification is crucial. It
can help to distinguish between types of requirements and help to detect early aspects
in software development. For example, security is a significant aspect that counts for
much [3] and usually has a high priority amount all requirements [2].

User requests are proposed by the crowd on open forums to ask for new features
and are valuable resources of requirements. However, the number of user requests is
growing rapidly and covers all aspects, making it a challenge to manage and utilize
them. Besides, user requests are usually unstructured and colloquial, which turns out
to be an obstacle to manually analyze and label their category.
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Fig. 2.1 Framework of the proposed deep learning based user feature requests classification
approach

Recently, the rise of artificial intelligence has provided better solutions to many
problems [16]. In this paper, we propose deep learning (DL) classifier to classify
user requests automatically. We employ both semantic and statistical text features
for training the classifiers includingWord2vec [15], TF-IDF [12], keyword frequency
(KF) [13], and heuristic properties (HP) [13]. The DL classifiers are convolutional
neural network (CNN) [11], long short-termmemory network (LSTM) [9], BiLSTM
[17], gated recurrent units (GRU) [4], and BiGRU [17]. We proposed more HPs and
evaluate the effectiveness of different HPs to select an optimized set of HPs for
different projects. We carried out experiments on 3000 user requests collected from
three projects on Sourceforge.net. The results are evaluated on accuracy, precision,
recall, and F-measure. Most importantly, we designed two strategies based on cross-
prediction and active learning to employ the classifier into actual scenarios. The
framework of our research can be found in Fig. 2.1.

The remainder of this paper is organized as follows. Section 2.2 surveys require-
ment classification and related techniques. Section 2.3 introduces the approach.
Experimental processes and results are illustrated in Sect. 2.4. Threats to validity
are discussed in Sect. 2.5. Section 2.6 concludes the paper with a discussion of
future work.

2.2 Background

2.2.1 Software Requirement Classification

Requirement classification has been studied for years. Cleland-Huang et al. [5]
proposed an information retrieval-based approach to classify non-functional require-
ments (NFRs) with weighted indicator terms. Winkler and Vogelsang [19] have
proposed an automatic classification of requirements employing convolutional neural
networks. Kurtanovic andMaalej [10] automatically classify requirements into func-
tional and non-functional. Baker et al. [1] leverage artificial neural networks and
convolutional neural networks to classify non-functional requirements into five cate-
gories: maintainability, operability, performance, security, and usability. Mohamad
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et al. [14] identified security requirements from 3003 requirements with the random
forest classifier. However, requirements are confidential assets for companies and
are rarely available for domain experts [7]. The recent study for requirements engi-
neering has transferred from requirements specifications to users’ online reviews.
Li et al. [13] defined taxonomy for user requests’ classification and classified user
requests into seven categories including security (SE), reliability (RE), performance
(PE), life cycle (LI), usability (US), capability (CA), and system interface (SI). In
this paper, we follow Li et al.’s [13] definitions of the seven categories.

2.2.2 Related Techniques

Recently, the blossoming of DL models allows us to extract semantic and syntactic
information of texts automatically and obtain better andmore comprehensive features
[15]. Convolutional neural networks (CNNs) can retain word order information and
learn sentence patterns composed of word sequences that span multiple words [8].
Recurrent neural networks (RNNs) have been widely used in processing sequential
data and have achieved pretty good results. LSTM [9] and GRU [4] are the most
commonly usedRNNs. Besides, Schuster and Paliwal [17] proposedBiRNNmodels,
which connect two opposite direction layers to the same output and can increase the
input information to the network. In this paper, we evaluate these DL models, i.e.,
CNN, LSTM, BiLSTM, GRU, and BiGRU to classify user requests.

First, we employ feature extraction techniques to convert natural language texts
into machine understandable representations including:

Term Frequency-Inverse Document Frequency (TF-IDF). TF-IDF is
commonly used to calculate the importance of a word in a document [12]. It increases
proportionally to the number of times a word appears in a user request but is offset
by the number of documents in the corpus that contains the word.

Keyword Frequency (KF). KF calculates the frequency of each type of keywords
that appeared in each user request,where the keywords are predefined and categorized
into the target seven classes, which are defined by Li et al. [13].

Heuristic Properties (HPs). Li et al. [13] have defined HPs as certain parts that
strongly imply the possible category of the request.

Word2vec [15]. Word embedding maps words or phrases into vectors of numbers
and is used to extract semantic information from texts.

2.3 Approach

The proposed approach, as depicted in Fig. 2.1, consists of three phases: prepro-
cessing, extracting features, and training classifiers. Firstly, the user requests are
preprocessed using common NLP techniques: normalization, lemmatization, and
stemming. Then, both semantic and statistical features are extracted from feature
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Fig. 2.2 Structure of CNN, LSTM, BiLSTM, GRU and BiGRU models

Table 2.1 Proportion of each type of user request in each project (1000 for each project)

Project SE (%) RE (%) PE (%) LI (%) US (%) CA (%) SI (%)

KeePass 10.1 6.8 1.9 3.9 34.3 38.1 4.9

Mumble 2.4 6.3 3.5 12.3 33.2 33.7 8.6

WinMerge 0.9 7.4 2 5.7 41 40 3

texts. Semantic features are extracted via DL models. All features are concatenated
as the input of the training model. After several fully connected layers, a softmax
layer outputs a seven-dimensional vector that stands for the possibility of classifying
to each category. The highest possibility is thought to be the final classification result.
The model is shown in Fig. 2.2.

Our dataset consists of 3000 user requests of three projects on Sourceforge.net.
The three projects are KeePass, Mumble, and WinMerge. The percentage of each
category in each project is shown in Table 2.1.

To evaluate fairly, we use fivefold cross-validation experiments on each project.
Each time, we use one fold for testing, one for validation, and one for training.

We use average accuracy, precision, recall, and F1 of fivefolds to evaluate the
performance of the classifiers, where accuracy is the percentage of records classified
correctly in the test set.

2.4 Experiment and Results

2.4.1 Experiment

Our experiments revolve around solving three research questions. The questions,
research methods, and corresponding results are as follows:
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RQ1 Are all the HPs helpful to identify the category of user requests? Is there an
optimal set of HPs that is most useful for classification?

Method: To examine the effectiveness, we test on each HP to get accuracy variation
with the number of added HPs changes. Firstly, we define an empty set SHP and
a set S that contains all eighteen HPs. SHP is the set of HPs used as the input of
models. For each experiment, choose one HP from S and add to SHP, train the model
with features extracted from SHP, which is concatenated with Word2vec, TF-IDF,
and KF. In this step, we test on all the eighteen HPs one by one and pick out the
one that gains the highest result. The high accuracy indicates that this HP is more
indicative. Move this HP from S to SHP. Then, repeat this step, until S is empty. We
can obtain the accuracy curve that depicts the accuracy varies with the added number
of HPs increases. The algorithm that we employ is LSTM, which can learn long-term
dependency information.

Results: We test on three projects, and the accuracy curves are shown in Fig. 2.3.
The X-axis stands for the number of added HPs, and the Y-axis is the accuracy result.
From the result, we can see that the accuracy curve increases as HPs added at first,
but it reaches a peak and then begins to decline. The optimal HP set is obtained
when the curve reaches pear. The accuracy improvement can be one percent with the
optimal HP set compared with all HPs in three projects. The accuracy improvement
of the optimal HP set is nearly 2 percent higher than models without HPs. However,
the optimal HP set is different in three projects. In KeePass, the optimal HP set is 9,
13, 1, 5, 14, 4, 3, 7. In Mumble, the optimal HP set is 9, 13, 1, 12, 5, 7, 15, 8, 17, 3,
and in Winmerge, the optimal HP set is 9, 1, 4, 10, 16, 8, 5, 17, 6. The optimal set is
different between different projects. The reason may be that the semantic is different
in different projects, so does the HPs’ effectiveness. During the experiment process,
we find that the ninth HP is most effective in both three projects.

RQ2 Howwell canwe automatically classify user requestswithDL classifiers?Do
DL classifiers perform better than traditional machine learning classifiers?

Methods: Firstly, theword vectormodel is trainedwith the training set. Then,we build
DLclassifierswithwordvectors as inputs. To inspect the accuracy improvementwhen
combined with TF-IDF, KF, and HPs, we concatenate TF-IDF, KF, and HPs to the
word vectors.We experiment on different DL classifiers to explore the distinction. To
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compare the performance of every algorithm, we apply one-way analysis of variance
(one-way ANOVA). The hypothesis is that there is no significant difference between
different DL classifiers.

Results: Table 2.2 presents the experimental results of different combinations of
text features and models. The highest average accuracy of Word2vec is achieved by
LSTM, which is 47.83, 39.93, and 52.20, respectively. The accuracy improvement of
combining TF-IDFwithWord2vec is 16–25%.When adding KF, the improvement is
8–11%. When the optimal set of HPs is added in, the improvement is 0.9–2.3%. The
results show that TF-IDF, KF, HPs are all effective in improving accuracy results.
When using all the statistical and semantic text features, the classifiers can obtain
the best results. Our average results are higher than the previous results achieved
by traditional machine learning algorithms by Li et al. [13] apart from the CNN
classifier. One-way ANOVA test result is shown in Table 2.3. The results indicate
that there is no significance between the five algorithms for KeePass. LSTM and
BiLSTM gain the best result in Mumble, with CNN gaining the worst result. In
Winmerge, there is no significance among LSTM, BiLSTM, and GRU, which are
both better than BiGRU and CNN. In general, LSTM and BiLSTM perform better
than GRU and BiGRU, and they are all better than CNN in all the three projects.
The precision, recall, and F1-measure results of the LSTM classifier are shown in
Table 2.4. F1-measure of all categories has been improved than that in Li et al. [13].

RQ3 In the actual scenarios, when users start a new project, all the user requests
are unlabeled at first, and there is no available training set. How can we
predict these user requests with DL algorithms?

Method: To label new user requests, there are two strategies. The first solution is to
predict these requestswith classifiers trained by other similar projects, which is cross-
project prediction. We study the relationship between project similarity and cross-
prediction accuracy. Firstly,we calculate project similarity through user requestswith
different algorithms like cosine similarity, Euclidean distance, Manhattan distance,
and Jaccard index. Then, we train the classifier on one project to predict another
project. The second solution is by means of active learning strategy. Active learning
is a semi-supervised learning algorithm in the context of classification to reduce the
efforts involved in labeling [6]. The chosen algorithm is LSTM and all the extracted
features. The original dataset is split into training set and testing set with a rate of
0.2. The chosen sampling strategies are least confident (LC), small margin (SM),
and random (R) [18].

Results: The similarity results and cross-project prediction results are shown in
Table 2.5. All the similarity algorithms indicate that KeePass and Mumble gain
the highest similarity result and KeePass against Mumble follows. The least simi-
larity is Mumble and Winmerge. For predicting KeePass, Mumble, and Winmerge,
Winmerge, Winmerge and KeePass gain higher results, respectively. The predicting
results are proportional to similarity except for predictingMumble. When predicting
Mumble, Winmerge gains higher accuracy while KeePass gains higher similarity
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