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Preface

In the last few decades, the demand of eco-friendly and bio-based products has been
increased substantially. The issues of environmental sustainability and climate
change can be resolved by replacing the majority of chemical and synthetic com-
pounds with bio-based products. The present book is motivated by the current state
of affairs of exopolysaccharides (EPSs) and their composites in wide range of
applications. This book had been written to provide a framework of synthesis and
production of EPSs using microbes and algae. This book mainly emphasizes on the
range of applications of EPSs in various sectors. A variety of EPSs were reported to
produce from microorganisms having remarkable properties to use for industrial
purposes. These are heterogeneous polymeric substances which have immense
applications in pharmaceuticals, medical, food and fabric industry. This polymeric
nature also makes these as an alternative of synthetic plastic- and petroleum-based
chemicals. Microbes present in marine or terrestrial ecosystem are efficient pro-
ducers of EPSs. The biofilm forming bacteria are also a major source of the EPSs.

Their function in the aquatic microorganisms is attachment of cells to solid
surface and also to defend the microbes from the predatory organisms. Researchers
have explored the production of EPSs from microbes by media engineering, genetic
engineering and recombinant DNA technologies. These are secreted by the cells in
extracellular environment. So, their purification and large-scale production have
some advantage over enzyme purification which is a tedious process. These are
carbohydrate-rich compounds and produced in the excess of sugar-rich substrate.
Now, microbes are quite efficient to utilize a variety of sugar-rich substrates
available in the nature due to the presence of wide variety of enzymes encoding
genes present in their genome. When these are secreted outside the cells, these may
acquire the form of slimy layer or stable cohesive layer. These can be collected and
produced at large scale from a number of algae, archea, thermophilic bacteria and
microbes of extreme environment. Due to the superior performance and functional
properties, microbial polysaccharides are the excellent choice over the plant and
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micro-algal-derived gums. Microbial polysaccharides are rheology-modifying
agents, which can be thickening, stabilizing, emulsifying, flocculating, chelating
and encapsulating agents as well. Microorganisms such as bacteria, yeast and fungi
produce polysaccharide with various physiological roles. The immense functional
properties of microbial polysaccharides undoubtedly rely on their structural con-
formation and physicochemical properties. Xanthan gum, gellan, dextran and
pullulan are the most commercially used microbial polysaccharides. Xanthan gum
is an omnipresent food ingredient, serving as thickener, leavener, stabilizer and
texture enhancer. Gellan is a remarkable gelling agent that helps to rapidly set the
food preparation at low concentration. Dextran is the most medically important
polysaccharide used as an antithrombotic agent. Yeast-derived pullulan or its
derivative have various biomedical applications such as drug delivery, plasma
substitution, tissue engineering and so forth. b-glucan derived from baker’s yeast
Saccharomyces cerevisiae is a commercially available immunostimulatory agent.

The non-toxic nature and inherent biocompatibility have encouraged their
applications in the tissue engineering, scaffolds or matrices, bone repair, drug
delivery, wound healing and bio-plastic synthesis. These EPSs are also quite useful
for in vivo applications as these have inherent capability to undergo
auto-degradation in the body cells and tissue. The researchers from various coun-
tries have contributed their knowledge and recent progress in the synthesis, pro-
duction and applications of these exopolysaccharides from various sources. We
compiled the chapters written by various experienced researchers working in the
microbiology and relevant areas. The rationale of this book is to provide a toolbox
from which researchers, students, and industry professionals, can collect the
information to utilize and EPSs in various fields. Another major reason for editing
the book was the topic of the research area of our interest. Generally, we spend
many hours to collect the information on a wide range of topic and were able to get
little information or puzzling results. Thus, in the book, we complied the chapters
on all the important issues which need to be solved urgently. Chapters “Microbial
Exopolysaccharides: An Introduction” and “Techniques Used for Characterization
of Microbial Exopolysaccharides” will introduce the various origin historical pro-
spects of EPSs in nature and analytical techniques to study these bio-based com-
pounds. Chapters “Molecular Basis and Genetic Regulation of EPS” and
“Molecular Engineering of Bacterial Exopolysaccharide for Improved Properties”
describe the molecular basis and modification of microbial EPSs. Chapters
“Extremophiles: A Versatile Source of Exopolysaccharide” and “Pullulan:
Biosynthesis, Production and Applications” focused on the sources and applica-
tions of microbial EPSs. Various pharmacological and industrial applications of the
EPSs were described in the chapter “Exopolysaccharides in Drug Delivery Systems
”–“Microbial EPS as Immunomodulatory Agents”. Chapter “Novel Insights of
Microbial Exopolysaccharides as Bio-adsorbents for the Removal of Heavy Metals
from Soil and Wastewater” and “Applications of EPS in Environmental
Bioremediations” emphasized on the environmental applications of microbial
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EPSs. The last chapter summarizes the “Cost-Benefit Analysis and Industrial
Potential of Exopolysaccharides”. We firmly hope that the present book will be
beneficial for all the early stage researchers and industrialists.

Waknaghat, India Ashok Kumar Nadda
Bengaluru, India Sajna K. V.
Mohali, India Swati Sharma
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Microbial Exopolysaccharides:
An Introduction

Kuttuvan Valappil Sajna, Swati Sharma, and Ashok Kumar Nadda

Abstract Microbes secrete high molecular-weight polysaccharides of diverse
structures into the surrounding environment termed exopolysaccharides (EPSs).
EPSs serve multifarious roles which aid the microbes to thrive at different
ecosystems. Many EPSs are industrially/clinically relevant polymers owing to their
biocompatibility, biodegradability, non-toxic nature and distinct physicochemical
properties. Considering their past success for various applications ranging from
hydrocolloids to biomedical applications, microbial EPSs still hold considerable
attention of biotechnologists. They are high-value products, and their market value
will grow in the coming years due to their potential nutraceutical, therapeutic and
industrial potential. The objective of the chapter is to update the readers with recent
findings on microbial EPSs. This chapter also gives interesting insights into
physiological roles and biosynthesis of microbial EPS. The chapter also discusses
the recent advances in applications of microbial EPSs and their commercial
prospects.

Keywords Microorganisms � Polysaccharides � Hydrocolloids � Polymers �
Biomedical application

1 Introduction

Microbes are the source of many biotechnological products due to their metabolic
diversity and ease of cultivation. One such product-exopolysaccharides (EPSs) are
widely used as the polymers in various industries owing to distinct physicochemical
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properties, non-toxic nature, biocompatibility, biodegradability and the ease of
production. Microbial polysaccharides are of two types—intracellular polysaccha-
rides and extracellular polysaccharides. Extracellular polysaccharides are further
classified into capsular polysaccharides that encapsulate the microbes (exocellular
polysaccharide) and exopolysaccharide (EPS) which secreted into the surrounding
environment [1]. Intracellular polysaccharides are the storage polysaccharides
serving as a rapid carbon source under nutrient deprivation [2]. Capsular
polysaccharides play a significant role in microbial pathogenesis. The immunogenic
property of capsular polysaccharide makes them a good target for vaccine devel-
opment [3]. EPSs play diverse roles from biofilm formation to pathogenesis.

The first EPS discovered was dextran by Louie Pasteur in the nineteenth century
as a microbial product in the wine industry [4]. The contribution by Allene Jeanes
in the mass level production of dextran and discovery of xanthan revolutionized the
industrialization of microbial EPS. EPSs are high molecular weight compounds
with the molecular weight ranging from 0.5 � 106 to 2 � 106 daltons. EPSs may
be of homopolymeric or heteropolymeric in sugar composition and can be linear or
branched, structurally [5]. Apart from the monosaccharide composition and struc-
tural complexity of EPSs, EPSs may contain functional groups such as acetyl,
carboxyl, sulfate, phosphate, pyruvate and uronic acid groups, which all determine
the physicochemical and biological properties of EPSs.

Microbial EPSs are inevitable for modern human lifestyle as the ingredient in
food and personal care formulations. They have immense clinical applications
including emergency medicine or an ingredient in pharmaceutical formulations.
They are also used extensively in the petroleum industry, household product for-
mulations and construction applications. Considering the current R&D scenario in
microbial EPS, their clinical, lifestyle and other implications will be accentuated in
the near future. Table 1 summarizes commercially available microbial EPS with
potential industrial/clinical applications.

2 Novel Exopolysaccharides with Therapeutic/Industrial
Significance

Considering the past success of EPSs for various applications ranging from
hydrocolloids to biomedical applications, exopolysaccharide still holds considerable
attention of biotechnologists. Many novel EPSs with significant clinical/industrial
applications have been reported in the last decade (Table 2). Some of these microbial
sources are already known for EPS production. Novel variation in EPS can be
pinpointed by investigating the monosaccharide composition of EPS. Strain-specific
EPS is encoded by unique EPS biosynthetic genes. Diversity of epsE gene in
Lactococcus lactis strains result in strain-specific EPS production [25]. Some of the
most common sources for the isolation of EPS producing microbes are dairy
products, fermented products and plant parts. Identification of lactic acid bacteria

2 K. V. Sajna et al.



Table 1 Summarizes commercially available microbial EPS with potential industrial/clinical
applications

EPS Microbial strain Structure Industrial/
clinical uses

References

Dextran Leuconostocmesenteroids a-1,6-Glucan with
branching of
a-1,3-glycosidic
linkage

Clinical
applications—
plasma volume
extender,
antithrombotic
agent, blood
substitute,
vascular
surgery, drug
delivery agent,
clinical
management of
iron deficiency
anaemia,
preservation
solution for
organs, and
wound healing
agent.
Other uses—
food
packaging,
photographic
uses, separation
technology, cell
culture
techniques and
cryoprotectant
agent

De Belder [6],
Bhavani and
Nisha [7], Abir
et al. [8],
Debele et al.
[9], Rutherford
et al. [10],
Aman et al.
[11], Candinas
et al. [12], Zhu
et al. [13]

Xanthan Xanthomonas campestris A polymer of D-
glucose, D-
mannose and D-
glucuronic acid

Additive in
food, medical
and personal
care
formulations;
used as drilling
fluid in oil field
drilling and
building
materials for
construction
applications

BeMiller [14],
Akpan et al.
[15, Plank [16]

Pullulan Aureobasidium pullulans Glucan of a-(1-6)
and a-(1-4)
glycosidic linkage

Food and
pharmaceutical
additive; oral
care ingredient

Singh et al.
[17]

(continued)

Microbial Exopolysaccharides: An Introduction 3



secreting a novel EPS composed of unusual monomer like N-acetylglucosamine
from a fig leaf highlight the importance of bioprospecting of environmental source
such as these for EPS producers [26]. Exploring the ecological hotspots and extreme
environments can lead to the discovery of the microbes producing novel EPS with
significant biotechnological implications. Delbarre-Ladrat et al. [27] that the
majority of bacterial species inhabiting deep-sea hydrothermal vents has the
potential of producing structurally diverse high-value EPS, which emphasized the
bioprospecting of marine environment for EPS producing microbes.

Table 1 (continued)

EPS Microbial strain Structure Industrial/
clinical uses

References

Gellan Sphingomonas elodea A polymer of
tetrasaccharide
units comprised of
D-glucose, D-
glucuronic acid, D-
glucose L-
rhamnose

Food,
pharmaceutical
and personal
care
formulation; an
additive in
household
products; also
used in tissue
culture media
preparations

Iurciuc et al.
[18]

Curdlan Agrobacterium sp. (1-3)-b-glucan Food additive;
used in
pharmaceutical
formulation and
drug delivery
system

Zhang and
Edgar [19]

Scleroglucan Sclerotium rolfsii b-1,3-b-1,6-
glucan

Petroleum
recovery; used
in nutraceutical
and
pharmaceutical
industry; in
food and
personal care
formulations;
construction
applications

Castillo et al.
[20]

Schizophyllan Schizophyllum commune b-1,3-b-1,6-glucan Therapeutic
application,
cosmetic
application

Leathers et al.
[21]

Bacterial
cellulose

Acetobacter xylinum b-1-4 glucan Hydrocolloid
dressing;
cosmetic and
textile
industrial
application

Wang et al.
[22–24]

4 K. V. Sajna et al.



3 Physiological Roles and Ecological Aspects of EPS

EPS serve multifarious roles which aid the microbes to thrive in different ecosys-
tems. EPS plays a varying role from biofilm formation, quorum sensing to patho-
genesis and the functions depend on ecological niche of host organisms.
Physiological roles of EPS are unravelled using the approach of knocking out EPS
biosynthetic genes to create mutant deficiencies in EPS production. Pullulan

Table 2 Novel EPS of therapeutic/industrial significance

EPS Source organism Monomeric
composition

Potential
application

Reference

EPS-NA3 Lactobacillus coryniformis a-rhamnose,
a-mannose,
a-galactose, and
a-glucose

Antioxidant and
antibiofilm agents

Xu et al.
[28]

a-mannan Pseudoalteromonas
SM20310

2-a- and
6-a-mannose

Cryoprotection Liu et al.
[29]

EPS-1 and
EPS-2

Bacillus amyliliquefaciens
C-1

Glucose, mannose,
galactose and
arabinose (EPS-1);
Glucose and
mannose (EPS-2)

EPS-1 as an
antioxidant agent

Yang
et al. [30]

Neutral EPS Lactobacillus paracasei
IJH-SONE68

N-
acetylglucosamine

Anti-inflammatory
agent

Noda
et al. [26]

Acidic EPS Lactobacillus plantarum
SN35N

Glucose, galactose,
and mannose

Anti-inflammatory
agent

Noda
et al. [31]

Pseudozyma
EPS

Pseudozyma sp. NII 08165 Glucose, galactose,
and mannose

Emulsifying and
suspending agent

Sajna
et al. [32,
33]

DM-1 EPS Bacillus licheniformis
strain DM-1

Proteoglycan In situ microbial
enhanced oil
recovery

Fan et al.
[34]

EPS Lactobacillus fermentum
R-49757

D-glucose and D-
mannose

Not investigated Do et al.
[35]

EPS-S3 Pantoea sp. YU16-S3 Glucose, galactose,
N-acetyl
galactosamine and
glucosamine

Wound healing
applications

Sahana
and
Rekha
[36]

EPS Lactobacillus
paraplantarum

Glucose, galactose
and mannose

Emulsifying and
texturing agent

Sharma
et al. [37]

EPS-SN-1 Bacillus velezensis SN-1 Glucose, mannose
and fructose

Antioxidant agent Cao et al.
[38]

EPS Bifidobacterium
breve lw01

Rhamnose,
arabinose,
galactose, glucose,
and mannose

Anticancer activity Wang
et al.
[22–24]

Nat-103 Natronotaleasambharensis
AK103T

Mannose, glucose
and glucuronic acid

Antioxidant
activity

Singh
et al. [39]

EPS Lactobacillus mucosae
VG2

D galactan Not investigated Fagunwa
et al. [40]
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produced by a desert isolate Aureobasidium melanogenum confers adaptation for
living in the harsh desert environment by protecting from various abiotic stresses
[41]. EPS produced by an arctic sea isolate Pseudoalteromonas strain SM20310,
plays a significant role in environmental adaptation of strain in sea ice by providing
high salinity tolerance and cryoprotection [29]. EPS has implication in the pro-
tection of plant growth-promoting Rhodotorula sp. from adverse environmental
conditions [42]. Similarly, pH buffering property of cyanobacterial EPS matrix
protects the dryland cyanobacteria from acid damage [43].

On solid surfaces, EPS facilitates the growth of bacterial communities as biofilm
by leading bacterial cell adhesion and bacterial cell aggregation. Caro-Astorga et al.
[44] revealed that each EPS produced by Bacillus cereus serve distinct roles. EPS1
contributes to bacterial motility, while EPS2 is involved in biofilm formation and
gut colonization, thus playing a role in host-pathogen interaction. Being an integral
part of biofilm, EPS makes the bacterial colonies recalcitrant to a wide range of
antimicrobial agents. During the biofilm formation by Pseudomonas aeruginosa,
production of matrix EPS ‘psl’ and the intracellular signalling molecule ‘c-di-GMP’
that stimulates the synthesis of biofilm matrix EPS is in the feedforward control
loop. Hence, targeting the biofilm signalling mechanism can be an effective strategy
to tackle chronic P. aeruginosa infections [45]. Another EPS, pel is cationic and
hold the extracellular DNA in the biofilm matrix, apart from being the structural
element of biofilm [46].

Studies on EPS produced by Lactobacillus species revealed the role of EPS in
bacterial surface properties and host interaction. EPS affected the surface properties
such as colony phenotypes and bacterial surface charge. Gene deletion studies
revealed that EPS plays a significant role in bacterial cell aggregation. Concealing
the surface structure with EPS might be one of the tactics to reduce the cell-cell
interaction and the role of EPS in host cell interaction is strained specific [47–49].
EPS 1, a major virulence factor of a phytopathogenic bacteria Ralstonia solana-
cearum regulate the feedback loop of quorum sensing [50].

In the case of lactic acid bacteria, EPS protect the bacteria from bacteriophage,
nisin and lysozyme [51]. EPS is the major arsenal for microbes to compete with
each other for food and space. Toska et al. [52] suggested that EPS is involved in
the antagonistic interaction between bacterial species and lead to the successful
establishment of bacterial communities. In Gram negative bacteria such as Vibrio
cholerae, EPS protect bacteria from other bacterial attacks by inhibiting the type
6-secretion system (T6SS). Type 6 secretion system by gram-negative bacteria is
used to deliver the toxic protein into adjacent eukaryotic and bacterial cells.
Deletion of EPS biosynthetic genes makes the V. cholerae more susceptible to
T6SS attack by heterologous bacteria. On other hand, the same EPS of V. cholerae
will not affect its T6SS attack on other bacteria [52].

EPS plays an important role in the establishment of plant microbial symbiosis.
Plant root attachment of nitrogen-fixing bacteria Paraburkholderia phymatum is
determined by the production of an EPS, cepacian [53]. Plant-growth promoting
soil-borne P. aeruginosa, P. syringae, P. putida, and P. fluorescens produce EPS
‘alginate’. Alginate play an important role in Zn2+ biosorption and phenazine
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biosynthesis, a biocontrol agent produced by fluorescent Pseudomonas strain.
Increased alginate production affects the rhizosphere compatibility with improved
biofilm formation and enhanced root colonization [54]. EPS helps to maintain the
spore physiology and improve spore survival. pzX is an eps exclusively produced
during sporulation of Bacillus species. Composition of amino sugar provides
unique properties to pzX like lowering the surface tension and inhibiting cell-spore
aggregates formation [55]. Metagenomic analysis of biological soil crust showed
the presence of EPS and lipopolysaccharide (LPS) producing bacterial species.
Here, EPS and LPS act as soil glue for soil aggregate formation that aid the
formation of biological soil crust [56].

EPS plays a crucial role in etiology of dental caries. Demineralization of teeth by
cariogenic biofilms leads to the formation of the oral cavity. In the presence of
carbohydrates, cariogenic microbes produce organic acids that leach calcium from
the teeth. A study showed that cariogenic microbes such as Streptococcus mutans,
Lactobacillus rhamnosus, and Candida albicans produce EPS that have a high
calcium-binding affinity, which attributes to the calcium tolerance of the microbes.
Apart from structural anchorage to the biofilm, EPS also serve as a survival tool of
cariogenic microbes to defuse high calcium concentration [57]. Targeting EPS can
be an effective strategy to control cariogenic microbes [58]. However, in the case of
catheter-associated urinary tack infection, EPS secreting P. aeruginosa adopt
exopolysaccharide independent biofilm formation [59]. Hence, understanding the
role of microbial EPS is crucial for developing therapeutic interventions against
pathogenic microbes in which EPS production can be targeted. Furthermore, eco-
logical functions of microbial EPSs promote their huge agronomical implications.

4 Biosynthesis and Metabolic Regulations of EPSs

Functional genomics analysis provides valuable information on EPS biosynthesis,
export, and regulation. Identifying the gene targets can pave the ways to engineer
high EPS producing strains or strains that produce tailor-made EPS [60]. Genomic
analysis of microbes can reveal microbial potential to produce unknown
exopolysaccharides. Borlee et al. [61] identified a novel EPS biosynthetic gene
cluster involved in biofilm formation of Burkholderia pseudomallei. Genome
annotation of EPS producing thermophilic bacteria Geobacillus may improve its
prospects as a microbial cell factory for EPS production [22–24]. Padmanabhan
et al. [62] studied differential gene expression during EPS biosynthesis by
Streptococcus thermophilus ASCC 1275 in different sugar-containing media at
stationery and log phases. They observed a correlation between high EPS pro-
duction and upregulation of genes involved in sugar metabolism. A similar
observation of increased UDP-glucose and UDP-galactose synthesis associated
with a high yield of EPS, by S. thermophilus S-3 was reported by Xiong et al. [63].
Proteomic analysis revealed that upregulation of proteins involved in sugar
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transport, EPS assembly and amino acid metabolism was also associated with high
EPS production [62, 64].

Availability of whole genome sequence of EPS producing microbes facilitates
the metabolic engineering strategies for EPS production [65]. Evaluation of EPS
production by gene knockout mutants, gene overexpression mutants and gene
complementation mutants of EPS biosynthetic genes can shed light on the role of
each EPS biosynthetic genes in EPS production [66]. CRISPR-Cas9 genome
editing had enabled researchers to produce EPS variants with different monomeric
composition from Paenibacillus polymxa. These EPS variants can give insights into
the structure-function relationship of polysaccharides and aid to create customized
EPS with desirable properties [67]. Xanthomonas campestris strains were engi-
neered to produce xanthan gum variants with distinct secondary structure and
rheological properties, which may be suitable for application in various industries.
Structure-activity relationship of these tailor made-xanthan gums revealed that
terminal mannose is one of the major determinants of rheological properties of
xanthan gum, while the terminal mannose and internal acetyl group are integral to
its double-helical conformation [68]. Genome editing and metabolic engineering
could yield tailor-made EPS with improved stability and higher performance, which
can have huge commercial potential when compared to native EPS.

5 Applications and Commercial Prospects of EPS

Due to the presence of a large number of hydroxyl groups, microbial EPS have
been long used as hydrocolloids, which modify the rheology of the system by
altering the flow behaviour and texture. In food and personal care industry, they
serve as a thickening, gelling, stabilizing, emulsifying and water-binding agents
[69, 70]. Xanthan gum is a widely used thickener in food formulation. In food and
confectionary, xanthan gum has become more prominent in recent years due to its
status as vegan-friendly. In gluten-free baking, xanthan gum provides structure and
elasticity to dough or batter, and as an egg substitute, it emulsifies and thickens the
food preparations. Xanthan gum based thickened fluid appears promising for
treatment of patients with oropharyngeal dysphagia. Apart from safety and efficacy,
it is resistant to a-amylase and preferred by patients, when compared to
starch-based thickener [71, 72]. The concentration, type and setting time of xanthan
gum-based food thickeners are the main factors in designing the infant food for-
mulation used for paediatric dysphagia [73]. Gellan gum exhibit excellent gelling
properties. To overcome the limitation of the gellan gum such as low mechanical
strength and high gelation temperature, blending with natural or synthetic polymer
has been employed [74]. Synergistic hydrogels of xanthan gum and gellan gum
with other natural polymers are promising for the preparation of food packaging
materials [75].

Antioxidant property and water-absorbing/retention properties are some of the
features of EPS attractive for cosmetic applications [76]. ‘Lubcan’ an EPS with
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remarkable skin lubricating property produced by Paenibacillus sp. ZX1905 could
be a low-priced replacement of hyaluronic acid in cosmetic formulations [77].
Extremophilic microbes may provide EPS with excellent keratinocyte protective
ability from temperature or radiation-induced damage. An EPS of momomers-N-
acetyl glucosamine, mannose and glucuronic acid produced by an artic marine
bacterium Polaribacter sp. SM1127 could be an excellent cosmetic ingredient as it
is dermatologically safe, possess better moisture retention properties than hya-
luronic acid and good antioxidant activity, and protect human dermal fibroblast
from low temperature-induced damage [78]. Radiation-resistant Deinococcous
radiodurans derived EPS (deinopol) protect keratinocytes from radiation-induced
ROS damage [79].

Potential bioactivities reported for EPS include antitumor, antioxidant,
immunomodulatory, antiviral, antibacterial, anti-inflammatory, and
cholesterol-lowering properties. Consumption of bioactive EPS can have potential
health benefits [80]. Antitumor property of EPS stems from its ability to modulate
oncogenic pathways. EPS produced by many lactic acid bacteria can induce
apoptosis and cell cycle arrest in tumour cells, without any toxicity to normal cells
[81]. EPS secreted by probiotic yeasts-Kluyveromyces marxianus and Pichia
kudriavzevii were reported to induce apoptosis in colorectal cancer cells by
inhibiting AKT-1, mTOR, and JAK-1 pathways [82]. Though many studies
demonstrated the antitumor potential of EPS, the viability of EPS as a coadjuvant
for cancer therapy needs to be addressed by in-depth in vivo studies. Some
researchers observed that the sugar composition of EPS primarily determines its
antitumor property. For instance, Tukunmez et al. [83] observed that the apoptotic
induction by Lactobacilli EPS was related to the mannose content of EPS. The
mode of action of Lactobacilli EPS is by upregulation of Bax, Caspase 2 and 9 and
downregulation of Bcl-2 and Survivin leading to caspase-mediated apoptosis [83].

EPSs have been commonly used in pharmaceutical formulations for controlled
and sustained release of drugs, coating of pills or as suspension stabilizers. Presence
of hydroxyl groups and free carboxyl groups in EPS enables the structural modi-
fication of EPSs, improving the biostability and mechanical properties or impart
novel functionality to EPSs, thus broadening their applications [84]. Adding
hydrophobic moiety to xanthan gum reduces its solubility and porosity, and
modified its rheology. The resulting amphiphilic xanthan gum reduced the surface
tension/interfacial tension and stabilized the emulsion, which improves its prospects
for pharmaceutical applications, in comparison to native xanthan gum [85]. Du
et al. [86] reported an antibacterial hydrogel made of hydrophobically modified
chitosan and oxidized dextran with improved wound healing properties than that of
traditional gauze. Similarly, a thermoreversible hydrogel made with xanthan and
konjac glucomannan appear promising for in situ would healing [87].

Non-immunogenicity, biocompatibility and biodegradability determine the
applicability of EPS in biomedical application. Dextran is the most clinically used
bioabsorbable EPS. Dextran has been used as a plasma extender and an
antithrombotic agent. Dextran is neutral in charge, exhibit excellent pharmacoki-
netics and is easily degraded by dextranase enzyme in our body [88]. Acetalated
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dextran (Ac-Dex) is modified dextran with hydrophobic nature. It can be easily
formulated to micro/nanoparticle, which can encapsulate a diverse payload. Its
pH-sensitive nature makes it an effective drug delivery system for protein, miRNAs
and chemotherapeutic drugs [89–91]. Studies with natural compound ganothala-
mine revealed promising application of Ac-Dex as an encapsulating agent for the
sustained release of the anticancer drug [92]. Wannasarit et al., [93] synthesized a
conjugated dextran-based polymeric nanoparticle which can mimic viral entry to
the cell. Adapting a viral mode of delivery of therapeutics to the cytoplasm is a
good approach to bypass the lysosomal degradation that happens after the inter-
nalization of the drug. The prepared poly(lauryl methacrylate-comethacrylic acid)-
grafted acetalated dextran carrying the payload of asiatic acid showed improved
therapeutic efficacy than treatment with asiatic acid alone. Pinho et al. [94] prepared
a dextran-based photocrosslinked membrane which shows potential as implantable
devices for biomedical application. In vivo studies using rat models indicated that
the developed dextran-based membrane is biocompatible.

With the aim to restore or regenerate the damaged tissue, tissue engineering
comprises of cells and growth factors in a biomaterial that acts as the scaffold for
cell growth. Biocompatibility, gelation and mechanical properties are the attractive
properties of EPSs for their use as biomaterials in tissue engineering [95].
Microbial EPS containing hexosamine and uronic acid as monomers and acetyl/
sulfate groups as functional groups hold great therapeutic potential due to their
structural resemblance with mammalian glycosaminoglycans (GAG). Using bac-
terial GAG-like polymers over mammalian GAG have the following advantages.
Bacterial EPSs are produced by fermentation that is more feasible when compared
to strenuous extraction of GAG from animal tissue. Bacterial EPSs are free of
prions and viruses as in the case of mammalian GAGs. EPS produced by marine
isolated Vibrio diabolicus and Alteromonas infernus are promising candidates for
tissue repair and remodelling. Chemical modifications of these depolymerized
polysaccharides using N-deacetylation and sulfation can yield heparin-like poly-
mers [96–98]. Cross-linked dextran is an effective injectable hydrogel for cartilage
regeneration [99]. Capsular alginate extracted from Azotobacter agile exhibit lower
cytotoxicity on mesenchymal stem cells than algal alginate. Moreover, tailor-made
alginate with attractive properties to serve as a biomaterial can be produced by
metabolic engineering of host bacterium [100].

The petroleum industry has been using EPS as a viscosifier for the drilling
purpose. In situ EPS production by Pseudomonas stutzeri XP1 isolated from oil
reservoir could enhance the oil recovery that demonstrated the potential of EPS for
enhanced oil recovery [101]. EPS can be a potential bioadsorbent for heavy metal
removal. They are environmentally friendly, cost-effective, and require milder
conditions to operate. Metal adsorption by EPS depends on ionic nature of metal, its
size and charge density. Positively charged heavy metals can be sequestered using
anionic charged EPS [102]. When arsenic degrading bacteria was cultivated in
arsenic-containing media, they produced EPS that can effectively sequester arsenic.
These EPS are rich in polyanionic functional groups, which result in electrostatic to
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covalent binding with arsenic [103]. Similarly, studies also demonstrated the
excellent flocculating activity of microbial EPS [33, 104].

EPS can be effective and sustainable soil strength improver. Using EPS as the
soil stabilizer can alleviate the negative environmental impact associated with tra-
ditional soil stabilizers such as lime and cement. Improvement in soil shear strength
and soil fabric was noted on addition of xanthan gum to the organic peat matrix,
due to the hydrogen and electrostatic binding between xanthan gum and clay
particle [105, 106]. Xanthan gum and sodium alginate could alleviate soil erosion
and reduce the collapsible potential of soil material [107, 108]. Water adsorption
and moisture-retention abilities of soil can be greatly improved by the addition of
xanthan gum [109].

Exopolysaccharide-derived oligosaccharides can be considered for sustainable
agricultural practices. Plant growth-promoting biostimulants can greatly benefit
agriculture by stimulating the nutrient uptake, enhancing the photosynthetic activity
of plants and protect the plants by mitigating abiotic stress [110]. Low molecular
weight oligo-gellan prepared by depolymerization of gellan gum is promising as a
biostimulant, which improved the plant growth and survival of Red Perilla plants
under normal and stress conditions. Biostimulatory activity may be due to elicita-
tion of plant polyphenol content and other secondary metabolites, leading to high
antioxidant activity [111]. Though gellan gum also confers some biostimulatory
effects on plants, the oligo-gellan exhibited better performance [112].

6 Conclusions

Microbial EPSs are one of the industrially significant microbial products, which are
used as the functional ingredient in the food, pharmaceutical, personal care and
other industries. Functional application of EPS is correlated to their structural
complexity, which determines their physicochemical properties and bioactivities.
Besides, the structural modification of EPS and synergistic manipulation with
natural or synthetic polymers to broaden the applications of EPS, researchers are
actively searching for novel EPS with versatile physicochemical properties or
unique bioactivities which can have industrial/therapeutic applications. For that,
they pursue the bioprospecting of EPS producing microbes from different envi-
ronmental samples, specifically extreme environment. The ability of microbes to
produce unknown exopolysaccharide is also being studied by genomic analysis.

Some latest studies shed light on the role of EPS in host-microbial symbiosis and
pathogenesis. Understanding the physiological roles of EPS secreted by pathogenic
or opportunistic microbes is quite crucial for developing novel therapeutic strategies
against these microbes. Employing multiple omics techniques and metabolic
engineering strategies in the field of microbial EPS can greatly expand the
knowledge in EPS biosynthetic pathways and also, leads to the generation of
tailor-made EPS with superior properties.
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Microbial EPS possess excellent rheological, emulsifying, and water-retention
properties, which makes them highly sought-after industrial polymers in food,
personal care, pharmaceutical and oil-drilling industry. In addition to this, they
possess stability in a wide range of temperature and pH that heighten their com-
mercial prospects. Furthermore, EPS may possess biological activities such as
antioxidant, antitumor, immunomodulatory and antimicrobial properties and are
promising for therapeutic and nutraceutical applications. Structural modified EPS
with natural or synthetic polymers make an effective hydrogel with implications in
clinical and biomedical field as wound dressing and tissue engineering applications.
Growing researches demonstrate the potential use of EPS for bioremediation, soil
conservation and sustainable agricultural practices.
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